
Inequalities and theorems concerning 
strongly multiplicative systems 

By FERENC MÓRICZ in Szeged 

Introduction 

A L E X I T S introduced the following definitions (see [ 1 ] , p. 1 8 6 ) . 

The sequence of real measurable functions <Pi(t), (p2(t), — defined in. the 
interval [0, 1], is called a multiplicative system if all their finite products are Lebesgue-
integrable with 

i 

(1) Í (pni(t)(Pn1it) - <p„k(t)dt = 0 (», < n2 £ = 1 , 2 , -..). 
o 

The sequence {<¡»„(0} is called a strongly multiplicative system (SMS) if the 
system {(p„St)<Pni(t)'"cPnJ<t)} is a n orthogonal system, i.e. 

i 

( 2 ) / < ( 0 ^ ( 0 - 9%(t)dt = 0 " " (IF! < n2 <•••< nk\ k = 1 , 2 , - ) , 
o 

where a 2 , •••, ak can be equal to 1 or 2 but at least one element of the sequence 
cclt a2 , •••, ak is equal to 1. 

The sequence {(pn(t)} is called an equinormed strongly multiplicative system 
(ESMS) if the system {<pnt (t)<pni(t)---<p„k(t)} is an orthogonal and normal system, i.e. 

l . i 

J<Pn(0dt = o, f<pl(t)dt= i ( 1 1 = 1 , 2 , - ) ; 
0 0 

1 

( 3 ) . \ / < ¡ ( 0 ^ ( 0 - <p%№ = 
o 

l i l 

= J(Pn[(t)dt f <p%(t)dt- f <p%(t)dt («! - < > , ; £ = 1 , 2 , . . . ) , 
0 0 0 

where ax , a2 , •••, a t can be equal to 1 or 2. 
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Evidently a sequence of independent functions (with mean value 0 and dis-
persion 1) is an ESMS. Another example is a strongly lacunary sequence of tri-
gonometric functions, i.e. {/2 sin 2n nkt] if « t + 1 / n k s 3 (k = l,2, •••)• 

A L E X I T S proved that an E S M S has the property of the independent functions, 
DO CO 

i. e. 2 an<p„(t) is convergent almost everywhere if and only if 2an < More 
n=l n=l 

exactly he proved 

Theorem A. If {<p„(t)} <n a uniformly bounded ESMS then under the condition 

2<i,2<» the series 2 an(Pn(t) convergent almost everywhere. Furthermore, n=l n=l 
if for every measurable set Ecz[0, 1] and for sufficiently large n the relation 

J tpl (t) dt ^ C mes (E) 
E 

OO 
holds (where C is a positive constant depending only on E), and if the series 2 an9n(t) 

00 n= l 
is convergent in a set of positive measure then 2 -

n= 1 
(In [1] this theorem is given in a more general form.) 
The aim of the present paper is to study what other properties of the independent 

functions remain valid for an ESMS. Namely we prove the inequality due to B E R N -

STEIN and other exponential bounds, furthermore, the central limit theorem and 
a weaker form of the law of iterated logarithm for ESMS. Let me recall here the 
well-known forms of these theorems. 

We shall use, for any sequence {(pn(t)} of functions, the following notations: 

jV ¿V 
SN(t) = 2 an<Pn(t), A2

N= 2 a2
n, MN = max \an\ (N= 1,2, •••). 

n=l n = l ISnSiV 

The following inequality is due to B E R N S T E I N [2]: 

Theorem B. Let {(pn(t)} be a system of independent functions on [0, 1] with 
mean value 0 and dispersion 1, and uniformly bounded by the constant K, further-
more, let x be a positive real number such that 

9 = xMNK ^ l 

•AN 
Then 

mes ( { ^ ( 0 S x}) =5 exp { - ~ (1 - 3)}. 

') mes (£) denotes the Lebesgue measure of the set E. 
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Here we prove the following analogous form: 

Theorem 1. Let {cpn(t)} be a uniformly bounded ESMS, with bound K, and 
let x be a positive real number. Then ; . 

(4) m e s ( { S N ( O ^ x } ) s e x p { - ^ - ( l - 0 ) } with 0 = 

R e m a r k 1. We observe if SN(t) is replaced by — SN(t) the conclusion yields 

mes ({1^(01 exp { - ^ ( 1 - 0)} with 6 = . 

We show that the reverse inequality also holds if XMn/An is sufficiently small 
and X2/A%i is sufficiently large, the analogous form of which can be found in the 
quoted paper of K O L M O G O R O F F [2]. 

