Inequalities and theorems concerning
strongly multiplicative systems

By FERENC MORICZ in Szeged

Introduction

ALEXITS introduced the following definitions (see [1], p. 186).

The sequence of real measurable functions ¢,(z), @,(¢), -+ defined in. the
interval [0, 1], is called a multlphcatlve system if all their finite products are Lebesgue-
integrable with -

NO f%ﬁmuo )t = 0 (< n << k=1,2,),

The sequence {,(2)} is called a strongly multiplicative system (SMS) if the
system {@, (£)@,,(¢) -9, (¢)} is an Grthogonal system, i.e.

. 1 o
) [ om0en0) - om@di =0 (1, < my << m k =1,2, ),
G J | A

where «;, «,, -+, o can be equal to 1 or 2 but at least one element of the sequence
oy, Uy, *++, o 1s equal to 1.

The sequence {@,(¢)} is called an equinormed strongly muitiplicative system
(ESMS) if the system {¢, (1)@, ,(t)-+- @, (?)} is an orthégonal and normal system, i.e.

Joawd=0 [e@d=1 @=12-;
0 ,\fmmwmmwww=

1 1 .
= [onwd [ om@yar - fwmm<m<w<m<%,42 ),
0 0 . .

where a,, a5, -+, ®, can be equal to 1 or 2.
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Evidently a sequence of independent functions (with mean value 0 and dis-
persion 1) is an ESMS. Another example is a strongly lacunary sequence of tri-

-gonometric functions, i.e. {l/2 sin 27 nkt} if mepy/m=3 k=12, ).
ALexits proved that an ESMS has the property of the mdependent functlons,

i.e. Za,,(p,,(t) is convergent almost everywhere if and only if Za,, <. More
n=1

n=1

exactly he proved

Theorem A If {(p,,(t)} ina umformly bounded ESMS then under the condztton

oo

D al <o the series Z a,p,(t) is convergent almost everywhere Furthermore,
n=1 n=

if for every measurable set EC]O, 1] and for sufficiently large n the relation
f 92 dr'= Cmes (E) )

holds (where C is a positive constant depending only on E ), and zf the series Z a,,go,,(t)

is convergent in a set of positive measure then 2 a2 < oo,

n=1

(In [1] this theorem is given in a more general form.)

The aim of the present paper is to study what other properties of the 1ndependent
functions remain valid for an ESMS. Namely we prove the inequality due to BERN-
STEIN and other exponential bounds, furthermore, the central limit theorem and .
- a weaker form of the law of iterated logarithm for ESMS. Let me recall here the
" well-known forms of these theorems. :

We shall use, for any sequence {(p,,(t)} of functions, the followmg notatlons _

SN(t) = 2, an(Pn(t)a A2 = Z ar?s MN = lmaxN Ian| (N=1’21 )
n=1 n=1 =n= .

The following inequality is due to BERNSTEIN [2]:

Theorem B. Let {on(1)} be a system of independent functions on [0, 11 with -
mean value 0 and dispersion 1, and uniformly bounded by the constant K further-
more, let x be a positive real number such that

xMyK
4

3 =

[IA

Then - ‘ N .
mes ({Sy(?) = x}) = exp {—2—2? Qa —9)} .

' ) mes (E) denotes the Lebesgue measure of the set E.
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Here we prove the following analogo'us form:

Theorem 1. Let {0.)} be a uniformly bounded ESMS wzth bound K, and
let x be a posztwe real number. Then .

. 2 e ‘ 3
@ mes ({Sx (t) = ) = exp {~2’1‘47(1 —.9)} with 0 = xf‘ﬁv;

Rémark 1. We observe if Sy(r) is replaced by — Sy(¢) the conclusion yields

. o . | 3
mes ({|Sy ()] = x}) = 2exp {t—szIzv(l —0)} with 0= "A%K .

We show that the revefse inequality also holds if xMy/A% is sufficiently small
and x?/4}% is sufficiently large, the analogous form of which can be found in the
quoted paper of KOLMOGOROFF [2].

Theorem 2. Let {@,(t)} be a umformly bounded ESMS, wzth bound K, and
let x be a positive real number. If the inequalities

: N XMyK® 1 o X s
(5) . : i) yr ke *= o and (i) i p=2
are satisfied, then : '
. . 2 L
- (6) mes ({Sy(?) = x}) = exp {—2);7 ( +a)}, .
: N
whgre ' : S
£=max{64m, 32V10§ﬂ}.

