Inequalities and theorems concerning strongly multiplicative systems

By FERENC MÓRICZ in Szeged

Introduction

Alexits introduced the following definitions (see [1], p. 186).
The sequence of real measurable functions $\varphi_{1}(t), \varphi_{2}(t), \cdots$ defined in the interval $[0,1]$, is called a multiplicative system if all their finite products are Lebesgueintegrable with

$$
\begin{equation*}
\int_{0}^{1} \varphi_{n_{1}}(t) \varphi_{n_{2}}(t) \cdots \varphi_{n_{k}}(t) d t=0 \quad\left(n_{1}<n_{2}<\cdots<n_{k} ; k=1,2, \cdots\right) \tag{1}
\end{equation*}
$$

The sequence $\left\{\varphi_{n}(t)\right\}$ is called a strongly multiplicative system (SMS) if the system $\left\{\varphi_{n_{1}}(t) \varphi_{n_{2}}(t) \cdots \varphi_{n_{k}}(t)\right\}$ is an örthogonal system, i.e.

$$
\begin{equation*}
\int_{0}^{1} \varphi_{n_{1}}^{\alpha_{1}}(t) \varphi_{n_{2}}^{\alpha_{2}}(t) \cdots \varphi_{n_{k}}^{\alpha_{k}}(t) d t=0 \quad \cdots \quad\left(n_{1}<n_{2}<\cdots<n_{k} ; k=1,2, \cdots\right) \tag{2}
\end{equation*}
$$

where $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{k}$ can be equal to 1 or 2 but at least one element of the sequence $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{k}$ is equal to 1 .

The sequence $\left\{\varphi_{n}(t)\right\}$ is called an equinormed strongly multiplicative system (ESMS) if the system $\left\{\varphi_{n_{1}}(t) \varphi_{n_{2}}(t) \cdots \varphi_{n_{k}}(t)\right\}$ is an orthogonal and normal system, i.e.

$$
\begin{aligned}
& \int_{0}^{1} \varphi_{n}(t) d t=0, \quad \int_{0}^{1} \varphi_{n}^{2}(t) d t=1 \quad(n=1,2, \cdots) \\
& \int_{0}^{1} \varphi_{n_{1}}^{\alpha_{1}}(t) \varphi_{n_{2}}^{\alpha_{2}}(t) \ldots \varphi_{n_{k}}^{\alpha_{k}}(t) d t= \\
& =\int_{0}^{1} \varphi_{n_{1}}^{\alpha_{1}}(t) d t \int_{0}^{1} \varphi_{n_{2}}^{\alpha_{2}}(t) d t \cdots \int_{0}^{1} \varphi_{n_{k}}^{\alpha_{k}}(t) d t \quad\left(n_{1}<n_{2}<\cdots<n_{k} ; k=1,2, \ldots\right),
\end{aligned}
$$

where $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{k}$ can be equal to 1 or 2 .

Evidently a sequence of independent functions (with mean value 0 and dispersion 1) is an ESMS. Another example is a strongly lacunary sequence of trigonometric functions, i.e. $\left\{\sqrt{2} \sin 2 \pi n_{k} t\right\}$ if $n_{k+1} / n_{k} \geqq 3(k=1,2, \cdots)$.

Alexirs proved that an ESMS has the property of the independent functions, i. e. $\sum_{n=1}^{\infty} a_{n} \varphi_{n}(t)$ is convergent almost everywhere if and only if $\sum_{n=1}^{\infty} a_{n}^{2}<\infty$. More exactly he proved

Theorem A. If $\left\{\varphi_{n}(t)\right\}$ in a uniformly bounded ESMS then under the condition $\sum_{n=1}^{\infty} a_{n}^{2}<\infty$ the series $\sum_{n=1}^{\infty} a_{n} \varphi_{n}(t)$ is convergent almost everywhere. Furthermore, if for every measurable set $E \subset[0,1]$ and for sufficiently large n the relation

$$
\left.\int_{E} \varphi_{n}^{2}(t) d t \geqq C \operatorname{mes}(E)^{1}\right)
$$

holds (where C is a positive constant depending only on E), and if the series $\sum_{n=1}^{\infty} a_{n} \varphi_{n}(t)$ is convergent in a set of positive measure then $\sum_{n=1}^{\infty} a_{n}^{2}<\infty$,
(In [1] this theorem is given in a more general form.)
The aim of the present paper is to study what other properties of the independent functions remain valid for an ESMS. Namely we prove the inequality due to BERNSTEIN and other exponential bounds, furthermore, the central limit theorem and a weaker form of the law of iterated logarithm for ESMS. Let me recall here the well-known forms of these theorems.

We shall use, for any sequence $\left\{\varphi_{n}(t)\right\}$ of functions, the following notations:

$$
S_{N}(t)=\sum_{n=1}^{N} a_{n} \varphi_{n}(t), \quad A_{N}^{2}=\sum_{n=1}^{N} a_{n}^{2}, \quad M_{N}=\max _{1 \leqq n \leqq N}\left|a_{n}\right| \quad(N=1,2, \cdots)
$$

The following inequality is due to Bernstern [2]:
Theorem B. Let $\left\{\varphi_{n}(t)\right\}$ be a system of independent functions on. $[0,1]$ with mean value 0 and dispersion 1 , and uniformly bounded by the constant K, furthermore, let x be a positive real number such that

$$
\vartheta=\frac{x M_{N} K}{A_{N}^{2}} \leqq 1
$$

Then

$$
\operatorname{mes}\left(\left\{S_{N}(t) \geqq x\right\}\right) \leqq \exp \left\{-\frac{x^{2}}{2 A_{N}^{2}}(1-\vartheta)\right\} .
$$

[^0]Here we prove the following analogous form:
Theorem 1. Let $\left\{\varphi_{n}(t)\right\}$ be a uniformly bounded ESMS, with bound K, and let x be a positive real number. Then

$$
\begin{equation*}
\operatorname{mes}\left(\left\{S_{N}(t) \geqq x\right\}\right) \leqq \exp \left\{-\frac{x^{2}}{2 A_{N}^{2}}(1-\theta)\right\} \quad \text { with } \quad \theta=\frac{x M_{N} K^{3}}{A_{N}^{2}} \tag{4}
\end{equation*}
$$

Remark 1. We observe if $S_{N}(t)$ is replaced by $-S_{N}(t)$ the conclusion yields

$$
\operatorname{mes}\left(\left\{\left|S_{N}(t)\right| \geqq x\right\}\right) \leqq 2 \exp \left\{-\frac{x^{2}}{2 A_{N}^{2}}(1-\theta)\right\} \text { with } \quad \theta=\frac{x M_{N} K^{3}}{A_{N}^{2}}
$$

We show that the reverse inequality also holds if $x M_{N} / A_{N}^{2}$ is sufficiently small and x^{2} / A_{N}^{2} is sufficiently large, the analogous form of which can be found in the quoted paper of Kolmogoroff. [2].

Theorem 2. Let $\left\{\varphi_{n}(t)\right\}$ be a uniformly bounded ESMS, with bound K, and let x be a positive real number. If the inequalities

$$
\begin{equation*}
\text { (i) } \frac{x M_{N} K^{3}}{A_{N}^{2}}=\alpha \leqq \frac{1}{2^{13}} \quad \text { and } \quad \text { (ii) } \frac{x^{2}}{A_{N}^{2}}=\beta \geqq 2^{14} \tag{5}
\end{equation*}
$$

are satisfied, then

$$
\begin{equation*}
\operatorname{mes}\left(\left\{S_{N}(t) \geqq x\right\}\right) \geqq \exp \left\{-\frac{x^{2}}{2 A_{N}^{2}}(1+\varepsilon)\right\} \tag{6}
\end{equation*}
$$

where

$$
\varepsilon=\max \left\{64 \sqrt{2 \alpha}, \quad 32 \sqrt{\frac{\log \beta}{\beta}}\right\}
$$

Marcinkiewicz and Zygmund [3] proved the following ${ }^{2}$)
Theorem C. Let $\left\{\varphi_{n}(t)\right\}$ be a system of independent functions on $[0,1]$, with mean value 0 and dispersion 1 . Then, for all positive real numbers $p(>1)$, we have

$$
\begin{equation*}
\bar{C}_{p} A_{N} \leqq\left\{\int_{0}^{1}\left(\max _{1 \leqq n \leqq N}\left|S_{n}(t)\right|^{p} d t\right)\right\}^{\frac{1}{p}} \leqq \vec{D}_{p} A_{N} \tag{7}
\end{equation*}
$$

where \bar{C}_{p} and \bar{D}_{p} are positive constants depending only on p.
An essentially similar result holds for lacunary trigonometric series ${ }^{3}$), too
${ }^{2}$) Here we give the original theorem with a little modification.
$\left.{ }^{3}\right) \sum_{k=1}^{\infty}\left(a_{k} \cos n_{k} t+b_{k} \sin n_{k} t\right)$ in called lacunary if $n_{k+1} / n_{k} \geqq q>1 \quad(k=1,2, \ldots)$) $\cdots \cdots$
(see [4], v. 1, p. 203). Unfortunately we cannot assert the analogous result for ESMS, but the following result is valid:

Theorem 3. Let $\left\{\varphi_{n}(t)\right\}$ be a uniformly bounded normed SMS. Then, for all positive real numbers p, we have

$$
\begin{equation*}
C_{p} A_{N} \leqq\left\{\int_{0}^{1}\left|S_{N}(t)\right|^{p} d t\right\}^{\frac{1}{p}} \leqq D_{p} A_{N}, \tag{8}
\end{equation*}
$$

where \dot{C}_{p} and D_{p} are positive constants depending only on p. Furthermore, if for A_{n} and a positive real number λ we have

$$
\begin{equation*}
A_{N} \leqq 1 \quad \text { and } \quad \lambda \leqq \frac{1}{8 e K^{6}} \tag{9}
\end{equation*}
$$

then

$$
\begin{equation*}
\int_{0}^{1} \exp \left\{\lambda S_{N}^{2}(t)\right\} d t \leqq 2 \tag{10}
\end{equation*}
$$

Moreover, we succeeded in proving the following theorem (for the case Rademacher functions, see [4], v. II, p. 235.):

Theorem 4. Let $\left\{\varphi_{n}(t)\right\}$ be a uniformly bounded normed SMS. Then the following estimations are valid:

$$
\begin{equation*}
\left.C A_{N} \log ^{+} A_{N}^{-}-C^{\prime} \leqq \int_{0}^{1}\left|S_{N}(t)\right| \log ^{+}\left|S_{N}(t)\right| d t \leqq C A_{N} \log ^{+} A_{N}+C^{\prime}, \quad{ }^{4}\right) \tag{11}
\end{equation*}
$$

where C and C^{\prime} are positive absolute constants.
Remark 2. It will be clear from the proofs that both Theorem 3 and Theorem 4 rèmain valid if $S_{N}(t)$ and A_{N} are replaced by $\sum_{n=1}^{\infty} a_{n} \varphi_{n}(t)$ and $A^{2}=\sum_{n=1}^{\infty} a_{n}^{2}$ in them supposing that $A<\infty$ or $A \leqq 1$, respectively. In particular, if $\sum_{n=1}^{\infty} a_{n}^{2}<\infty$ then the sum of $\sum_{n=1}^{\infty} a_{n} \varphi_{n}(t)$ belongs to $L^{\dot{p}}$ for every positive real number p.

Concerning the law of iterated logarithm, the basic result, obtained by KoLmogoroff [2], reads as follows:

Theorem D. Let $\left\{\varphi_{n}(t)\right\}$ be a system of bounded independent functions on [0,1], with mean value 0 and dispersion 1. If

$$
\begin{equation*}
\text { (i) } A_{N} \rightarrow \infty \text {, } \tag{12}
\end{equation*}
$$

(ii) $\left|a_{N} \varphi_{N}(t)\right| \leqq m_{N}=o\left(\sqrt{\frac{A_{N}^{2}}{\log \log A_{N}^{2}}}\right)$,

[^1]then
\[

$$
\begin{equation*}
\operatorname{mes}\left(\left\{\limsup _{N \rightarrow \infty} \frac{S_{N}(t)}{\sqrt{2 A_{N}^{2} \log \log A_{N}^{2}}}=1\right\}\right)=1 \tag{13}
\end{equation*}
$$

\]

For lacunary trigonometric series Salem and Zygmund [5] have shown that under the hypotheses (12) we have (13) with " \leqq " instead of " $=$ ". In this case a complete proof of (13) was given later by Erdős and GÁl [6]. Recently, Révész [7] obtained the following result:

Theorem E. If $\left\{\varphi_{n}(t)\right\}$ is a uniformly bounded ESMS, then

$$
\operatorname{mes}\left(\left\{\limsup _{N \rightarrow \infty} \frac{\varphi_{1}(t)+\varphi_{2}(t)+\ldots+\varphi_{N}(t)}{\sqrt{N \log \log N}} \leqq 6\right\}\right)=1
$$

We managed to prove the following result which can be roughly formulated as follows: if the sequence of indices $m_{1}<m_{2}<\cdots$ is rare enough, then the law of iterated logarithm will be valid for the subsequence $\left\{S_{m_{k}}(t)\right\}$ with " \leqq " instead of " $=$ ". More exactly, we prove

Theorem 5. Let $\left\{\varphi_{n}(t)\right\}$ be a uniformly bounded ESMS. Under the conditions

$$
\begin{equation*}
\text { (i) } A_{N} \rightarrow \infty \quad \text { and } \quad \text { (ii) } M_{N}=o\left(\sqrt{\frac{A_{N}^{2}}{\log \log A_{N}^{2}}}\right) \text {, } \tag{14}
\end{equation*}
$$

for every positive real number ε there exists a sequence of natural numbers $N_{1}<N_{2}<\cdots$ having the following property: if $m_{1}<m_{2}<\cdots$ is an arbitrary sequence of natural numbers for which $N_{k} \leqq m_{k}<N_{k+1}(k=1,2, \cdots)$, then we have

$$
\begin{equation*}
\operatorname{mes}\left(\left\{\limsup _{k \rightarrow \infty} \frac{S_{m_{k}}(t)}{\sqrt{2 A_{m_{k}}^{2} \log \log A_{m_{k}}^{2}}} \leqq 1+\varepsilon\right\}\right)=1 \tag{15}
\end{equation*}
$$

Remark 3. It will be clear from the proof that if we had the stronger inequality (7) for a uniformly bounded ESMS too, then under the hypotheses (14) we could assert also (13) with " \leqq " instead of " $=$ ". Unfortunately, we only have the weaker inequality (8) for a uniformly bounded normed SMS.

A number of authors have generalized the central limit theorem for the lacunary trigonometric series. The most general result is due to Salem and Zygmund [8], who state the following

Theorem F. Let $S_{N}(t)$ denote the Nth partial sum of the lacunary trigonometric series $\sum_{k=1}^{\infty}\left(a_{k} \cos n_{k} t+b_{k} \sin n_{k} t\right), n_{k+1} / n_{k} \geqq q>1 \quad(k=1,2, \cdots)$, and let $a_{1}, a_{2}, \cdots ; b_{1}, b_{2}, \cdots$ be arbitrary sequences of real numbers for which

$$
C_{N}=\left\{\frac{1}{2} \sum_{k=1}^{N}\left(a_{k}^{2}+b_{k}^{2}\right)\right\}^{\frac{1}{2}} \rightarrow \infty \quad \text { and } \quad\left\{a_{N}^{2}+b_{N}^{2}\right\}^{\frac{1}{2}}=o\left(C_{N}\right)
$$

Then, for any set ${ }^{\prime} E \subset[0,2 \pi]$ of positive measure, the distribution functions

$$
F_{N}(y ; E)=\frac{\operatorname{mes}\left(\left\{t \in E: S_{N}(t) / C_{N} \leqq y\right\}\right)}{\operatorname{mes}(E)} \quad(N=1,2, \cdots)
$$

tend to the Gaussian distribution with mean value 0 and dispersion 1.
We obtained the following result:
Theorem 6: Let $\left\{\varphi_{n}(t)\right\}$ be a uniformly bounded ESMS. If

$$
\begin{equation*}
A_{N} \rightarrow \infty \quad \text { and } \quad a_{N}=o\left(A_{N}\right) \tag{16}
\end{equation*}
$$

then the distribution functions

$$
\begin{equation*}
F_{N}(y)=\operatorname{mes}\left(\left\{\frac{S_{N}(t)}{A_{N}} \leqq y\right\}\right) \quad(N=1,2, \cdots) \tag{17}
\end{equation*}
$$

tend pointwise to the Gaussian distribution function

$$
G(y)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{y} e^{-\frac{u^{2}}{2}} d u
$$

This theorem contains a result of Révész [7] (case $\dot{a}_{n}=1$ for every n).

§ 1. The proof of Theorem 1 and Theorem 2

The following lemma has a fundamental significance in the proof of Theorem 1 and Theorem 2.

Lemma.1. Let λ be an arbitrary non-negative real number. Then

$$
\begin{gathered}
\exp \left\{\frac{\lambda^{2} A_{N}^{2}}{2}\left(1-\frac{\lambda^{2} M_{N}^{2}}{2}-\lambda M_{N} K^{3}\right)\right\} \leqq \int_{0}^{1} \exp \left\{\lambda S_{N}(t)\right\} d t \leqq \\
\leqq \exp \left\{\frac{\lambda^{2} A_{N}^{2}}{2}\left(1+\lambda M_{N} K^{3}\right)\right\} .
\end{gathered}
$$

Proof. For every real number u, we have that

$$
\begin{equation*}
\left|\log \left(1+u+\frac{u^{2}}{2}\right)-u\right| \leqq \frac{|u|^{3}}{2} \tag{19}
\end{equation*}
$$

[^2]Applying this inequality, we get that

$$
\exp \left\{\lambda a_{n} \varphi_{n}(t)\right\}=\left(1+\lambda a_{n} \varphi_{n}(t)+\frac{\lambda^{2} a_{n}^{2} \varphi_{n}^{2}(t)}{2}\right) \exp \left\{R_{n}(t)\right\}
$$

where

$$
\left|R_{n}(t)\right| \leqq \frac{\lambda^{3} K^{3} M_{N} a_{n}^{2}}{2} \quad(n=1,2, \ldots, N)
$$