Theorem 2. Let {(pn(t)} be a uniformly bounded ESMS, with bound K, and 
let x be a positive real number. If the inequalities 

(5) = (») = P = 2 " 

are satisfied, then 

(6) mes({SN(t) §? x}) s exp { - ¿ r + e)} > 

where 

E = max -̂ 64 l^2a, 32 j / ^ } . 

M A R C I N K I E W I C Z and Z Y G M U N D [3] proved the following 2) 

Theo rem C. Let {<p„(0} be a system of independent functions on [0,1], with 
mean value 0 and dispersion 1. Then, for all positive real numbers p(=~ 1), we have 

1 A 

(7) CpAn S { / ( max \Sn(t)\P dt)}p ts DpAN, 
o 

where Cp and Dp are positive constants depending only on p. 

An essentially similar result holds for lacunary trigonometric series 3), too 

2) Here we give the original theorem with a little modification. 

3) 2("k cos +6fc sin nkt) in called lacunary if % ( 1 / H f c S ? > 1 {k—1,2,...).-k = 1 
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(see [4], v. 1, p. 203). Unfortunately we cannot assert the analogous result for ESMS, 
but the following result is valid: 

Theorem 3. Let {(p~„(t)} be a uniformly bounded normed SMS. Then, for all 
positive real numbers p, we have 

I 

( 8 ) C„An S { / | S W ( / ) | " RFF}7 -  D P A " > 

o 

where Cp and Dp are positive constants depending only on p. Furthermore, if for A„ 
and a positive real number X w,e have 

(9) AN 1 and XS -g-^gs 

then 

(10) / exp {A5"̂ (i)} dt s 2. 
0 

Moreover, we succeeded in proving the following theorem (forthe case Rade-
macher functions, see [4], v. II, p. 235.): 

Theorem 4. Let {<pn(t)} be a uniformly bounded normed SMS. Then the follow-
ing estimations are valid: 

1 

(11) CAN log + A'n- C'SF \SN(t)\ log+ \SN(t)\dt ^ CAN log + A, + C, 4) 
o 

where C and C' are positive absolute constants. , 

Remark 2, It will be clear from the proofs that both Theorem 3 and Theorem 4 

remain valid if SN(t) and AN are replaced by y, a«(Pn(t) and A2 = 2 an in them 
n=1 n-1 

supposing that A-<» or A^l, respectively. In particular, if 2 an<00 then the 
n=i 

sum of 2 OnVniO. belongs to Lp for every positive real number p. > 
n=i •',. ' 

Concerning the law of iterated logarithm, the basic result, obtained by KOL-
M O G O R O F F [2], reads as follows: 

Theorem D. Let {(pn(t)} be a system of bounded independent functions on 
[0,1], with mean value 0 and dispersion 1. If 

) (12) (i) ^jv-OO, (H) \aNcpN(t)\ m mN = o 
log log A% ) ' 

") By log + |«i we mean log |«[ wherever |wiS1, and 0 otherwise. 

/ 
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then 

(13) mesiflimsup , =• = l l ] = i 

For lacunary trigonometric series S A L E M and Z Y G M U N D [5] have shown that 
under the hypotheses (12) we have (13) with " g " instead of " = ". In this case 
a complete proof of (13) was given later by E R D Ő S and G Á L [6]. Recently, R É V É S Z [7] 
obtained the following result: 

Theorem E. If {<pn(t)} is a uniformly bounded ESMS, then 

fi,- <Pi(t) + (p2(t)+...+(pN(t) 1) 
mes Nlimsup-^1-^— ^ 6U _ i 

[[ ^N\og\ogN J J 
We managed to prove the following result which can be roughly formulated 

as follows: if the sequence of indices mi<m1 < ••• is rare enough, then the law of 
iterated logarithm will be valid for the subsequence (Smk(i)} with " S " instead 
of " = ". More exactly, we prove 

Theorem 5. Let {<?„(/)} be a uniformly bounded ESMS. Under, the conditions 

(14) o ) A — w ® 

for every positive real number e there exists a sequence of natural numbers N1<N2<---
having the following property: if mt < m2 < • • • is an arbitrary sequence of natural 
numbers for which Nk^mk< Nk+l (k = 1,2, •••), then we have 

Remark 3. It will be clear from the proof that if we had the stronger in-
equality (7) for a uniformly bounded ESMS too, then under the hypotheses (14) 
we could assert also (13) with " g " instead of " = ". Unfortunately, we only have 