MA.RCI_NKIEWICZ and ZyGMUND [3] proved the following %)

Theorem C. Let {¢,(¢)} be a syézem of independent functions on [0, 1], with
mean value 0 and dispersion 1. Then, for all positive real numbers p (=1), we have

: .1 , 1 _
0 | Coav=1{f (;max, 1S, dt)}” = D, Ay,

where C, and D, are positive constants depending only on p.

An essentially similar result holds for lacﬁnary trigonometric series 3), too

2) Here we give the original theorem with a little modification.

) kg,: (a,. cos mt-+ b, sin n, ) in called lacpnary if meyme=g=>1 (k=1,2,...)- - -
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(see [4], v. 1, p. 203). Unfortunately we cannot assert the analogous result for ESMS,
but the followmg result is valid: '

Theorem 3. Let {@,(t)} be a uniformly bounded normed SMS. Then, for all

positive real numbers p, we have
1 1

@®) ' Gy = {of Sx(Pdi}” = DAy, -

wherée C'p and D, are positive constants depending only on p. Furthermore, if for A,
and a_positive real number 1 we have

.
(9) . AN =1 and 1= W,
then

S B : 1

(10) - [ exp {1S§,(t)} dt=72.

0

Moreover we succeeded in proving the followmg theorem (for the case Rade-
_macher functions, see [4], v. 1L p. 235):

Theorem 4. Let {go,,(t)} be a uniformly bounded normed SMS. Then the JSollow-
"ing estimations are valid:

(D Cdylogt 4g—C = [ |Sy@)]log* ISy ()] dt = CAylog Ay +C', )
v C =, ,

wkere C and C’ are positive absolute constants. ' o v
Remark 2, It will be clear from the proofs that both Theorem 3 and Theorem 4

rémain valid 1f Sy(t) and Ay are replaced by 5’ a,p,(t) and A?= 2’ a; in them

éﬁpposing that A << or A=1, resp'ectively.’ln particular, if 2’ a?<oo then the
n=1

sum of Z’ a,,(p,,(t) belongs to L" for every positive: real number p. s
Concernmg the law of 1terated loganthm the basm result, obtained by KoL-
- MOGOROFF [2], reads-as follows

Theorem D. Let {p,(1)} be a system of bounded independent functions on
[0, 1}, with mean value O and dispersion 1. If .

‘ (12 (1) Ay oo, _ (1) |aN¢N(t)l. =my=o0 [Vﬁﬁ] ’

4) By log*iuj we mean log |u| wherever |uj=1, and 0 otherwise.
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then - ' _ :
‘ t
13 - : mes [{lim sup Su(®) = 1} =1.
‘ : : N~ V243 loglog A%

For lacunary trigonometric series SALEM and ZYGMUND [5] have shown that
under the hypotheses (12) we have (13) with “=" instead of “="", In this case
- a complete proof of (13) was given later by Erp&s and GAL [6]. Recently, REVESz [7]
obtained the following result

Theorem E. If {o, ()} is a unzformly bounded ESMS, then

s [{hm ap PO TQ O+ on () _ 6}]
: Nooo YV Nloglog N

We managed to prove the following result which can be roughly formulated
as follows: if the sequence of indices m; <m, <.+ is rare enough, then the law of
iterated logarithm will be valid for the subsequence {S,,,k(t)}' with “="" instead
"of “="". More exactly, we prove : ; :

Theorem 5. Let {0 ()} be a uniformly bounded ESMS. Under.the conditions

. AZ
14 . e . - N
(. ) (l) AN. and (ll) MN O[J 10g10gA§,]’
for every positive real number ¢ there exists a sequence of natural numbers Ny <N, <-
having the following property if m< m,<--- is an arbitrary sequence of natural
numbers Jor which Ny=m<N,,, (k=1,2,--.), then we have
. S ()
as - {hmsu : L =1+el| = 1.
) mes || eee V242, log log A2, !

Remark 3. It will be clear from the proof that if we had the stronger in-
equality (7) for a uniformly bounded ESMS too, then under the hypotheses (14)
we could assert also (I13) with “=" instead of “="", Unfortunately, we only have
“the weaker inequality (8) for a umformly bounded normed SMS.