Hence

$$
\begin{equation*}
\int_{0}^{1} \exp \left\{\lambda S_{N}(t)\right\} d t \leqq \prod_{n=1}^{N} \exp \left\{\frac{\lambda^{3} K^{3} M_{N} a_{n}^{2}}{2}\right\} \int_{0}^{1} \prod_{n=1}^{N}\left(1+\lambda a_{n} \varphi_{n}(t)+\frac{\lambda^{2} a_{n}^{2} \varphi_{n}^{2}(t)}{2}\right) d t \tag{20}
\end{equation*}
$$

By a simple calculation we get that

$$
\begin{equation*}
\prod_{n=1}^{N} \exp \left\{\frac{\lambda^{3} K^{3} M_{N} a_{n}^{2}}{2}\right\}=\exp \left\{\frac{\lambda^{3} K^{3} M_{N} A_{N}^{2}}{2}\right\} \tag{21}
\end{equation*}
$$

furthermore,

$$
\begin{gathered}
\int_{0}^{1} \prod_{n=1}^{N}\left(1+\lambda a_{n} \varphi_{n}(t)+\frac{\lambda^{2} a_{n}^{2} \varphi_{n}^{2}(t)}{2}\right) d t= \\
=1+\sum^{\prime} \lambda^{k} a_{n_{1}} \cdots a_{n_{k}} \int_{0}^{1} \varphi_{n_{1}}(t) \cdots \varphi_{n_{k}}(t) d t+\sum^{\prime} \frac{\lambda^{2 k}}{2^{k}} a_{n_{1}}^{2} \cdots a_{n_{k}}^{2} \int_{0}^{1} \varphi_{n_{1}}^{2}(t) \cdots \varphi_{n_{k}}^{2}(t) d t+ \\
+\sum^{\prime \prime} \frac{\lambda^{k+2 l}}{2^{l}} a_{n_{1}} \cdots a_{n_{k}} a_{m_{1}}^{2} \cdots a_{m_{1}}^{2} \int_{0}^{1} \varphi_{n_{1}}(t) \cdots \varphi_{n_{k}}(t) \varphi_{m_{1}}^{2}(t) \cdots \varphi_{m_{l}}^{2}(t) d t=1+I+J+K,
\end{gathered}
$$

where the sum Σ^{\prime} is extended for all systems of integer values ($1 \leqq$) $n_{1}<\cdots<n_{k}(\leqq N$) ($1 \leqq k \leqq N$), the sum $\Sigma^{\prime \prime}$ is extended for all systems of integer values ($1 \leqq$) $n_{1}<\cdots$ $\cdots<n_{k}(\leqq N)$ and $(1 \leqq) m_{1}<\cdots<m_{i}(\leqq N)$ for which $n_{i} \neq m_{j}(1 \leqq i \leqq k, 1 \leqq j \leqq l)$; $1 \leqq k, 1 \leqq l$ and $k+l \leqq N$. It follows from (3) that $I=K=0$ and

$$
J=\Sigma^{\prime} \frac{\lambda^{2} a_{n_{1}}^{2}}{2} \cdots \frac{\lambda^{2} a_{n_{k}}^{2}}{2}
$$

So we obtain that

$$
\begin{equation*}
\int_{0}^{1} \prod_{n=1}^{N}\left(1+\lambda a_{n} \varphi_{n}(t)+\frac{\lambda^{2} a_{n}^{2} \varphi_{n}^{2}(t)}{2}\right) d t=\prod_{n=1}^{N}\left(1+\frac{\lambda^{2} a_{n}^{2}}{2}\right) \tag{22}
\end{equation*}
$$

Applying the well-known inequality

$$
1+u \leqq e^{u} \quad \text { if } \quad u \geqq 0
$$

from (20), (21) and (22) we get that

$$
\begin{aligned}
& \int_{0}^{1} \exp \left\{\lambda S_{N}(t)\right\} d t \leqq \exp \left\{\frac{\lambda^{3} K^{3} M_{N} A_{N}^{2}}{2}\right\} \prod_{n=1}^{N} \exp \left\{\frac{\lambda^{2} a_{n}^{2}}{2}\right\}= \\
= & \exp \left\{\frac{\lambda^{3} K^{3} M_{N} A_{N}^{2}}{2}\right\} \exp \left\{\frac{\lambda^{2} A_{N}^{2}}{2}\right\}=\exp \left\{\frac{\lambda^{2} A_{N}^{2}}{2}\left(1+\lambda M_{N} K^{3}\right)\right\} .
\end{aligned}
$$

This shows that the right-hand inequality of (18) is true.
We get similarly to (20) that

$$
\int_{0}^{1} \exp \left\{\lambda S_{N}(t)\right\} d t \geqq
$$

$$
\begin{equation*}
\geqq \prod_{n=1}^{N} \exp \left\{-\frac{\lambda^{3} K^{3} M_{N} a_{n}^{2}}{2}\right\} \int_{0}^{1} \prod_{n=1}^{N}\left(1+\lambda a_{n} \varphi_{n}(t)+\frac{\lambda^{2} a_{n}^{2} \varphi_{n}^{2}(t)}{2}\right) d t \tag{23}
\end{equation*}
$$

Applying the simple inequality

$$
\left.e^{u(1-u)} \leqq 1+u \quad \text { if } \quad u \geqq 0,{ }^{6}\right)
$$

we get that

$$
\prod_{n=1}^{N}\left(1+\frac{\lambda^{2} a_{n}^{2}}{2}\right) \geqq \prod_{n=1}^{N} \exp \left\{\frac{\lambda^{2} a_{n}^{2}}{2}\left(1-\frac{\lambda^{2} M_{N}^{2}}{2}\right)\right\}=\exp \left\{\frac{\lambda^{2} A_{N}^{2}}{2}\left(1-\frac{\lambda^{2} M_{N}^{2}}{2}\right)\right\}
$$

This and (21), (22), (23) show that the left-hand inequality of (18) is true. This completes the proof of Lemma 1.

In the proof which follows we use some ideas from the classical paper of Kolmogoroff [2]. First we introduce the notation

$$
W_{N}(x)=\operatorname{mes}\left(\left\{S_{N}(t) \geqq x\right\}\right) \text { for } \quad x>0 .
$$

Proof of Theorem 1. Let λ be a positive real number determined later on. It is obvious that

$$
W_{N}(x) e^{\lambda x} \leqq \int_{0}^{1} \exp \left\{\lambda S_{N}(t)\right\} d t
$$

and it follows from (18) that

$$
\begin{equation*}
W_{N}(x) \leqq \exp \left\{-\lambda x+\frac{\lambda^{2} A_{N}^{2}}{2}\left(1+\lambda M_{N} K^{3}\right)\right\} \tag{24}
\end{equation*}
$$

$\left.{ }^{6}\right)$ This sharper inequality $u-u^{2} / 2 \leqq \log (1+u)(u \geqq 0)$ is also true, as the function $x(u)=$ $=\log (1+u)-u+u^{2} / 2$ is non-decreasing and $x(0)=0$.

Setting $\lambda=x / A_{N}^{2}$ we get

$$
W_{N}(x) \leqq \exp \left\{-\frac{x^{2}}{A_{N}^{2}}+\frac{x^{2}}{2 A_{N}^{2}}\left(1+\frac{x M_{N} K^{3}}{A_{N}^{2}}\right)\right\}=\exp \left\{-\frac{x^{2}}{2 A_{N}^{2}}\left(1-\frac{x M_{N} K^{3}}{A_{N}^{2}}\right)\right\} .
$$

This proves (4) and finishes the proof of Theorem 1.
We need the next two lemmas only for the proof of Theorem 2.
Lemma 2. If

$$
\begin{equation*}
\frac{x M_{N} K^{3}}{A_{N}^{2}} \leqq \frac{1}{2} \tag{25}
\end{equation*}
$$

then
(26)

$$
W_{N}(x) \leqq \exp \left\{-\frac{x^{2}}{4 A_{N}^{2}}\right\} .
$$

Proof. As $\theta \leqq 1 / 2$ by (25), on the ground of Theorem 1, (26) holds obviously.
Lemma 3. If

$$
\begin{equation*}
\frac{x M_{N} K^{3}}{A_{N}^{2}} \geqq \frac{\lceil 1}{2} \tag{27}
\end{equation*}
$$

then

$$
\begin{equation*}
W_{N}(x) \leqq \exp \left\{-\frac{x}{8 M_{N} K^{3}}\right\} \tag{28}
\end{equation*}
$$

Proof. In the proof of Theorem I we obtained (24), where λ is an arbitrary positive real number. Now we set

$$
\lambda=\frac{1}{2 M_{N} K^{3}} .
$$

From (24) and (27) we get that

$$
\begin{aligned}
& W_{N}(x) \leqq \exp \left\{-\frac{x}{2 M_{N} K^{3}}+\frac{A_{N}^{2}}{8 M_{N}^{2} K^{6}}\left(1+\frac{1}{2}\right)\right\} \leqq \\
& \leqq \exp \left\{-\frac{x}{2 M_{N} K^{3}}+\frac{3 x}{8 M_{N} K^{3}}\right\}=\exp \left\{-\frac{x}{8 M_{N} K^{3}}\right\}
\end{aligned}
$$

So the proof of Lemma 3 is ready.
The proof of the inequality (6) is much more involved. The following argument follows closely that of a similar theorem in the paper of Kolmogoroff [2].