' the weaker inequality (8) for a uniformly bounded normed SMS. 
A number of authors have generalized the central limit theorem for the lacunary 

trigonometric series. The most general result is due to S A L E M and Z Y G M U N D [8], 
who state the following 

Theorem F. Let SN(t) denote the Nth partial sum of the lacunary trigono-
oo 

metric series 2 (ak c o s nkt + bk sin nkt), nk+ijnk^q>\ (k = 1, 2, •••)» a"d let 
k= 1 

als a2, •••; b\, b2, ••• be arbitrary sequences of real numbers for which 

= + and {al+bl)± = o(CN). 
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Then, for any set £ c [0, 2n] of positive measure, the distribution functions 

tend to the Gaussian distribution with mean value 0 and dispersion 1. 
We obtained the following result: 

(16) 
Theorem 6. Let {</>„(0} be a uniformly bounded ESMS. If 

and aN = o(AN)i 

then the distribution functions 

( 1 7 ) = m e s ( [ M > ^ } ) {N= 1,2, •••) 

tend pointmse to the Gaussian distribution function 
y u2 

GOO = - t f e 2du. 
yin 

This theorem contains a result of R É V É S Z [ 7 ] (case a„ = 1 for every n). 

§ 1. The proof of Theorem 1 and Theorem 2 

The following lemma has a fundamental significance in the proof of Theorem 1 
and Theorem 2. 

Lemma 1. Let k be an arbitrary non-negative real number. Then 

3) (19)follows from the sharper estimates: 0 s u - l o g ( l + w+u 2 /2 )su 3 /3 for « s O a n d u J / 3 S 
s u - l o g ( l + «+« 2 /2) 3 0 for «SO. We only have to remark that the function x(u) = 
= u—log(l + u+« 2 /2) is non-decreasing and x(0)=0, and that the function fi(u) = 
= « - l o g (l + « + u J / 2 ) - « 3 / 3 is non-increasing and /¿(0)=0. 

(18) 

Proof . For every real number u, we have that 

( 1 9 ) 
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A p p l y i n g th i s i nequa l i ty , w e get t h a t 

PalvlV) 
exp {).an <pn ( i)} =''. 11 + Aa„ q>n (t) + 

where 

e x p {*„(?)}, 

I*.(0I - P K \ M N a " (n= 1,2, ...;N). 

H e n c e 
l 

(20) / e x p ^ « } dt ^ h exp j f r (l + ^ „ ( 0 + dt. 

o o 

. By a s imp le ca l cu la t ion w e get t h a t 

(21) ffexpj ^ | = e x p | 

f u r t h e r m o r e , 

S n \ 1 + ^ . ( 1 ) + ^ ? ^ ] A 

= 1 + - anJ<pni(t) - <P„k(t)dt + 2 ' ~ a 2
n i - < / < ( i ) - <(*)<& + 

o z o 

+ - - a2, J <PB1 (')"• <7>n)c(0<(') ... <pS,,(t)dt= 1+1+J+K, 
z o 

whe re t h e s u m I' is e x t e n d e d f o r all sy s t ems of in teger v a l u e s ( 1 S ) nx < • • • < nk( s N ) 
(1 ^ k s N ) , t h e s u m 1 " is e x t e n d e d f o r all sys tems of in tege r va lues (1 = ) 
••• ( = N ) a n d (1 s ) / « ! < • • • < / w , ( ^ . N ) f o r w h i c h n ^ m j ( l ^ i s f c , 1 s / s / ) ; 
l s f c , l ^ l a n d k + l s N . I t f o l l o w s f r o m (3) t h a t I=K=0 a n d 

J =2' 
A 2 « 2 A 2a : 

2 ; 
So we o b t a i n t h a t 

(22, ; 
A p p l y i n g the w e l l - k n o w n inequa l i t y 

1+a'S e" if u s 0 , 
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from (20), (21) and (22) we get that 

/ f ^ / ^ w \k3K3MNAl 1 \l2a2] 
J exp dt ^ exp | 2 ~ J J? e x P ( " T J = 

\l3K3MNA2
N} \X2A2

n 1 i A 2 ^ • , • 
= e x p | e x P | — 2 ] = C X P ( + X M n K ) ] • 

This shows that the right-hand inequality of (18) is true. 
We get similarly to (20) that 

I 

J e x p { X S N ( t ) } d t s 

o 
(23) , 

B J exp (.+ 
0 

Applying the simple inequality 

e « d - u ) s i + u if us?o, 6 ) 

we get that 

This and (21), (22), (23) show that the left-hand inequality of (18) is true.. This 
completes the proof of Lemma 1. 