A number of authors have generalized the central limit theorem for the lacunary
trigonometric series. The most general result is due to SALEM and ZYGMUND {§],
who state the followmg :

Theorem F. Let SN(t) denote the Nth partial sum of the lacunary trigono-
metric  series Z(ak cos mt+ by sin mt), myy  Jm=q=>1 (k=1,2,-.), and let -

a, a,,:; by, bz, - be arbitrary sequences of real numbers Sfor which -

CN—-{ Z(ak +b,%)} - o and {aN—i—b }*lr o(CN).
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Then, for any set E [0, 2n] of positive measure, the distribution functions

mes ({t € E: Sy(5)/Cx = })
mes (E)

FN(y,E) (N=1321"')

tend to fhe Gaussian distribution with mean value 0 and dispersiah 1. .
We' obtained the following result:
Theorem 6. Let {(p;,(t)} be a uniformly bounded ESMS. If

(16) . Ay and ay=0(4y);

then the distribution_functions

an ’ Fy(y) = mes [{—%’i—l‘) = y}] WN=1, 2, )

tend pointwise to the Gaussian distribution function

G(y) = r_f Zdu

This theorem contains a result of REvEsz [7] (case a,=1 for every ).

§ 1. The proof of Theorem 1 and Theorem 2

The following lemma has a fundamental significance in the proof of Theorem 1
and Theorem 2.

Lemma.l. Let i be an arbitrary non-negative real number. Then
1

2 42 2 2 )
exp{l AN [1_)» MN—AMNKs]} = fexp{lSN(t)} dt = A

2 2
(18)
’ j. AN

= exp{ a +AMNK3)}

Proof. For every real number u, we have that

29
-

=

19)

. ?
lqg [1+u+T]—

5) (19) follows from the sharper estimates: O=u—log (1+u+u?/2)=u’/3 for u=0and u?/3=
u—-log (1+u+u?/2) =0 for u=0. We only have to remark that the function x(u) =
u—log (14 u+u2/2) is non-decreasing — e <u<o and %(0)=0, and that the function u(u) =
u—log (1+u+u?/2)—u3/3 is non-increasing and u(0)=0.

o0 TA
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Applying this inequglity; we get that

) - 2a202(t . '
exp {Aa,0,(t)} =_[l + Aa, (p,,(t)-f———‘%’i—)—] exp {R,(0)},
where : ) .
33 2 . .
IR,(1)] = “{—ZM"—"— (n=1,2, ...,N).
, Hence : )
1 .
N 3K3 N 2.2 2
20) f exp {4y}t = [ exp {ﬁ—;f—”“—} f II [1+za"¢"(t)+l__“"2‘”n (’)] "
n=1
1]
. By a simple calculation we get that
N 33 2] . (133 2} .
Q1) . JTexp {M}=exp{l KMy 43|
n=1 . 2 2 : .
furthermore,

2

1
0
1

1
=1+2 A'k nl an‘f(pnl( ¢nk(t) dt+2 anl °* nkf (Pil(t) b (pl%k(t) dt+
. o : o '

2,42 ,,2
[1_+/1a,,<p,,(z)+i—"M]dt -

n=1

. +2”+21—qu o a’lkagll ---Aa,f,,fqo,u(t)_""qo,,’k(t)go;‘:”(t) oo (pr%ll(t)dt:__ 1+I+J+K’
o .

where the sum X’ is extended for all systems of integer values (1 =) n; <.+ <m(=N)
. (1=k=N), the sum ZX” is extended for all systems of integer values (1=) n, <
o< (=N) and (1=)m;<---<m, (=N) for which m=m; (1=i=k, 1=j=l);
1=k, 1=!and k+I=N. It follows from (3) that I=K=0 and

2 2,2
J= Z' Aa "1 %
So we obtain that ‘
. 2,2
@ fﬂ[l+la go,,(z)+'1 & "’"(‘)]dt ]][1+’1 & ]

Applying the well-known inequality

l1+u=e if u=0,
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frem (20), (21) and (22) we get that

j exp 150} i = exp [PE MY [T e { il

I3 2 2 42 2
=exp{'1 K éMNAN}exp{'1 ;N}=exp{'1 (l+AMNK3)}

This shows that the right-hand 'inequality of (18) is true.
~We get similarly to (20) that

1

/ exp {ASy(0)} dt =

0

‘ EA]]exp{—%}f H[I+/la (p,,(t)+w]

n=1

(23)

Applying the simple inequality

=" = 14u if u=0, °)
we get that '

N N - _ ;
v Aa? . T 2PME 24 A2ME
A o 2 29) - ool 229)

This and (21), (22), (23) show that the left hand 1nequahty of (18) is true. This
completes the proof of Lemma 1.