Proof of Theorem 2. Let $\delta=\varepsilon / 8$. Then
(29)

$$
\delta^{2}=\max (128 \alpha, 16(\log \beta) / \beta)
$$

Hence it follows that

$$
\begin{equation*}
\delta^{2} \leqq 1 / 64, \quad \delta \leqq 1 / 8 \quad \text { and } \quad \delta>2 \delta^{2} \tag{30}
\end{equation*}
$$

We set now

$$
\lambda=\dot{x} /\left[A_{N}^{2}(1-\delta)\right]
$$

so that, by (30),

$$
x / A_{N}^{2}<\lambda<2 x / A_{N}^{2}
$$

furthermore, in virtue of (5) we have

$$
\begin{equation*}
\lambda M_{N} K^{3}<2 \alpha \leqq 2^{-12} \tag{31}
\end{equation*}
$$

and
(32)

$$
\lambda^{2} A_{N}^{2}>\beta \geqq 2^{14} .
$$

On account of Lemma 1

$$
\int_{0}^{1} \exp \left\{\lambda S_{N}(t)\right\} d t \geqq \exp \left\{\frac{1}{2} \lambda^{2} A_{N}^{2}\left(1-\frac{1}{2} \lambda^{2} M_{N}^{2}-\lambda M_{N} K^{3}\right)\right\} .
$$

By (29) and (31), we get

Hence

$$
\begin{equation*}
\int_{0}^{1} \exp \left\{\lambda S_{N}(t)\right\} d t \geqq \exp \left\{\frac{1}{2} \lambda^{2} A_{N}^{2}\left(1-\delta^{2} / 4\right)\right\} \tag{33}
\end{equation*}
$$

On the other hand, integrating by parts, we obtain

$$
\int_{0}^{1} \exp \left\{\lambda S_{N}(t)\right\} d t=-\int_{-\infty}^{+\infty} e^{\lambda y} d W_{N}(y)=\lambda \int_{-\infty}^{+\infty} e^{\lambda y} W_{N}(y) d y
$$

We decompose the interval $(-\infty,+\infty)$ of integration into the five intervals $I_{1}=(-\infty, 0], \quad I_{2}=\left(0, \lambda A_{N}^{2}(1-\delta)\right], . I_{3}=\left(\lambda A_{N}^{2}(1-\delta), \lambda A_{N}^{2}(1+\delta)\right], I_{4}=\left(\lambda A_{N}^{2}(1+\delta)\right.$, $\left.8 \lambda A_{N}^{2}\right]$ and $I_{5}=\left(8 \lambda A_{N}^{2},+\infty\right)$ and search for upper bounds of the integral over I_{1} and I_{5} and over I_{2} and I_{4}.

We have

$$
\begin{equation*}
J_{1}=\lambda \int_{-\infty}^{0} e^{\lambda y} W_{N}(y) d y \leqq \lambda \int_{-\infty}^{0} e^{\lambda y} d y=1 \tag{34}
\end{equation*}
$$

because $W_{N}(y) \leqq 1$ for all y. According to (31), Lemma 3, and Lemma 2, we have on I_{5}

$$
W_{N}(y) \leqq \exp \left\{-\frac{y}{8 M_{N} K^{3}}\right\} \leqq e^{-2 \lambda y} \text { for } y \geqq \frac{A_{N}^{2}}{2 M_{N} K^{3}},
$$

and

$$
W_{N}(y) \leqq \exp \left\{-\frac{y^{2}}{4 A_{N}^{2}}\right\} \leqq e^{-2 \lambda y} \quad \text { for } \quad 8 \lambda A_{N}^{2} \leqq y \leqq \frac{A_{N}^{2}}{2 M_{N} K^{3}}
$$

Therefore

$$
\begin{equation*}
J_{5}=\lambda \int_{8 \lambda A_{N}^{2}}^{+\infty} e^{\lambda y} W_{N}(y) d y \leqq \lambda \int_{8 \lambda A_{N}^{2}}^{+\infty} e^{-\dot{\lambda} y} d y<1 \tag{35}
\end{equation*}
$$

It follows, by (30), (32), and (33), that

$$
\int_{0}^{1} \exp \left\{\lambda S_{N}(t)\right\} d t>8
$$

Hence, on account of (34) and (35), we can see that

$$
\begin{equation*}
J_{1}+J_{5}<\frac{1}{!4} \int_{0}^{1} \exp \left\{\lambda S_{N}(t)\right\} d t \tag{36}
\end{equation*}
$$

On the intervals I_{2} and I_{4}, applying Theorem 1 , we have

$$
e^{\lambda y} W_{N}(y) \leqq \exp \left\{\lambda y-\frac{\dot{y}^{2}}{2 A_{N}^{2}}\left(1-\frac{\delta^{2}}{8}\right)\right\}=e^{\mu(y)}
$$

because, by (29) and (31), we obtain that

$$
\theta=\frac{y M_{N} K^{3}}{A_{N}^{2}} \leqq 8 \lambda M_{N} K^{3}<16 \alpha \leqq \frac{\delta^{2}}{8}
$$

The quadratic expression $\mu(y)$ attains its maximum for $y=\lambda A_{N}^{2}\left(1-\delta^{2} / 8\right)^{-1}$ which lies in I_{3}. Hence, in the intervals I_{2} and $I_{4} \mu(y)$ is majorized by its value at $y=\lambda A_{N}^{2}(1+\delta)$ (as $\lambda A_{N}^{2}(1+\delta)$ lies closer to the right endpoint of the interval I_{3} than to the left one). This value does not exceed

$$
\begin{gathered}
\lambda^{2} A_{N}^{2}(1+\delta)-\frac{\lambda^{2} A_{N}^{2}}{2}(1+\delta)^{2}\left(1-\frac{\delta^{2}}{8}\right)= \\
=\frac{\lambda^{2} A_{N}^{2}}{2}\left(1-\delta^{2}+\frac{\delta^{2}}{8}(1+\delta)^{2}\right)<\frac{\lambda^{2} A_{N}^{2}}{2}\left(1-\frac{\delta^{2}}{2}\right)
\end{gathered}
$$

Therefore

$$
\begin{gathered}
J_{2}+J_{4}=\lambda\left\{\int_{0}^{\lambda A_{N}^{2}(1-\delta)}+\int_{\lambda A_{N}^{2}(1+\delta)}^{8 \lambda A_{N}^{2}}\right\} e^{\lambda y} W_{N}(y) d y< \\
<\lambda \int_{0}^{8 \lambda A_{N}^{2}} \exp \left\{\frac{\lambda^{2} A_{N}^{2}}{2}\left(1-\frac{\delta^{2}}{2}\right)\right\} d y=8 \lambda^{2} A_{N}^{2} \exp \left\{\frac{\lambda^{2} A_{N}^{2}}{2}\left(1-\frac{\delta^{2}}{2}\right)\right\} .
\end{gathered}
$$

From (5), (29) and (32), we get the following estimates:

$$
\log 2^{7} \beta<2 \log \beta \leqq \frac{\beta \delta^{2}}{8}
$$

$$
\begin{equation*}
\log 2^{5} \lambda^{2} A_{N}^{2}<2 \log \lambda^{2} A_{N}^{2} \leqq \frac{\lambda^{2} A_{N}^{2}}{8} \delta^{2} \tag{37}
\end{equation*}
$$

because $\lambda^{2} A_{N}^{2}>\beta$ and $\log u / u$ is a decreasing function if $u \geqq e$. So we have from (33)

$$
\begin{equation*}
J_{2}+J_{4}<\frac{1}{4} \exp \left\{\frac{\lambda^{2} A_{N}^{2}}{2}\left(1-\frac{\delta^{2}}{4}\right)\right\}<\frac{1}{4} \int_{0}^{1} \exp \left\{\lambda S_{N}(t)\right\} d t \tag{38}
\end{equation*}
$$

It follows, from (36) and (38)

$$
\begin{equation*}
J_{3}=\int_{\lambda A_{N}^{2}(1-\delta)}^{\lambda A_{N}^{2}(1+\delta)} e^{\lambda y} w_{N}(y) d y>\frac{1}{2} \int_{0}^{1} \exp \left\{\lambda S_{N}(t)\right\} d t>\frac{1}{2} \exp \left\{\frac{\lambda^{2} A_{N}^{2}}{2}(1-\delta)\right\} \tag{39}
\end{equation*}
$$

because $\delta>\delta^{2} / 4$. Since $W_{N}(y)$ is a decreasing function, on account of the definition of λ, we have that

$$
\begin{equation*}
J_{3}<2 \lambda^{2} A_{N}^{2} \delta \exp \left\{\lambda^{2} A_{N}^{2}(1+\delta)\right\} W_{N}(x) \tag{40}
\end{equation*}
$$

From (39) and (40) we obtain that

$$
W_{N}(x)>\frac{1}{4 \lambda^{2} A_{N}^{2} \delta} \exp \left\{-\frac{\lambda^{2} A_{N}^{2}}{2}(1+3 \delta)\right\}
$$

Similarly to (37), we have

$$
\log 4 \lambda^{2} A_{N}^{2} \delta<\frac{1}{2} \lambda^{2} A_{N}^{2} \delta
$$

as $4 \lambda^{2} A_{N}^{2} \delta>4 \beta \delta \geqq 16 \sqrt{\beta \log \beta} \geqq 2^{12}$, and $\log u / u \geqq 1 / 8$ if $u \geqq 2^{12}$. So we get that

$$
\begin{gathered}
W_{N}(x) \exp \left\{-\frac{\lambda^{2} A_{N}^{2}}{2}(1+4 \delta)\right\}=\exp \left\{-\frac{x^{2}}{2 A_{N}^{2}(1-\delta)^{2}}(1+4 \delta)\right\}> \\
\quad>\exp \left\{-\frac{x^{2}}{2 A_{N}^{2}}(1+8 \delta)\right\}=\exp \left\{-\frac{x^{2}}{2 A_{N}^{2}}(1+\varepsilon)\right\}
\end{gathered}
$$

because $\delta=\varepsilon / 8$ and, by (30), $\delta \leqq 1 / 8$. This yields (6) with a suitable ε, by (29). And this is what we wished to prove.