In the proof which follows we use some ideas from the classical paper of 
KOLMOGOROFF [2]. First we introduce the notation 

WN(pc) = mes ( { S ^ i ) f o r x > 0 . . 

Proof of Theorem 1. Let X he a positive real number determined later on. 
It is obvious that 

1 

WN(x)eXx s / e x p {XSN(t)} dt, 
o 

and it follows from (18) that 

(24) JF f f (* ) sexp{-Ax + - ^ - ( l + Ail/wA-3)J: ' 

6) This sharper inequality u—u2/2 s log( l + w) ( « s 0 ) is also true, as the function x(u) = 
= log (1 + « ) - « + « 2 / 2 is non-decreasing and «(0) = 0. 
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Setting k = x/Aj, we get 

i . f x 2 x2 i , xMNK3 )\ f x2 (1 xMNK3 )\ 

This proves (4) and finishes the proof of Theorem 1. 
We need the next two lemmas only for the proof of Theorem 2. 

(25) 

Lemma 2. If 
xMNK3 1 

A2 ~ 2 ' 
then 

(26) WN (x) ^ exp • 

P roo f . As 0S1/2 by (25), on the ground of Theorem 1, (26) holds obviously. 

Lemma 3 . I f 
xMNK3 [1 

Al - 2 ' 

%MNK3\' 

(27) 

then 

(28) fVN(x)^ e x p 

Proof . In the proof of Theorem 1 we obtained (24), where k is an arbitrary 
positive real number. Now we set 

1 ,- 1 

2MnK3 ' 

From (24) and (27) we get that 

So the proof of Lemma 3 is ready. 
The proof of the inequality (6) is much more involved. The following argument 

follows closely that of a similar theorem in the paper of KOLMOGOROFF [2]. 

Proof of Theorem 2. Let <5 = e/8. Then 

(29) 52 = max (128a, 16(log j?)/j3). 
Hence it follows that 
(30) <52 =g 1/64, 1/8 a n d 5>282. 

We set now 
k = x/[A2

N(l~S)] 
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so that, by (30), 
x/Ajii < k < 2x1Af,, 

furthermore, in virtue of (5) we have 

(31) kMNK3 < 2a ^ 2 ~ 1 2 

and 
(32) A 2 4 > j 5 s 2 1 4 . 

On account of Lemma 1 

I 

/ exp {¿SJVO?)} dt & exp {\k2 A2 (I - \ k 2 M ) . M N K y ) } . 
o 

By (29) and (31), we get 

\k2M^ + kMNK3 < i(2a)2 + 2a S 4a <52/4. 
Hence 

l 

(33) J exp {kSN(t)} dt s exp {^k2A^(l — ¿2/4)}. 
o 

On the other hand, integrating by parts, we obtain 

/ exp {XSH(t)} dt = - / e * dWN(y) = k J e*y fVN(y) dy. 
0 — CO - D O 

We decompose the interval ( — o f integration into the five intervals 
0], I2 = (0, kA2( 1 - § ) l . 73 = (kA2(\ -5), kA2(l + 5)1 h = ( ^ ¿ ( 1 + S), 

8 k A ^ j and /5 = (8kA%, + and search for upper bounds of the integral over I t 

and /5 and over I2 and / 4 . 
We have 

0 0 

(34) J1 = k J eXyWN(y)dy ^ k J ex*dy = 1 
— 00 — 00 

because fVN(y) ^ 1 for all y. According to (31), Lemma 3, and Lemma 2, we 
have on /5 

and 
f o r 

f o r 8kA2
N ^ y ^ A" 

2MNK3 ' 
Therefore 

-f- 00 -f- 00 

(35) / 5 = k f ex"WN(y)dy^ k f e-^dy < 1. 
8JU& 8AA& 
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It follows, by (30), (32), and (33), that 
I 

J exp {kSN(t)}dt > 8. 
o 

Hence, on account of (34) and (35), we can see that 
I 

(36) J 1 + J 5 ^ ^ f e x p { X S N ( t ) } d t . 
" o 

On the intervals I2 and /4 , applying Theorem 1, we have 

because, by (29) and (31), we obtain that 

AN 8 

The quadratic expression p(y) attains its maximum for y = ?.A^.(\ — ¿>2/8)_1 which 
lies in / 3 . Hence, in the intervals I2 and I4 ii(y) is majorized by its value 
at y = ,L4jv (1 + <5) (as lies closer to the right endpoint of the interval 
73 than to the left one). This value does not exceed 

1 

^ ¿ N n 1 X\2 I 1 

Therefore 

J2 + J4 = l{ f + / }e»JVN(y)dy^ 
0 ;.AL(I +D) 

From (5), (29) and (32), we get the following estimates: 

log 27 < 2 log P s , 
(37) 

I2 A2 

log 2s A2 ̂  < 2 l o g l 2 ^ 2 ^ - 5 2 
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because A2A^>P and log u/u is a decreasing function if u^e. So we have from (33) 

(38) exp (l - ^ - j } < I / exp dt. 