In the proof which follows we use some 1deas from the classical paper of
KOLMOGOROFF [2]. First we introduce the notatlon :

Wy(x) =mes ({SN(t)>x}) for x>0

Proof of Theorem 1. Let A be a positive real number determlned later on.
It is obvious that

Wy(x)e?* = f exp {AS&(Z)} dt, - |
(o]

and it follows.from (18) that

2 42

(24 Wy(x) = exp {— Ix+ 27 Ay

(1+ /IMNK3)} .

¢) This sharper inequality u—u?/2 = log'(1+#) (u=0) is also true, as the function ()=
= log (1+u)—u+u?/2 is non-decreasing and x(0)=0.
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Setting 4 = x/ 4} we get

x? x? xMyK3 x2 xM K3
W"(")ée"p{‘Tﬁ*zAﬁ [”' yp ]}ze"p{“uﬁ [1" ye ]}

This proves (4) and finishes the proof of Theorem 1.
We need the next two lemmas only for the proof of Theorem 2.

Lemma 2. If ' .
xMyK3 1.
(25) —A%—— =5,
then » , :
o , x2
(26) . Wyx) =exp {—m} |
Pioof. As §=1/2 by (25), on the ground-of Theorem 1, (26) holds obviously.
Lemma 3. If
' xMyK® |
@27 —AN?V— =5,
then
_ N _ MY
28) | -W X)) =exp {————8 i, K3} .

Proof. In the proof of Theorem 1 we obtained (24), where 1 is an arbitrary A

positive real number. Now we set :

: 1

5 - 4= 3K
‘From (24) and (27) we get that

x A2 1
Wy(x) = exp{ S, K3+8M [1_*_7]} =

=ex {— X + 3x =ex {——L—}
=P "MK T sMyKe) T P T 8K
So the proof of Lcmma 3 is ready

The proof of the inequality (6) is much more involved. The following argument
follows closely that of a similar theorem in the paper of KOLMOGOROFF [2].

Proof of Theoreni 2. Let §=¢/8. Then

(29) 82 = max (1284, 16(log B)/B).
Hence it follows that . _ .
(30) 6%2=1/64, 6=1/8 and &>28%

We set now :
% = x|} (1-9)]
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so that, by (30), o
‘ x[A} < A < 2x[AR,

furthermore, in virtue of (5) we have

31) AMyK? <20 =212
and - S -
(32) . 224> p =2,

On account of Lemma 1

1
[ exp USy®) dt = exp {gzZAZ(l—wMN—AMNK*)}.

]
By (29) and (31) we get

_ lAZMN+AMNK3 < l(2a)2+2a = 4oz = 52/4
Hence
- (33) J exp {ASy ()} dr = exp 3224301 —52/4)}.
0 ‘ . '
On the other hand, integrating by parts, we obtain
1 ’ T 4e - +eo ’
[exp sy} di= — [ ewawy() = 2 [ erwy()dy.
0 — oo -0 .,
We decompose the interval (—eo, +o) of integration into the five intérvals
=(—o,0], I=(0,24%(1 —8)], . I, = (A43(1—5), A4} (1+6)] I,=(AA%(1+9),
8).A ] and I, =(8143;, + oo) and search for upper bounds . of the mtegral over I, -
and I and over I, and I,. : A
We have

. , . _
(34) J,=2 fe"'WN(y)dy =1 fe"dy —1

because WN(y)<1 for all y. According to (31), Lemma 3 and Lemma 2 we

have on I;
2

Wy(y) = .exp {—gﬁ} = e™ W for 'y =

2My K3’
and
‘ WN(y) = expi— 4A2 =e? for 8ldf=y= MK
- Therefore ‘ _
(35) Js =14 f Wy dy = A f =My < 1.

BAAN 8}vAN
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It follows, by (30), (32), and (33), that

[ exp Sy} dt = 8.

0

Hence, on account of (34) and (35), we can see that

1

V' o

On the intervals 7, and I, applying Theorem 1, we have
y? 52 o)
Ay - —_— — ply
e W(y) exp{ly > 2[1 8]}—e .

because, by (29) and (31), we obtain that

3 ’ .. 2
yLI:ZK— = 8AMyK? < 160 = %

0=
The quadratic expression p(y) attains its maximum for y=JA42(1 —52/8)~! which
lies in 7;. Hence, in the intervals I, and I, u(y) is majorized by its value
at y=14% (1+6) (as A43(1+6) lies closer to the right endpoint of the 1nterva1
I, than to the left one). This value does not exceed

2
22431 +6)— 2 AN (1+49)? [1 —%] =

2 42 2 42 2
=1AN[1-52+ (1+5)] ’lA[l_‘S_]

. 2 2 2
Therefore
' Y AAk(1-3) 844} )
neso=al [+ [ }e*yWN<y)dy<
0 AA% (1 +8)

’ A2 A% 82 A2 A% 52 |
<2 f exp{ 2”[1— ]}dy—SAZANexp{ ZN[I—T]}.'