§ 2. The proof of Theorem 3 and Theorem 4

We need a result concèrning series with Rademacher's functions defined as follows

$$
r_{n}(x)=\operatorname{sign} \sin 2^{n+1} \pi \dot{x} \quad(0 \leqq x \leqq 1 ; n=1,2, \cdots) .
$$

The following assertion holds (see [4]; v. 1, p. 213):
Lemma 4. If p is an arbitrary positive real number then

$$
\begin{equation*}
\left\{\int_{0}^{1}\left|\sum_{n=1}^{N} a_{n} r_{n}(\dot{x})\right|^{p} d x\right\}^{\frac{1}{p}} \leqq 2 p^{\frac{1}{2}}\left\{\sum_{n=1}^{N} a_{n}^{2}\right\}^{\frac{1}{2}} \tag{41}
\end{equation*}
$$

Proof of Theorem 3. This argument will follow closely that on page 215 of [4]. First we show (10), hence then the second inequality (8) immediately follows. The first inequality (8) follows from the second one by a simple argument.

Let K denote a common bound for the system $\left\{\varphi_{n}(t)\right\}$, i.e.

$$
\left|\varphi_{n}(t)\right| \leqq K \quad(0 \leqq t \leqq 1 ; n=1,2, \cdots) .
$$

Furthermore, let μ denote a sufficiently small positive real number. We set

$$
S_{N}(t ; x)=\sum_{n=1}^{N} a_{n} \varphi_{n}(t) r_{n}(x)
$$

Applying (41), with a simple calculaticn we get

$$
\begin{align*}
& \int_{0}^{1} \exp \left\{\mu S_{N}^{2}(t ; x)\right\} d x=\sum_{k=0}^{\infty} \frac{\mu^{k}}{k!} \int_{0}^{1} S_{N}^{2 k}(t ; x) d x \leqq \tag{42}\\
\leqq & \sum_{k=0}^{\infty} \frac{k^{k}}{k!}\left\{4 \mu \sum_{n=1}^{N} a_{n}^{2} \varphi_{n}^{2}(t)\right\}^{k} \leqq \sum_{k=0}^{\infty}\left\{4 \mu e \sum_{n=1}^{N} a_{n}^{2} \varphi_{n}^{2}(t)\right\}^{k}
\end{align*}
$$

since $k^{k} / k!<\sum_{n=0}^{\infty} k^{n} / n!=e^{k}$. On the basis of (9i)

$$
4 e \mu \sum_{n=1}^{N} a_{n}^{2} \varphi_{n}^{2}(t) \leqq 4 e \mu K^{2} A_{N}^{2} \leqq \frac{1}{2}
$$

if

$$
\begin{equation*}
\mu \leqq \frac{1}{8 e K^{2}} \tag{43}
\end{equation*}
$$

Thus, the series on the right of (42) uniformly converges in $t(0 \leqq t \leqq 1)$, and its sum does not exceed 2.

Integrate (42) over $0 \leqq t \leqq 1$ and interchange the order of integration; then

$$
\int_{0}^{1} d x \int_{0}^{1} \exp \left\{\mu S_{N}^{2}(t ; x)\right\} d t \leqq 2
$$

It follows that there is a dyadic irrational $\left.{ }^{7}\right)$ number $x_{0}\left(0<x_{0}<1\right)$ for which

$$
\begin{equation*}
\int_{0}^{1} \exp \left\{\mu S_{N}^{2}\left(t ; x_{0}\right)\right\} d t \leqq 2 \tag{44}
\end{equation*}
$$

Consider the following representation of $S_{N}(t)$

$$
\begin{equation*}
S_{N}(t)=K^{2} \int_{0}^{1} S_{N}\left(u ; x_{0}\right) P_{N}\left(t, u ; x_{0}\right) d u \tag{45}
\end{equation*}
$$

[^3]where
$$
P_{N}\left(t, u ; x_{0}\right)=\prod_{n=1}^{N}\left(1+\frac{\varphi_{n}(t) \varphi_{n}(u) r_{n}\left(x_{0}\right)}{K^{2}}\right)
$$

First of all, $P_{N}\left(t, u ; x_{0}\right)$ is non-negative. Furthermore, $P_{N}\left(t, u ; x_{0}\right)$ is symmetric in t and u, and
$\int_{0}^{1} P_{N}\left(t, u ; x_{0}\right) d u=1+\sum^{\prime} \frac{1}{K^{2 k}} \varphi_{n_{1}}(t) \cdots \varphi_{n_{k}}(t) r_{n_{1}}\left(x_{0}\right) \cdots r_{n_{k}}\left(x_{0}\right) \int_{0}^{1} \varphi_{n_{1}}(u) \cdots \varphi_{n_{k}}(u) d u$,
where the sum Σ^{\prime} is extended for all systems of integer values $(1 \leqq) n_{1}<\cdots<n_{k}(\leqq N)$ ($1 \leqq k \leqq N$). It follows from (2) that

$$
\begin{equation*}
\int_{0}^{1} P_{N}\left(t, u ; x_{0}\right) d u=1 \tag{46}
\end{equation*}
$$

As to the representation (45), after carrying out the multiplications and integrating . term by term, the right-hand side can be written as follows:

$$
\begin{gathered}
K^{2} \sum_{n=1}^{N} a_{n} r_{n}\left(x_{0}\right) \int_{0}^{1} \varphi_{n}(u) d u+\sum_{n=1}^{N} \sum_{m=1}^{N} a_{n} r_{n}\left(x_{0}\right) r_{m}\left(x_{0}\right) \varphi_{m}(t) \int_{0}^{1} \varphi_{n}(u) \varphi_{m}(u) d u+ \\
+\sum_{n=1}^{N} a_{n} r_{n}\left(x_{0}\right) \sum^{\prime \prime} \frac{1}{K^{2 k-2}} \varphi_{n_{1}}(t) \cdots \varphi_{n_{k}}(t) r_{n_{1}}\left(x_{0}\right) \cdots r_{n_{k}}\left(x_{0}\right) \int_{0}^{1} \varphi_{n}(u) \varphi_{n_{1}}(u) \cdots \\
\cdots \varphi_{n_{k}}(u) d u=I+J+K
\end{gathered}
$$

where the sum $\Sigma^{\prime \prime}$ is extended for all systems of integer values ($1 \leqq$) $n_{1}<\cdots<n_{k}(\leqq N)$ $(2 \leqq k \leqq N)$. Taking into account that the functions $\varphi_{n}(t)$ are normed, it follows from (2) that $I=K=0$ and

$$
J=\sum_{n=1}^{N} a_{n} r_{n}^{2}\left(x_{0}\right) \varphi_{n}(t)=S_{N}(t)
$$

because $r_{n}^{2}\left(x_{0}\right)=1(1 \leqq n \leqq N)$. This proves (45).
The function $\chi(u)=\exp \left(\mu u^{2}\right)$ is increasing and convex for $u \geqq 0$. On account of (46), JENSEN's inequality (see [4], v. I, p. 24) gives

$$
\begin{gathered}
\chi\left(\frac{\left|S_{N}(t)\right|}{K^{2}}\right)=\chi\left(\int_{0}^{1}\left|S_{N}\left(t ; x_{0}\right)\right| \cdot P_{N}\left(t, u ; x_{0}\right) d u\right) \leqq \\
\leqq \int_{0}^{1} \chi\left(\left|S_{N}\left(t ; x_{0}\right)\right|\right) P_{N}\left(t, u ; x_{0}\right) d u
\end{gathered}
$$

Integrate this over $0 \leqq t \leqq 1$ and interchange the order of integration, from (44) and (46), we get that

$$
\begin{aligned}
\int_{0}^{1} \chi\left(\frac{\left|S_{N}(t)\right|}{K^{2}}\right) d t & \leqq \int_{0}^{1} \chi\left(\left|S_{N}\left(t ; x_{0}\right)\right|\right) d u \int_{0}^{1} P_{N}\left(t, u ; x_{0}\right) d t= \\
& =\int_{0}^{1} \exp \left\{\mu S_{N}^{2}\left(u ; x_{0}\right)\right\} d u \leqq 2
\end{aligned}
$$

Now we set $\mu=K^{4} \lambda$ then, it follows from (9ii), this μ satisfies (43). We finished the proof of (10).