It follows, from (36) and (38) 

-Uj,(l+<5) 1 f 12 2 1 

(39) J3 = J e'"wN(y) d y > T / e x p {ASN(t)} dt > | e x p ( 1 - 5 ) 
¿A2„(l-S) Z 0 Z I Z j 

because <5><52/4. Since is a decreasing function, on account of the definition 
of A, we have that 
(40) J3<2A2A2

Ndexp{A2A2
N(l + S)}WN(x). 

From (39) and (40) we obtain that 

Similarly to (37), we have 

log4A 2 ^<5 < }A2A2,S 

as 4 A2A2
n5 >4/?<5 S 1 6 ^ log p ml12, and logM/w^l/8 if « s 212. So we get that 

exp (1 + 4<5)j = exp (1 + 4<5)} > 

because <5 = e/8 and, by (30), <5^ 1/8. This yields (6) with a suitable e, by (29). And 
this is what we wished to prove. 

§ 2. The proof of Theorem 3 and Theorem 4 

We need a result concerning series with RADEMACHER'S functions defined 
as follows 

/•„(*) = sign sin 2"+ 17rx ( O ^ x S 1; n= 1, 2, •••)• 

The following assertion holds (see [4], v. 1, p. 213): 
Lemma 4. If p is an arbitrary positive real number then 

(41) { / j 2 ' a „ r „ ( x ) i V x p ^ 2pi { 1 a „ 4 \ 
o " = 1 l«=i J 
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Proof of Theo rem 3. This argument will follow closely that on page 215 
of [4]. First we show (10), hence then the second inequality (8) immediately follows. 
The first inequality (8) follows from the second one by a simple argument. 

Let K denote a common bound for the system {(p„(t)}, i.e. 

( 0 ^ / S l ; » = 1 , 2 , •••). 

Furthermore, let ¡JL denote a sufficiently small positive real number. We set 
N 

SN(t;x) = 2 GnVniOrnW-
ll- ! 

Applying (41), with a simple calculation we get 

1 oo k 1 

f exp {pSlr (t; x)}dx= 2 TV f S t f ( f , x ) dx s 
ft k = 0 &. ct (42) 0 0 

OO Uk f JV 1* c= f 1V 1 » ' 
. s 2 TV K 2 a2n<P2At)\ s 2 4/ie 2 

^ k= 0 K! I n= 1 ) i = 0 I «=1 J 

since kkjk!< 2 k"/nl = ek. On the basis of (9i) 
n = 0 

A' J 
4ep 2 a2

nq>2
n(t) S 4e[iK2A2

N S — n=i ^ 
if 

(43) /< 1 

8eA:2 ' 

Thus, the series on the right of (42) uniformly converges in i (O^i S l ) , and its 
sum does not exceed 2. 

Integrate (42) over 0 ̂  t ̂  1 and interchange the order of integration; then 
1 1 

J dx J exp {fiS^ (t; x)} dt ^ 2. 
o o 

It follows that there is a dyadic irrational 7) number x0 ( 0 < x 0 < 1) for which 
i 

(44) / exp {pS2
N (t; x0)} dt S 2. 

o 

Consider the following representation of SN(t) 
I 

(45) sN(f) = K2 J SN(u;x0)PN(t,u;x0)du, 

7) x0 is dyadic irrational number if x0^p/2q where p and q are positive natural numbers. 
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where 

First of all, PN(t,u;x0) is non-negative. Furthermore, PN(t,u;x0) is symmetric 
in t and u, and 

1 1 1 

f PN (t, u; x0) du = 1 + 2 " ~js2k Vnt ( 0 • • • (pnk (') rni ( x 0 ) • • • r„k ( x 0 ) f (pni (»)••• (p„k (u) du, 
0 0 

where the sum I ' is extended for all systems of integer values ( 1 ^ ) « ! < — 
(1 ̂ k ^ N ) . It follows from (2) that 

t 

(46) J PN(t,u;x0)du = 1. 
o 

As to the representation (45), after carrying out the multiplications and integrating 
term by term, the right-hand .side can be written as follows: 