From (5), (29) and (32), we get the following estimates:

. 2
log2"B <2logfB = %,
(37 '
. A2 AN

log 2542 4% < 2log A2 A4} = 52
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because A°4% > B and log ufu is a decreasing function if u=e. So we have from (33)

’ 1
1 A2 A% 8?2 1
(38) CdyFdy = Iexp{ > [1 ——4—]} < Z()/,‘ exp {ASy(1)} dt.
It follows, from (36) and (38)

IAZ(149)

G L= [ POy f exp (A, (1)} dt > 1exp{

242%,(1-8)

12 A2 (1_5)}

because 6 =52/4. Since Wy(y) is a decreasing function, on account of the definition
of A, we have that _ : o
(40). J3 < 222 A% 6 exp {A2 A5 (1 + 8)} Wx(x).

From (39). and (40)' we obtain that
1 12 4% } '

Similarly to (37), we have
- log 4,12A2 d<1A? A2 d

as 422A25>4ﬂ6>16l/ﬂ log B=2!2, and log u/u<1/8 if uz=212, So we get that

24

; 2
Ax (a +45)} = exp {—-——2141%(1 o) (1 +45)} >

x? . : x? -

because d =¢/8 and by (30), 6= 1/8 Th1s ylelds (6) with a suitable ¢, by (29). And
this is what we wished to prove.

Wy (x) exp {—

'

§ 2. The proof of Theorem 3 and Theorem 4

We need a result conceérning series with RADEMACHER’s functions defined - -
‘as follows ' ' :
r(x)=signsin 2"*zx  (0=x=1; n=12, ).

The following assertion holds (see [4], v. 1, p. 213):

Lemma 4. If p is an arbitrary positive real number - then

BN N )3
"dx}"é 2p%{2 a,f} .
n=1

@ i |2 an®
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Proof of Theorem 3. This argument will follow closely that on page 215
of [4]. First we show (10), hence then the second inequality (8) immediately follows.
The first inequality (8) follows from the second one by a simple argument.’

Let K denote a common bound for the system {¢@,(2)}, i.e.

oDIZK  (0=1=1; n=1,2, ).

Furthermore, let u denote a suﬁiciently small posmve real number. We set

N x) Z LA MGIMEE

Applymg (41), with a simple calculatlcn we get

_ fexp{,uSN(t x)}dx— 2’ X f k(t; x)a’xS »
(42) °

=3u b S (t)} 3 e 3 (t)}

g

since k¥/k!< 3 k"/nl=¢* On the basis of (9i)
n=0 .

. N - i
dep > a?p(t) = deuK? A% = %
n=1 . .
if
A(43) , - 1
: ' F=gek?-

Thus, the series on the right of (42) umformly converges in. ¢ (0=¢=1), and its

‘sum does not exceed 2.
Integrate 42) over 0=¢=1 and mterchange the order of integration; then

1

fdxfexp {uS% (t;x)} dt = 2.
(1] 0

It follows that there is a dyadic irrational 7) number x, (0<x,~< 1) for which’

@ | [ exp (uS3 (63 ko)) e = 2.
. ' . . o .

Consider the following representation of Sy(?)

‘ . 1 .
- (49 - Sy =K? f Sy (u; x0) Py (t, u; Xo) du,
0 .

7) x, is dyadic irrational number if x,32p/2? where p and g are positive natural numbers.
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where . ‘
Pyt u; %) = 17[”%"’}??’@]
n=1 )
First of 'all,ﬂ Py(t, u; x,) is non-negative. Furthermore, Py(f, u; X,) is symmetric

in ¢ and u, and

L . _ 1 :
J Patus =1+ 3 On ) 001y, (o) o) [ 000 0n,

| where the sum 2’ is extended for all systems of integer values (1 =, <--<m(=N)
(1=k=N). It follows from (2) that

(46) | : f PN(t, u; xo) du = 1.
- o ,

As to the representation (45), after carrying out the multiplications and integrating
term by term, the right-hand side can be written as follows: .