As to the second inequality (8), we set

$$
S_{N}^{*}(t)=S_{N}(t) / A_{N}
$$

The condition (9i) is satisfied by the coefficients of $S_{N}^{*}(t)$. Thus, if λ is sufficiently small then, on account of (10),

$$
\int_{0}^{1} \exp \left\{\lambda S_{N}^{*^{2}}(t)\right\} d t=\sum_{k=0}^{\infty} \frac{\lambda^{k}}{k!} \int_{0}^{1}\left|S_{N}^{*}(t)\right|^{2 k} d t \leqq 2
$$

Hence it follows for every k

$$
\int_{0}^{1}\left|S_{N}^{*}(t)\right|^{2 k} d t \leqq \frac{2 k!}{\lambda^{k}}
$$

that is

$$
\left\{\int_{0}^{1}\left|S_{N}(t)\right|^{2 k} d t\right\}^{\frac{1}{2 k}} \leqq D_{2 k} A_{N}
$$

where, choosing λ equal to $\left(8 e K^{6}\right)^{-1}$,

$$
D_{2 k}=\left\{2 \cdot 8^{k} e^{k} K^{6 k} k!\right\}^{\frac{1}{2 k}} \leqq 8 K^{3} k^{\frac{1}{2}} \quad(k=1,2, \cdots)
$$

If now for the positive real number p we have $2 k-2 \leqq p<2 k$ with a suitable natural number k then it is sufficient to remark that

$$
\left\{\int_{0}^{1}\left|S_{N}(t)\right|^{p} d t\right\}^{\frac{1}{p}} \leqq\left\{\int_{0}^{1}\left|S_{N}(t)\right|^{2 k} d t\right\}^{\frac{1}{2 k}}
$$

(see [4], v. I, p. 25).
It still remains to prove the first inequality (8). This is immediate for $p \geqq 2$, for then

$$
\left\{\int_{0}^{1}\left|S_{N}(t)\right|^{p} d t\right\}^{\frac{1}{p}} \geqq\left\{\int_{0}^{1} S_{N}^{2}(t) d t\right\}^{\frac{1}{2}}=A_{N}
$$

If $0<p<2$, let α_{1} and α_{2} be positive and such that $\alpha_{1}+\alpha_{2}=1,2=p \alpha_{1}+4 \alpha_{2}$. The function

$$
\int_{0}^{1}\left|S_{N}(t)\right|^{\alpha} d t
$$

being logarithmically convex in α (see [4], v. I, p. 25),

$$
A_{N}^{2}=\int_{0}^{1} S_{N}^{2}(t) d t \leqq\left\{\int_{0}^{1}\left|S_{N}(t)\right|^{p} d t\right\}^{\alpha_{1}}\left\{\int_{0}^{1} S_{N}^{4}(t) d t\right\}^{\alpha_{2}} \leqq\left\{\int_{0}^{1}\left|S_{N}(t)\right|^{p} d t\right\}^{\alpha_{1}}\left(D_{4} A_{N}\right)^{\alpha_{2}}
$$

which gives

$$
\left\{\int_{0}^{1}\left|S_{N}(t)\right|^{p} d t\right\}^{\frac{1}{p}} \geqq D_{4}^{-(4-2 p) / p} A_{N}
$$

This completes the proof of Theorem 3.
The following lemma needs in the proof of Theorem 4.
Lemma 5. There exist positive absolute constants $\eta(\geqq 1)$ and ε such that

$$
\operatorname{mes}\left(\left\{\left|S_{N}(t)\right| \geqq \eta A_{N}\right\}\right) \geqq \varepsilon .
$$

The proof is based on a lemma which can find in [4], Chapter V; (8. 26), and it goes, applying (8), word by word as there.

As to the proof of Theorem 4, it can be proved in the same way as the analogous assertion for Rademacher functions, see [4], Chapter XV., (5.14), applying (8) to prove the second inequality (11) and Lemma 5 the first one.

§ 3. The proof of Theorem 5

We are going to apply the following well-known assertion: if the sequence $\left\{E_{k}\right\}$ of measurable subsets of the interval $[0,1]$ is such that

$$
\sum_{k=1}^{\infty} \operatorname{mes}\left(E_{k}\right)<\infty
$$

then

$$
\left.\cdot \operatorname{mes}\left(\limsup _{k \rightarrow \infty} E_{k}\right)=0 .^{8}\right)
$$

For the arbitrary fixed positive real number $\varepsilon(<1)$, we choose the real number $\eta(<1)$ such that

$$
\begin{equation*}
\eta(1+\varepsilon)>1, \text { e.g. } \quad \eta=1-\frac{\varepsilon}{2} \tag{47}
\end{equation*}
$$

[^4]Now we define the sequence of indices $n_{1} \leqq n_{2} \leqq \cdots$ in the following manner:

$$
\begin{equation*}
A_{n_{k}-1}^{2} \leqq e^{k \eta}<A_{n_{k}}^{2} \quad(k=1,2, \cdots) \tag{48}
\end{equation*}
$$

This is possible in virtue of (14i).
We set

$$
E_{k}=\left\{\frac{S_{n_{k}}(t)}{\sqrt{2 A_{n_{k}}^{2} \log \log A_{n_{k}}^{2}}} \geqq 1+\varepsilon\right\} .
$$

On account of Theorem 1, we get that

$$
\begin{equation*}
\operatorname{mes}\left(E_{k}\right)=W_{n_{k}}\left((1+\varepsilon) \sqrt{2 A_{n_{k}}^{2} \log \log A_{n_{k}}^{2}}\right) \leqq \exp \left\{-(1+\varepsilon)^{2}(1-\theta) \log \log A_{n_{k}}^{2}\right\} \tag{49}
\end{equation*}
$$

where

$$
\theta=(1+\varepsilon) K^{3} M_{n_{k}} \sqrt{\frac{2 \log \log A_{n_{k}}^{2}}{A_{n_{k}}^{2}}}
$$

Here K denotes a common bound of the system $\left\{\varphi_{n}(t)\right\}$. Taking into account (14ii), this θ tends to 0 if k tends to ∞. Thus, θ is not greater than $\varepsilon / 2$ if k is sufficiently large. Continuing the estimation (49) we obtain

$$
\begin{aligned}
\operatorname{mes}\left(E_{k}\right) & \leqq \exp \left\{-(1+\varepsilon)^{2}\left(1-\frac{\varepsilon}{2}\right) \log \log A_{n_{k}}^{2}\right\} \leqq \\
& \leqq \exp \left\{-(1+\varepsilon) \log \log A_{n_{k}}^{2}\right\}=\left(\log A_{n_{k}}^{2}\right)^{-(1+\varepsilon)}
\end{aligned}
$$

By (48), hence we get

$$
\sum_{k=1}^{\infty} \operatorname{mes}\left(E_{k}\right) \leqq \sum_{k=1}^{\infty} \frac{1}{k^{\eta(1+\varepsilon)}}<\infty
$$

in virtue of (47). So, we have shown that in the case of sequence of indices defined by (48), we have that

$$
\limsup _{k \rightarrow \infty} \frac{S_{n_{k}}(t)}{\sqrt{2 A_{n_{k}}^{2} \log \log A_{n_{k}}^{2}}} \leqq 1+\varepsilon
$$

holds almost everywhere.
Let $m_{1} \leqq m_{2} \leqq \cdots$ be an arbitrary sequence of indices for which

$$
\begin{array}{rll}
n_{k} \leqq m_{k}<n_{k+1} & \text { if } \quad n_{k} \neq n_{k+1}, \quad \text { and } \tag{50}\\
n_{k}=m_{k} & \text { if } & n_{k}=n_{k+1} \quad(k=1 ; 2, \cdots) .
\end{array}
$$

It is sufficient to show that

$$
\Delta_{k}(t)=\frac{S_{m_{k}}(t)-S_{n_{k}}(t)}{\sqrt{2 A_{n_{k}}^{2} \log \log A_{n_{k}}^{2}}}
$$

tends to 0 for almost every $t(0 \leqq t \leqq 1)$.
It is obvious that $\Delta_{k}(t)=0$ if $n_{k}=n_{k+1}$. Therefore, in the following we assume
that $n_{k}<n_{k+1}$: Let p be a positive real number to be determined later on. Applying Theorem 3, we get

$$
\begin{gather*}
\int_{0}^{1} \Delta_{k}^{2 p}(t) d t \leqq D_{2 p}^{2 p}\left(\frac{A_{n k+1-1}^{2}-A_{n_{k}}^{2}}{2 A_{n_{k}}^{2} \log \log A_{n_{k}}^{2}}\right)^{p} \leqq \tag{51}\\
\leqq D_{2 p}^{2 p}\left(\frac{e^{(k+1)^{n}}-e^{k^{\eta}}}{2 e^{k^{\eta}} \eta \log k}\right)^{p} \leqq D_{2 p}^{2 p}\left(\frac{e^{(k+1)^{n}-k^{\eta}}-1}{2 \eta}\right)^{p} .
\end{gather*}
$$

We apply the following inequalities:
and

$$
e^{u} \leqq 1+3 u \quad \text { if } .0 \leqq u \leqq 1
$$

$$
\left.(u+1)^{\eta}-u^{\eta} \leqq \frac{\eta}{u^{1-\eta}} \quad \text { if } \quad u \geqq 0 \quad(0<\eta<1) .{ }^{9}\right)
$$

On account of these and (51), we obtain

$$
\int_{0}^{1} \Delta_{k}^{2 p}(t) d t \leqq D_{2 p}^{2 p}\left(\frac{3\left((k+1)^{\eta}-k^{\eta}\right)}{2 \eta}\right)^{p} \leqq\left(\frac{3}{2}\right)^{p} D_{2 p}^{2 p} \frac{1}{k^{p(1-\eta)}}
$$

If we fix the real number p so large that $p(1-\eta)>1$ is satisfied then

$$
\sum_{k=1}^{\infty} \int_{0}^{1} \Delta_{k}^{2 p}(t) d t \leqq\left(\frac{3}{2}\right)^{p} D_{2 p}^{2 p} \sum_{k=1}^{\infty} \frac{1}{k^{p(1-\eta)}}<\infty
$$

It follows from the theorem of Beppo Levi that

$$
\Lambda_{k}^{2 p}(t) \rightarrow 0 \quad(k \rightarrow \infty)
$$

almost everywhere. As p is fixed, therefore we have proved the assertion (15).
Now, we set $N_{1}=n_{1}$, and let $N_{l} \cdot(l \geqq 2)$ be equal to the first index n_{k} for which $n_{k}>N_{l-1}$. It is obvious that the sequence $N_{1}<N_{2}<\cdots$ has the property as asserted in Theorem 5.