• N 1 N. N 1 

K2 2 anrn(x0) J 9n(") du+ 2 2 anrnOo)rm(x0)(pm(0 J (pn(u)(pm(u) du + 

N= 1 Q n—lm~l Q 

N „ 1 R + 2i
anrn(xo)2"^2k^^1(t)---9nk(0',ni(xoy---rnk(xo) J (pn(u)q>ni(u) ••• 

-<p„k(u)du= I+J+K, 

where the sum E" is extended for all systems of integer values 
( 2 ^ k ^ N ) . Taking into account that the functions cpn(t) are normed, it follows 
from (2) that I=K= 0 and 

N J = 2 anr2(x0)(pjt) = SN(t) 
n = l 

because r2(x0) — 1 (1 Sn^N). This proves (45). 
The function x(") = exp (jiu1) is increasing and convex for wsO. On account 

of (46), JENSEN'S inequality (see [4], v. I , p. 24) gives 

1^(01 
K2 = X ( / \SN(t; *0)l • PN(t, u; x0) du] =s 

l 

S / x(\SN(t; x0)\)PN(t,u; x0) du. 
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Integrate this over O s i s 1 and interchange the order of integration, from (44) 
and (46), we get that 

dt ^ f\(\SN(t;x0)\) du f P„(t, u; x0) dt = 
0 A ' 0 0 

1 

= j exp {fiSu(u; x0)} du ^ 2. 
o 

Now we set n = then, it follows from (9ii), this n satisfies (43). We finished 
the proof of (10). 

As to the second inequality (8), we set 

S*N(t) = SN(t)/AN. 

The condition (9i) is satisfied by the coefficients of S%(t). Thus, if X is sufficiently 
small then, on account of (10), 

1 oo lit 1 

/ exp {1S$2(0} dt = 2 \sm\2k dt s 2. 

Hence it follows for every k 

J \ s * N ( t ) \ 2 k d t ^ ^ - , 
0 . that is 

1 _ i _ 

o 

where, choosing X equal to (8eAT6)-1, 
I 

D2k = {2-&ekK6kkl}2k s SK3k2 (k= 1 , 2 , •••). 

If now for the positive real number p we have 2k — 2^p<2k with a suitable natural 
number k then it is sufficient to remark that 

I ' I • _ I_ 

{¡\SN(t)\pdt}p ^{¡\SN(t)\2kdt}2k 

0 o 

(see [4], v. I, p. 25). . : 
It still remains to prove the first inequality (8). This is immediate for p^ 2, 

for then 
1 A 1 A 

{ / \SN(t)\pdt}" is {¡SUt)dt}2 = AN. 
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If 0< /?<2 , let a1 and a2 be positive and such that a1 + a2 = 1, 2 = p a l + 4a2 . The 
function 

i 

J\SN(t)\'dt 
o 

being logarithmically convex in a (see [4], v. I, p. 25), 

i I I i 

A2
N = f Sl(t)dt S {f\SN(t)\pdt}a' {./ SUOdt}*2 ^ {¡ ISAWdt}*1 (DaAn)°>, 

0 0 0 0 

which gives 
i j_ 

{/ \SAt)\»dtY ^ 
° 

This completes the proof of Theorem 3. 
The following lemma needs in the proof of Theorem 4. 

Lemma 5. There exist positive absolute constants r\ (^ 1) and e such that 

mes({\SN(t)\^r,AN})^s. 

The proof is based on a lemma which can find in [4], Chapter V,- (8. 26), and 
it goes, applying (8), word by word as there. 

As to the proof of Theorem 4, it can be proved in the same way as the analogous 
assertion for Rademacher functions, see [4], Chapter XV., (5. 14), applying (8) 
to prove the second inequality (11) and Lemma 5 the'first one. 

§ 3. The proof of Theorem 5 

We are going to apply the following well-known assertion: if the sequence {Ek} 
of measurable subsets of the interval [0, 1] is such that 

2 mes (Ek) < 
k= 1 

then 
mes pim sup Ekj = 0. 8) 

For the arbitrary fixed positive real number e( < 1), we choose the real number 
t] ( < 1) such that 

(47) . ij(1+6) > 1, - e.g. t] = 1 - y . 