K 2 tara(oo), [ oty dus 2 3 a,r (o) ra(xo) om(® f 91(0) ) .

n=1m=1

+ Z a rn(xo) 2” sz 2 ¢n1 (t) ¢nk(t)rn1 (xo) rnk(xo) f ¢n (u) (pnl (u)
o @y, (W) du = I+J+K

where the sum 2” is extended for all systems of integer values (1 =)n, <---<m(=N)
(2=k=N). Taking into account that the functions ¢,(t) are normed, it follows
from (2) that I=K=0 and »

J = Z’ a rz(xo)%(t) = Sx(?)

. because r¥(xs)=1 (1=n=N). This proves . (45)
The function x(u)=exp (uu?) is increasing and convex for u=0. On account
of (46), JENSEN ] mequahty (see [4], v. I, p. 24) gives

x[ ISI’Q(;)I] =7 [f Sy (t; x)| - Py(t, u; x0) dut) = -
0

1 - .
= fX(|SN(t;xo)DPN(ts u; Xo) du.
0 : :
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Integréteithis. os)ef'0§_t§1 and interchange the order of integration, from 44
and (46), we get that '

0

L svO) [ Pt
fx[‘%—] at = fX(|Szv(t,;xo)|)d“fPN(t’“;x°)dt =

= f exp {ﬂSN(u X du = 2.

Now we set u=K*A then, it follows from (911) thlS U sat1sﬁes (43) We ﬁmshed
the proof of (10).
As to the second mequahty (8), we set

S = Sy(1)]Ax.
The condition (9i) is satisfied by the coefﬁcwnts of Sﬁ(t) Thus, if 4 is suﬂic1ently
small then, on account of (10)
1

f exp (ASE2 (1)} dt = 2 f St dr = 2.

0

w]»-

Hence it follows for every &

1
f ShOPd = 2’2 ,
3 A

that is
{f ISy (t)lzkdt} = D2kANr .

where, choosing A equal to (8eK5)‘ ,
1

Dy = {2~ 8Kk} 2k =< 8K3k? k=1,2, ).

If now for the positive real number p we have 2k —2=p <2k with a suitable natural
number k then it is sufficient to remark that

s« sorats

h (see [4], v. I, p. 25).
It still remains to prove the first mequallty (8). This is 1mmedlate for p=2,

for then
{f |Sm(t)|"a’t}7 = {(f S,%(t)dt}7 =
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If0<p<2, let a, and o, be posmve and such that o; +a, =1, 2—poc1 +40,. The
function

[ 18w (@)l dr
0

being logarithmically convex in « (see '[4], v. 1, p 25),

. 1 - 1 1 1 . .
4 = [ s30yde={ [ Iss@Par)™ { [ ss@ af™ = { [ 18wl ™ (0, Ay,
: Y o - 0 o - _
which gives ) |
. i
{ [ Isx@lrdr}” = Dre=20rr 4,
1] .

- This completes the proof of Theorem 3. _
The following lemma needs in the proof of Theorem 4.

" Lemma 5. There exist positive absolute constants 1 (=1) and ¢ such that

mes ({| SN(t)I = ’IAN}) =e.

The proof is based ona lemma which can find in-[4], Chapter V; (8. 26), and
-t goes applying (8), word by word as there,

. As to the proof of Theorem 4, it can be proved in the same way as the analogous
assertion for Rademacher functions, see [4], Chapter XV., (5. 14), applymg 8)
to prove the second inequality (11) and Lemma 5 the first one.

- § 3. The proof of Theorem 5

- We are going to apply the following well-known assertion: if the sequence {Ek}
of measurable subsets of the interval [0, 1] is such that

2 InéS (Ek) V< 2,
k=1
then ‘
' - mes [lim sup_Ek] = 0. 9
k— oo .
For the arbitrary fixed positive real number e(<1), we choose the real number .
(< 1) such that

47 . C n(l+e=1,.e.z¢ ,721__7_

8) lim sup Ek is the set of all those points which belong to mﬁmtely many Ej:

k— oo
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" Now we define the sequence of indices n; =n,=--- in the following manner:
@) - A _ =< (k=12
This is possible in virtue of (14i). e
We set _
[ Su)
V242 loglog A2,

zl-i—a}_ o

K

On account of Theorem 1, we get that

(49) mes(E) = W,, ((1+¢)V242 loglog A,%k) = exp {—(1+¢&)*(1 —0) loglog 42},

. [3loglog AZ.
0 =(1+8K>M, l/ "_‘gA—‘;gA'"‘. .