§ 4. The proof of Theorem 6

Lemma 6. Let $\left\{b_{n}\right\}$ be a sequence of non-negative real numbers. If.

$$
\begin{equation*}
\text { (i) } s_{N}=\sum_{n=1}^{N} b_{n} \rightarrow \infty \quad \text { and } \quad \text { (ii) } b_{N}=o\left(s_{N}\right) \tag{52}
\end{equation*}
$$

then for arbitrary positive real number $\alpha(>1)$, we have

$$
\begin{equation*}
\sum_{n=1}^{N} b_{n}^{\alpha}=o\left(s_{N}^{\alpha}\right) \tag{53}
\end{equation*}
$$

[^5]Proof. Let ε be an arbitrary positive real number. We choose the natural number n_{0} in such a manner that

$$
\frac{b_{n}}{s_{n}} \leqq\left(\frac{\varepsilon}{2}\right)^{\frac{1}{\alpha-1}}, \quad \text { if } \quad n \geqq n_{0}
$$

This is possible in virtue of (52ii). Next we choose the natural number N_{0} such that

$$
\frac{1}{s_{N_{0}}} \sum_{n=1}^{n_{0}-1} b_{n}^{\alpha} \leqq \frac{\varepsilon}{2}
$$

that is also possible in virtue of (52i). Then

$$
\frac{1}{s_{N}^{\alpha}} \sum_{n=1}^{N} b_{n}^{\alpha}=\frac{1}{s_{N}^{\alpha}}\left\{\sum_{n=1}^{n_{0}-1}+\sum_{n=n_{0}}^{N}\right\} \leqq \frac{\varepsilon}{2}+\frac{1}{s_{N}^{\alpha}} \sum_{n=n_{0}}^{N} \frac{\varepsilon}{2} s_{N}^{\alpha-1} b_{n} \leqq \varepsilon
$$

whenever $N \geqq N_{0}$, and assertion (53) is proved.
Proof of Theorem 6. ${ }^{10}$) In the proof we apply the following elementary inequality: for every real number u and every natural number n, we have (see [10], p. 365)

$$
\begin{equation*}
\left|e^{i u}-\sum_{k=0}^{n-1} \frac{(i u)^{k}}{k!}\right| \leqq \frac{|u|^{n}}{n!} . \tag{54}
\end{equation*}
$$

We make use of the classical method of characteristic functions. Let us introduce the following notation:

$$
\psi_{N}(\lambda)=\int_{-\infty}^{+\infty} e^{i \lambda y} d F_{N}(y)
$$

where $F_{N}(y)$ is defined by (17). It is enough to prove that for any fixed λ the characteristic function $\psi_{N}(\lambda)$ tends to the characteristic function of the normal distribution, i.e.

$$
\begin{equation*}
\psi_{N}(\lambda) \rightarrow e^{-\frac{\lambda^{2}}{2}} \quad(N \rightarrow \infty) \tag{55}
\end{equation*}
$$

It is obvious that

$$
\begin{equation*}
\psi_{N}(\lambda)=\int_{0}^{1} \exp \left\{\frac{i \lambda S_{N}(t)}{A_{N}}\right\} d t \tag{56}
\end{equation*}
$$

Applying (54) with $n=3$, we get that

$$
\begin{equation*}
\psi_{N}(\lambda)=\int_{0}^{1} \prod_{n=1}^{N}\left\{\left(1+\frac{i \lambda a_{n} \varphi_{n}(t)}{A_{N}}-\frac{\lambda^{2} a_{n}^{2} \varphi_{n}^{2}(t)}{2 A_{N}^{2}}\right)+\theta_{n} \frac{\lambda^{3} a_{n}^{3} \varphi_{n}^{3}(t)}{6 A_{N}^{3}}\right\} d t \tag{57}
\end{equation*}
$$

where θ_{n} also depends on N, and $\left|\theta_{n}\right| \leqq 1(n=1,2, \cdots, N)$.

[^6]We show that the integral on the right-hand side of (57) can be replaced by the following simpler integral

$$
\begin{equation*}
\int_{0}^{1} \prod_{n=1}^{N}\left(1+\frac{i \lambda a_{n} \varphi_{n}(t)}{A_{N}}-\frac{\lambda^{2} a_{n}^{2} \varphi_{n}^{2}(t)}{2 A_{N}^{2}}\right) d t \tag{58}
\end{equation*}
$$

in the sense that for every fixed λ the difference of (57) and (58) tends to 0 if N tends to ∞. For the sake of brevity we denote

$$
P_{n}(t)=1+\frac{i \lambda a_{n} \varphi_{n}(t)}{A_{N}}-\frac{\lambda^{2} a_{n}^{2} \varphi_{n}^{2}(t)}{2 A_{N}^{2}} \quad \text { and } \quad R_{n}(t)=\theta_{n} \frac{\lambda^{3} a_{n}^{3} \varphi_{n}^{3}(t)}{6 A_{N}^{3}}
$$

where we do not indicate the dependence on N. Applying the following identity (see [10], p. 367.)

$$
\prod_{n=1}^{N}\left(p_{n}+r_{n}\right)-\prod_{n=1}^{N} p_{n}=\sum_{n=1}^{N} r_{n}\left(\prod_{k=1}^{n-1} p_{k}\right)\left(\prod_{k=n+1}^{N}\left(p_{k}+r_{k}\right)\right)
$$

(the empty product equals 1), we obtain

$$
\begin{gather*}
\left|\exp \left\{\frac{i \lambda S_{N}(t)}{A_{N}}\right\}-\prod_{n=1}^{N} P_{n}(t)\right|=\left|\prod_{n=1}^{N}\left(P_{n}(t)+R_{n}(t)\right)-\prod_{n=1}^{N} P_{n}(t)\right| \leqq \\
\leqq \sum_{n=1}^{N}\left|R_{n}(t)\right| \cdot\left(\prod_{k=1}^{n-1}\left|P_{k}(t)\right|\right) \cdot\left(\prod_{k=n+1}^{N}\left(\left|P_{k}(t)\right|+\left|R_{k}(t)\right|\right)\right) \tag{59}
\end{gather*}
$$

By a simple calculation, we get that

$$
\begin{equation*}
\left|P_{n}(t)\right|=\left\{\left(1-\frac{\lambda^{2} a_{n}^{2} \varphi_{n}^{2}(t)}{2 A_{N}^{2}}\right)^{2}+\frac{\lambda^{2} a_{n}^{2} \varphi_{n}^{2}(t)}{A_{N}^{2}}\right\}^{\frac{1}{2}}= \tag{60}
\end{equation*}
$$

$$
=\left\{1+\frac{\lambda^{4} a_{n}^{4} \varphi_{n}^{4}(t)}{4 A_{N}^{4}}\right\}^{\frac{1}{2}} \leqq 1+\frac{\lambda^{2} a_{n}^{2} K^{2}}{2 A_{N}^{2}}
$$

furthermore,

$$
\begin{equation*}
\left|R_{n}(t)\right| \leqq \frac{|\lambda|^{3}\left|a_{n}\right|^{3} K^{3}}{6 A_{N}^{3}} \quad \cdot(n=1,2, \cdots, N) \tag{61}
\end{equation*}
$$

where K denotes a common bound of the system $\left\{\varphi_{n}(t)\right\}$.
From (60) and (61) we obtain that the right-hand side of (59) does not exceed

$$
\sum_{n=1}^{N} \frac{|\lambda|^{3} K^{3}\left|a_{n}\right|^{3}}{6 A_{N}^{3}}\left\{\prod_{k=1}^{n-1}\left(1+\frac{\lambda^{2} a_{k}^{2} K^{2}}{2 A_{N}^{2}}\right) \prod_{k=n+1}^{N}\left(1+\frac{\lambda^{2} a_{k}^{2} K^{2}}{2 A_{N}^{2}}+\frac{|\lambda|^{3} K^{3}\left|a_{k}\right|^{3}}{6 A_{N}^{3}}\right)\right\} .
$$

Applying the inequality $1+u \leqq e^{u}(u \geqq 0)$, the last sum is not greater than

$$
\begin{aligned}
& \sum_{n=1}^{N} \frac{|\lambda|^{3} K^{3}\left|a_{n}\right|^{3}}{6 A_{N}^{3}} \exp \left\{\sum_{k=1}^{N} \frac{\lambda^{2} K^{2} a_{k}^{2}}{2 A_{N}^{2}}+\sum_{k=n+1}^{N} \frac{|\lambda|^{3} K^{3}\left|a_{k}\right|^{3}}{6 A_{N}^{3}}\right\} \leqq \\
& \leqq \frac{|\lambda|^{3} K^{3}}{6} \cdot \exp \left\{\frac{\lambda^{2} K^{2}}{2}+\frac{|\lambda|^{3} K^{3}}{6}\right\} \cdot \frac{1}{A_{N}^{3}} \sum_{n=1}^{N}\left|a_{n}\right|^{3}
\end{aligned}
$$

as it is clear that $A_{\bar{N}}{ }^{3} \sum_{n=1}^{\infty}\left|a_{n}\right|^{3} \leqq 1$. It follows from (16) that the conditions (52) of Lemma 6 are satisfied by the sequence $\left\{a_{n}^{2}\right\}$. Therefore, applying Lemma 6 with $\alpha=3 / 2$, on the basis of (53), we get that the difference of the integrand of (57) and (58) tends to $0(N \rightarrow \infty)$ uniformly in $t(0 \leqq t \leqq 1)$ if λ is fixed.