8) lim sup Ek is the set of all those points which belong to infinitely many Ek. 
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Now we define the sequence of indices = in the following manner: 

(48) Alk_, ^ e^ < < (k= 1,2, •••). 
This is possible in virtue of (14i). 

We set 

E _ f -^1+PI 
' U 2 < l o g l o g < J ' 

On account of Theorem 1, we get that 

. (49) m e s ( E k ) = W„k((l + e)Y2A2JoglogA2
k) == exp{-(1 +£)2(1 -0) loglog A2

k}, 

where 

Here K denotes a common bound of the system {<p„(t)}. Taking into account (14ii), 
this 9 tends to 0 if fc tends to Thus, 6 is not greater than e/2 if k is sufficiently 
large. Continuing the estimation (49) we obtain 

mes (Ek) ^ e x p J - ( l + e)2 1 - y j log log A2
n}j S 

^ exp {—(1 + a) log log A2
k} = ( logO"< 1 + 8 ) . 

By (48), hence we get 
CO OO | 

2 > e s ( f f ) c ) - ^ ¿ - i d < °° 
k=1 k=1 K 

in virtue of (47). So, we have shown that in the case of sequence of indices defined 
by (48), we have that 

. hm sup sl+e 
log log A2

k 

holds almost everywhere. 
Let 

/îi1=wî2 = "" be an arbitrary séquence of indices for which 

n k ^ m k < n k + 1 if n k ^ n k + j , and nk = mk if nk = nk+i (k = 1;2, •••). 

It is sufficient to show that 
Smk(t)-Snk(t) 

MO = 
}/2A2

k\og\ogA2
k 

tends to 0 for almost every t ( O ^ i S l ) . 
It is obvious that Ak(t) = Q if nk = nk + i . Therefore, in the following we assume 
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that nk<nk+1.. Let p be a positive real number to be determined later on. Applying 
Theorem 3, we get 

« f f e ^ T -
(51) 

( Ak+iy _ek"Y f 
2f} 

We apply the following inequalities: 

e" ^ 1 + 3« if .0 h 1, 
and 

(m + I ) " - » ' if « = 0 ( 0 < ^ < 1 ) . 9) t i-i 

On account of these and (51), we obtain 

If we fix the real number p so large that p(l— »?)>1 is satisfied then 

It follows from the theorem of Beppo Levi that 
4 f c " ( 0 - 0 ' ' ( f c - o o ) . 

almost everywhere. As p is fixed, therefore we have proved the assertion (15). 
Now, we set Nx = « 1 ( and let AV(/ = 2) be equal to the first index nk for which 

It is obvious that the sequence N l < N 2 < - - - has the property as asserted 
in Theorem 5. 

§ 4. The proof of Theorem 6 

Lemma 6. Let {Z>„} be a sequence of non-negative real numbers. If 
N 

(52) (i) sN = 2 °° and (ii) bN = o(sN), 
n—l 

then for arbitrary positive real number a ( > l ) , we have 

(53) 2K = o(s'N). 
n = l . 

9) This inequality follows from the fact that the function m"(0<7<1) is concave for u s O . 
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P r o o f . Let e be an arbitrary positive real number. We choose the natural 
number n0 in such a manner that 

1 
a— 1 

if n ^ n0. 

This is possible in virtue of (52ii). Next we choose the natural number N0 such that 
no — 1 

JNo "=1 . A 

that is also possible in virtue of (52i). Then 

1 N 1 f n o - l N i „ , N 

n=l JJV ln=l n=noJ aN n=no 

whenever N ^ N 0 , and assertion (53) is proved. 

P r o o f of T h e o r e m 6. 10) In the proof we apply the following elementary 
inequality: for every real number u and every natural number n, we have (see [10], 
p. 365) 

(54) V (iuf 
k\ 

| u\" 
~n\ 

We make use of the classical method of characteristic functions. Let us introduce 
the following notation: 

fv(/0 = f e^dFN(y), 

where FN(y) is defined by (17). It is enough to prove that for any fixed X the charac-
teristic function ij/N(X) tends to the characteristic function of the normal distribution, 
i.e. 

(55) <M4> 
It is obvious that 

(56) $n(X) 

Applying (54) with n = 3, we get that 

(N - oo). 

dt. 

where 6„ also depends on N, and |0„| s 1 (n = 1, 2, •••, N). 