Here K denotes a common bound of the system {¢,(r)}. Taking into account (14ii),
this 6 tends to 0 if k tends to . Thus, § is not greater than &/2 if k is sufficiently
large. Continuing the estimation (49) we obtain

where

mes (E;) = exp {—(1 +e)? [1 —%] log log A,Zrk} =

= exp{—(1+¢)loglog A2} = (log 42)~1#9),
By (48), hence we get : .
k;lv mes (Ek) § R;I—W)— < oo

in virtue of (47). So; we have shown that in the case of sequence of indices defined
by (48), we have that '

lim sup S ) =1l+¢

k== V2AZ loglog A2, |
holds almost everywhere. .
Let my =m, =--- be an arbitrary sequence of indices for which

(50) nm =M < iy, .if n # My, and
n, =m if M = Hyyy (k:l’ 2, )

It is sufficient to show that
’ Slhk(z)—snk(t) T
V242, loglog 42,

Ak(t) =

tends to O for almost every ¢t (0 =r=1).
It is obvious that A4,(1)=0 if n,=n,, . Therefore, in the following we assume
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that n, <n.4,. Let pbe a pqéitive real number to be determined later on. Applying
Theorem 3, we get '

1
A AZ p
A,%p(i)dlé 2 [ Ae+1—1" nk] =
of P1242 loglog A2,

. l')zp el 11 k1 |P D et 11—k1 _1)?
= — —].
= 2y Togk 2

We apply the followmg inequalities: .

(51)

e=14+3u if Osu=l,
and '

w1y —w = uf’_ if u=0 (©<n<I).?2)

n
On account of these and (51), we ‘obtain ,
1 . . ’

L g [ 3((k+ DT —kM))° 3\ 1
'.ofA'%p(t) dt = D%g[%—)l = [—2—] D%Fﬁ?ﬁ'
If we fix the real number p so'large that p(1—n)=>1 is :sétisﬁed then

. ) oo 1 " . ’

) .

| » “ J\Akp(t)dts[ ]D k§m< o,
It follows from the theorem of Beppo Levi that
a0 (k-

almost everywhere. As p is fixed, therefore we have proved the assertion (15).
Now, we set N; =n,, and let N;'(!=2) be equal to the first index n, for which

n,>N,_,. It is obvious that the sequence N, <N, <--- has the property as asserted

in Theorem 5. ‘ ' '

§ 4. The proof of Theorem 6

. Lemma 6. Let {b,} be a sequence ‘of non-negative real numbers. If

. _ N : : )
(52) (D sy= 2 by~ and (i) by =o(sy),
. n=1 :
then for arbitrdry positive real number d(>1)', we have =
Y i . ) .
(53) Zl by ="o(sf).

%) This inequality follows from the fact that the function #"(0<n<1) is concave for u=0.
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Proof.- Let € be an arbitrary positive real number. We choose the natural -
number ne in such a manner that '

. -1 -
ﬁ§[i] . if n=ng.

S, 2
This is p0551b1e in virtue of. (5211) Next we choose the natural number Ny such that
1™, e
2 b=
Syg et " 27

that is also possible in virtue of (52i)-. Then
1 N no—1 N : ]
i a—1 -
s S0 {Zﬂzm}*z anZn:,z" bn=e

whenever N=N,, and assertion (53) is proved.

Proof of Theorem 6. i°) In. the ~proof we apply the following elementary _
inequality: for every real number u and every natural number n, we have (see [10],
p. 365) .
- b

n! -’

2 (lu)k

k=0

We make use of the classical method of cbaracteristic functions. Let us introduce

the following notation:
. + o

I = [ e dF),

where FN( y) is defined by (17). It is enough to prove-that for any fixed 4 the charac-
teristic function yy(4) tends to the characterlstlc function of the normal distribution,
ie. :

o a2
(5% . Un@) ~e 2 (N~ <)
Itis vaious that . _
66 Yn(d) = of e'xp{’%";fl} dr.