To prove (55) for any fixed λ, we need the following inequalities:

$$
\begin{gather*}
1-u \leqq e^{-u} \quad \text { if } u \geqq 0 \\
e^{-u(1+u)} \leqq 1-u \quad \text { if } \quad 0 \leqq u \leqq \frac{\sqrt{2}-1}{2} \tag{62}
\end{gather*}
$$

Now carry out the multiplication in the integrand of (58) and integrate term by term

$$
\begin{gathered}
\quad \int_{0}^{1} \prod_{n=1}^{N}\left(1+\frac{i \lambda a_{n} \varphi_{n}(t)}{A_{N}}-\frac{\lambda^{2} a_{n}^{2} \varphi_{n}^{2}(t)}{2 A_{N}^{2}}\right) d t= \\
=1+\sum^{\prime} \frac{i^{k} \lambda^{k}}{A_{N}^{k}} a_{n_{1}} \cdots a_{n_{k}} \int_{0}^{1} \varphi_{n_{1}}(t) \cdots \varphi_{n_{k}}(t) d t+ \\
+\sum^{\prime \prime} \frac{(-1)^{k} \lambda^{2 k}}{2^{k} A_{N}^{2 k}} a_{n_{1}}^{2} \cdots a_{n_{k}}^{2} \int_{0}^{1} \varphi_{n_{1}}^{2}(t) \cdots \varphi_{n_{k}}^{2}(t) d t+ \\
+\sum^{\prime \prime} \frac{i^{k}(-1)^{l} \lambda^{k+2 l}}{2^{k} A_{N}^{k+2 l}} a_{n_{1}} \cdots a_{n_{k}} a_{m_{1}}^{2} \cdots a_{m_{l}}^{2} \int_{0}^{1} \varphi_{n_{1}}(t) \cdots \varphi_{n_{k}}(t) \varphi_{m_{1}}^{2}(t) \cdots \varphi_{m_{l}}^{2}(t) d t
\end{gathered}
$$

where the sum Σ^{\prime} is extended for all systems of integer values ($1 \leqq$) $n_{1}<\cdots<n_{k}(\leqq N)$ $(1 \leqq k \leqq N)$, the sum $\Sigma^{\prime \prime}$ is extended for all systems of integer values ($1 \leqq$) $n_{1}<\cdots$ $\cdots<n_{k}(\leqq N)$ and $(1 \leqq) m_{1}<\cdots<m_{l}(\leqq N)$ for which $n_{i} \neq m_{j}(1 \leqq i \leqq k, 1 \leqq j \leqq l)$; $1 \leqq k, 1 \leqq l$ and $k+l \leqq N$. It follows from (3) that the integral (58) equals

$$
1+\Sigma^{\prime} \frac{(-1)^{k} \lambda^{2 k}}{2^{k} A_{N}^{2 k}} a_{n_{1}}^{2} \cdots a_{n_{k}}^{2}=\prod_{n=1}^{N}\left(1-\frac{\lambda^{2} a_{n}^{2}}{2 A_{N}^{2}}\right)
$$

[^7]Taking into account (62), on the one hand

$$
\begin{equation*}
\prod_{n=1}^{N}\left(1-\frac{\lambda^{2} a_{n}^{2}}{2 A_{N}^{2}}\right) \leqq \exp \left\{-\sum_{n=1}^{N} \frac{\lambda^{2} a_{n}^{2}}{2 A_{N}^{2}}\right\}=e^{-\frac{\lambda^{2}}{2}} \tag{63}
\end{equation*}
$$

holds for every N, on the other hand

$$
\begin{equation*}
\prod_{n=1}^{\dot{N}}\left(1-\frac{\lambda^{2} a_{n}^{2}}{2 A_{N}^{2}}\right) \geqq \exp \left\{-\sum_{n=1}^{N} \frac{\lambda^{2} a_{n}^{2}}{2 A_{N}^{2}}\left(1+\frac{\lambda^{2} a_{n}^{2}}{2 A_{N}^{2}}\right)\right\}=\exp \left\{-\frac{\lambda^{2}}{2}-\sum_{n=1}^{N} \frac{\lambda^{4} a_{n}^{4}}{4 A_{N}^{4}}\right\} \tag{64}
\end{equation*}
$$

holds if

$$
\frac{\lambda^{2} a_{n}^{2}}{2 A_{N}^{2}} \leqq \frac{\sqrt{2}-1}{2} \quad(1 \leqq n \leqq N)
$$

But, in virtue of (16ii), this is satisfied for every sufficiently large N. Applying again Lemma 6 with $\alpha=2$, we get

$$
\sum_{n=1}^{N} \frac{\lambda^{4} a_{n}^{4}}{4 A_{N}^{4}} \rightarrow 0 \quad(N \rightarrow \infty)
$$

According to (63) and (64)

$$
\lim _{N \rightarrow \infty} \prod_{n=1}^{N}\left(1-\frac{\lambda^{2} a_{n}^{2}}{2 A_{N}^{2}}\right)=e^{-\frac{\lambda^{2}}{2}}
$$

holds for every fixed λ. This completes the proof of Theorem 6.

References

[1] G. Alexits, Convergence problems of orthogonal series (Budapest, 1961).
[2] A. Kolmogoroff, Über das Gesetz des iterierten Logarithmus, Math. Annalen, 101 (1929), 126-135.
[3] J. Marcinkiewicz and A. Zygmund, Sur les fonctions indépendantes, Fundamenta Math., 29 (1937), 60-90.
[4] A. Zygmund, Trigonometric series (Cambridge, 1959).
[5] R. Salem and A. Zygmund, La loi du logarithme itéré pour les séries trigonométriques lacunaires, Bull. Sci. Math., 74 (1950), 209-224.
[6] P. Erdós and I. S. Gál, On the law of the iterated logarithm, Nederl. Akad. Wet., Proc., Ser. A, 58 (1955), 65-84.
[7] P. Révész, Some remarks on strongly multiplicative systems, Acta Math. Acad. Sci. Hung., 16 (1965), 441-446.
[8] R. Salem and R. Zygmund, On lacunary trigonometric series, Proc. Nat. Acad. Sci. U.S.A., 33 (1947), 333-338.
[9] W. Feller, Über den zentralen Grenzwertsatz der Wahrscheinlichkeitsrechnung, Math. Zeitschr., 40 (1935), 531-559.
[10] A. RÉNYi, Wahrscheinlichkeitsrechnung (Berlin, 1962).

[^0]: ${ }^{1}$) mes (E) denotes the Lebesgue measure of the set E.

[^1]: $\left.{ }^{4}\right) \mathrm{By} \log ^{+}|u|$ we mean $\log |u|$ wherever $|u| \geqq 1$, and 0 otherwise.

[^2]: ${ }^{5}$) (19) follows from the sharper estimates: $0 \leqq u-\log \left(1+u+u^{2} / 2\right) \leqq u^{3} / 3$ for $u \geqq 0$ and $u^{3} / 3 \leqq$ $\leq u-\log \left(1+u+u^{2} / 2\right) \leqq 0$ for $u \leqq 0$. We only have to remark that the function $x(u)=$ $=u-\log \left(1+u+u^{2} / 2\right)$ is non-decreasing $-\infty<u<\infty$ and $\varkappa(0)=0$, and that the function $\mu(u)=$ $=u-\log \left(1+u+u^{2} / 2\right)-u^{3} / 3$ is non-increasing and $\mu(0)=0$.

[^3]: ${ }^{7}$) x_{0} is dyadic irrational number if $x_{0} \neq p / 2^{q}$ where p and q are positive natural numbers.

[^4]: $\left.{ }^{8}\right) \limsup _{k \rightarrow \infty} E_{k}$ is the set of all those points which belong to infinitely many E_{k} :

[^5]: ${ }^{9}$) This inequality follows from the fact that the function $u^{\eta}(0<\eta<1)$ is concave for $u \geqq 0$.

[^6]: ${ }^{10}$) The proof follows that of Lindeberg's theorem which is due to Feller [9]. See also [10], pp. 365-368.

[^7]: ${ }^{11}$) This inequality follows from the fact that the curve $v=e^{-u(1+u)}((-1-\sqrt{2}) / 2 \leqq u \leqq$ $\leqq(-1+\sqrt{2}) / 2)$, which is concave, lies below its tangent at the point $u=0, v=1$.