10) The proof follows that of LINDEBERG'S theorem which is due to FELLER [9]. See also [ 10 ] , 

pp. 365—368. 
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We show that the integral on the right-hand side of (57) can be replaced by 
the following simpler integral 

(58) 

a 

/

N 

n n= 1 

1 | iXa„<pn(.t) k2a2
n(p2

n{t)\dt 

AN 2 Al 

in the sense that for every fixed X the difference of (57) and (58) tends to 0 if N tends 
to For the sake of brevity we denote 

J> .0 ) = a n d = Aff ZAn OAn 

where we do not indicate the' dependence on N. Applying the following identity 
(see [10], p. 367.) : 

N N ' N • ( / 1 - 1 

II (pn+r„)~ I I pn = 2 rn \ II Pu 

/1=1 /1=1 /1 = 1 u = l 

(the empty product equals 1), we obtain 

n (Pk + rú 
fc = /!+ 1 

(59) 

/ 7 ( p . ( o n pn(t) 
n = l 

N 

7 
n=i 

» p M - j P . o , 
I a n 1 /1=1 

^ 2 \ R M - \ N \PM)-{ FF (1^(01 + 1^(01) 
n = l U = l / U = " + i 

By a simple calculation, we get that 

(60) 

furthermore, 

(61) 

__ Í A X ^ O } ^ 
~Y+ 4 A% J = 1 + 

X2a2„K2 

2 Al 

|*.(0I ( n = \ , 2 , - ; N ) , 

where K denotes a common bound of the system (<pn(i)}. 
From (60) and (61) we obtain that the right-hand side of (59) does not exceed 

ft k,|3 j V / f , , >2a2K2) f r { X2a2K2 • |1|3^3K13]1 

& 6 A l \ k i \ [ l + 2 A 2 J ^ i i l 2 A 2 + 6A% J / ' 
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Applying the inequality 1 (w£0), the last sum is not greater than 

y \M3K3\an? \ j,X2K2a2
k j , \X\3K3\ak\3\ 

& 6 Al e X P \ £ 2A2 +
k£+1 6A3 J -

\X2K2 |A|3is:3 

- U - exp 
J n = i 

as it is clear that A^ 3 2 \ a n ? = -̂ It follows from (16) that the conditions (52) 
n=l 

of Lemma 6 are satisfied by the sequence {a2}. Therefore, applying Lemma 6 with 
a = 3/2, on the basis of (53), we get that the difference of the integrand of (57) and 
(58) tends to 0 (JV- uniformly in t (0 s t ̂  1) if X is fixed. 

To prove (55) for any fixed X, we need the following inequalities: 

l -w=s<?-" if «SO, 
(62) 

/ 2 - 1 " ) 
e -« ( i+u) g I _ K jf 0 s a s - U — . 

Now carry out the multiplication in the integrand of (58) and integrate term by term 

iXan<pn(t) X2 a2 (p2 (t) ¡nW-
0 " = 

ikXk r 
= 1 + - j i r «ni ank J cpni(t)... (pnk(t) dt + 

a N 0 

+ - < / < ( 0 - <«)dt + 

AN 2 Ax 

l 

dt 

o 
l 

2 kA2
N

k 

+ 2" \k!k + 2l am - a » k < - <J <Pn x(0 - <Pjt)<P2
mi(.t) - (Pm, ( 0 dt, 

N 0 

where the sum S' is extended for all systems of integer values (1 ^ ) n1 <—<nk(^N) 
( l ^ k - ^ N ) , the sum 1" is extended for all systems of integer values ( 1 ^ ) «!<••• 
—^«¿ (^AO and (1 for which n ^ m j ( l ^ i ^ k , l ^ j ^ l ) ; 
1 s / t , 1 S / and k + l^N. It follows from (3) that the integral (58) equals 

( - 1 ) ^ fr{ X2a2) 

") This inequality follows from the fact that, the curve y = e - " ( 1 + u ) ((— 1 — / 2 ) / 2 s « s= 
S (—1 + ^2)/2), which is concave, lies below its tangent at the point «=0 , v=l. 
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Taking into account (62), on the one hand 

holds for every N, on the other hand 

7 7 i , \ ¿ 2 « » 2 l l I 1 2 (64) ^ t ^ ^ J ^ ^ h ^ w r ^ J r ^ n - ^ - ^ ^ F } 
holds if 

l 2 a 2 ]/~2— 1 

But, in virtue of (16ii), this is satisfied for every sufficiently large N. Applying again 
Lemma 6 with a = 2, we get 

¿ £ £ - 0 ( ^ C O ) . 

2 

According to (63) and (64) 

holds for every fixed X. This completes the proof of Theorem 6. 
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