Applying (54) with n=3, we get that

57 (D) ='/ ﬁ'{[1+i/1an¢n(t) 2agd (t)]+0" ,13a3<p3(t)} a,
! n=1 .
) . 0

Ay 243 643
-where 8, also depends on N, and [0,/=1 (n=1,2,--,N). -

’°) The proof follows that of LINDEBERG’S theorem which is due to FELLER [9] See also [10],
pp 365—368.
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_ We show that the mtegral on the nght-hand side of (57) can be replaced by
the fo]lowmg simpler integral

. _ , 1 . g
N A, @, (t) S Arak oi(h)
(s8) - f 114202 ]d’

N

in the sense that for every ﬁxed A the difference of (57) and (58) tends to 0 1f Ntends
to ==. For the sake of brev1ty we denote

AHHG)
6A3 ”

il <p..(t) a2 i (f)

P,,(t)=1+ 4, - 243

and R, () =0,

“where we do not indicate the- dependence on N. Applymg the followmg 1dent1ty
"~ (see [10], p- 367)

]J (Patr.)— Jipn =n§; ":.i [:]jllpk] L:ﬁi (pk+rk)] :

(the empty product equals 1), we obtain

iexp{z)ts”(r)} ]] ()

tR ol []7 lPk(t)l] [ ]] (lPk(t)lHRk(t)l)]

(59

By a s1mp1e calculauon we get that

1P, = {[ rd "’"(’)] PR (’)}

o 243 A3
" (60) _
' (@ 2alK?
={l+ . UHE
: : ¥ N
furthermore, : , '
. APla,PK3 '
Q) Rl e m,

where K denotes a common bound of the system {0.(0)}. _
From. (60) and (61) we obtain that the right-hand side of (59) does not exceed

PR3 e, {"‘1 2aEK?) (. RaKr APK|a)
_21 P 2,4,%,‘]]“,r 2 Y e |

k=1 k=n+1
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Applying the inequality 1 +u=e" (u=0), the last sum is not greater than

APK a0 {”PK’a,% Y APK3|g,?
=21 BT R Py iy b

k=1 k=n+1

/13K3 2K2 ABK3 ’
§|| -exp{ -l-lI 3Z1|a|3
6 2 6 Ay =i

" as it is clear that A7 DlaP=1. It folloWs from ‘(16) that the conditions (52)
n=1 .

of Lemma 6 are satisfied by the sequence: {a2}. Therefore, applying Lemma 6 with

o=3/2, on the basis of (53), we get that the difference of the integrand of (57) and

(58) tends to O (N — o) uniformly in ¢t (0=¢=1) if 1 is fixed. '
To prove (55) for any fixed 2, we need the following inequalities:

l—-u=e* if u=0,

ﬁ—l 11)
2

(62)

e-"(l““‘)é 1—u if O=u=

Now carry out the mu1t1p11cat10n in the mtegrand of (58) and 1ntegrate term by term

1 N
1, ira qo..(t) A2az k(D)
of .,]Jl[H' Ay 24 at =

1
L
=143 —-a, ---an,‘f«»m(z) e gy, (1) de +
. Y

1
, —1 kAZk .
+2 (21:3421‘ az, - ar?kf(Pfl(t) - on (O dt+

'” ik(—1) Ak'+21
+Z T)ﬁv”’_—a"l o am;a v A, f (pru(t) (pnk(t)(pml (t) (Pm,(t) dt

where the sum 2’ is extended for all systems of integer values (1=) n; <--- <nk(§ N)

(1=k=N), the sum 2” is extended for all systems of integer values (1=) n, <
w<m (=N) and (1=)m; <-+<m(=N) for which m;=m; (1=i=k, 1=j=]);
1=k,1=]and k+I=N. It follows from (3) that the integral (58) equals

(1pi Y g
1+2 2kA2k '%1.““31::]]— 1_7 .

\

1) This inequality follows from the fact that.the curve p=eg~H+W) (( 1- l/2)/2 =u=
= ( 1+V2)/2) which is concave, lies below its tangent at the pomt u=0, v=1.
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" Taking into account (62), on the one hand ‘

:

R e s
(63) 17[1»'— ;]éexp{ Z "}= z.
243 s

2
n=1 N

holds for every N, on the othér hand

Aa; s Aa (| 2a 23 A“a:}
“ !]1 [ 243 ] =°xp{‘n=21 24 [” 24 ]} “?"P{fT“Z 74

holds if

i2a® V?—l -
2A§,=—. 2 (1 =n=N)

But, in virtue of (16ii), th1s is satisfied for every sufficiently large N. Applymg again
Lemma 6 with a=2, we get

. ,
Aat :
30 weo

According to (63) and (64)

N a2 ‘ _ At

Noreo 2y

holds for every fixed A. This completes the proof of Theorem 6.
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