Inequahtles for polynomlals and their derlvatlves

By A.K. VARMA in Edmonton (Alberta, Canada) *)

: Introduction

1. Recently J. BALAZs and P. TURAN [2] have obtained certain interesting ine-
qualities which arise from their consideration of (0, 2) interpolation on w-abscissas.
(n,,(x) (1 —x?®)P,_,(x), P,(x) being the Legendre polynomial of degree =n).
By (0, 2) mterpolatlon they mean the problem of ﬁndmg interpolatory polynormals« '

R,(x) of degree =2n—1 for which : '

(1.1 R = RGD=p (k=121

are prescribed. From this,consideration they proved thez following

Theorem 1. 1. 1. Let n be even and further if we are gtven ‘for a polynomia:
Qsn-1(x) of degree =2n—1 :

(1 L. 2) |Q2n—1(xk)| = A: |Q,2,n—1(xk)l =B (k= 15 23 ""n)
then for —1=x=+1 we have
. R}
(1.1.3) Q201 ()] = 7ond+ 770
and _' _ '
(1.1.4). |Q%n_1(x)| = 78n5/2 A+ 75 Bnli2,

2. The appearence of the exponent 5/2 in (1. 1. 4) is unusual. They proved. that:
the results (1. 1. 3) and (1. 1. 4) are also best possible in a certain sense. The object.
of this note is to obtain analogous results when the x;’s are taken to be the zeros.
of (1 —x?)T,(x), T,(x) being the Tchebycheff polynomials of the first kind.

*) The author acknowledges financial support for this work from the Umversnty of Alberta.
Post-Doctoral Fellowship (1966—67). -
He is presently at the University of Florida, Gainesville.
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In an earlier work [3] we proved that (for n even) there exists a unique polynomial
R,(x) of degree =2n+1 for which

(1.2.1) R(x)=a (k=12 - n+2),
(1.2.2) R =b,  (k=23,,n+1)

are prescribed in advance. Let
©(1.2.3) : 1= > x> > X4y = —1

be the zeros of the polynomial (1 —x 2) (%), T,(x)=cos (narc cos x). From our
earher work [3] we have

(1. 2. 4) o R (%) = 5'2 a rk(x)+%'1 b0 (x) (n even),

where fundamental polynomlals r/(x) and g,(x) are mentloned in the next section.
From the uniqueness theorem [3] it follows that if 0, 1(x) is an arbitrary polynomial
of degree =2n+1, then

: nt2 C e
(1.2 5) O ()= Z QZni_-l(xk)rk(x)'l' _2' Qn+1 (%) 0k ().
Based on this we shall prove the following main theorem:

Theorem 1. 2. 1. Suppose the polynomtal Qzns ) of degree =2n+1 (n even)
. satisfies:

(12' 6) : .»IQ2h+l(xk)| é] . (k =.1529 "‘_,n+2),
(1.2.7) Q510 = 75 k=23, 4D
Then for —1=x=+1 we have

(1.2.8) = [Qant 1 (X)] = ¢, (32 A+ Bn=12) - with (c,=54)
.and o

(1.2.9) |Qns 1 (X)] = ¢, (052 A+ B2y with ¢, =251.

First we remark that the result (1. 2. 8) is essentially best possible, i.e. ‘we can
find a suitable polynomial f,(x) of degree <2n + 1 which satisfies (1.2.6) and (1.2.7) -
..and for a numerical positive c, -

L2100 |fold) = es(Ani k- Bamiy)

- where d,=coS Xy, Xn= . Thus comparing the results on these two abscissas

T T
2 4n
we find that (1.2.8) is not so good as (1. 1. 3) although (1. 2. 8) is. best possible
.as explained above. Nevertheless, the estimation of the derivative in both cases
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are equally good. If we apply MARKOV s 1nequality on (1 2 8) in the closed 1nterval
—l=x=+1 we get
(1.2.11) | Q1 O] = ¢, (An™2 + Br?l),

The result’ stated in (1. 2. 9) is much better than (1. 2. 11). lf however, we
consider only closed submtervals of (=1, 1), S. BERNSTEIN’S 1nequa11ty gives from
(1. 2. 8) that '

(1.2.12)  [Qnei ()] = 2—V2[An572+Bn1/2] for —l+e=x=1-e
Comparing (1.2.9) with (1.2.12) we observe that both 1nequalit1es assert-in
—l+s<x<1—e essent1ally the same thing.

‘2. Preliminaries '_ :

_ 1. The 'explicif forms of the fundamental functions r,(x) and g (x)
(k=2,3, ---, n+1) that we have obtained in [3] are the following:

. . . — y2)1/4 | .
ey k=730 5 (")[ f (IT",(J))mdt / T /|

where

AN ' T lk(t) |
(2' L. 2) o ) f (1 12)1/4 (1 t2)1/4
and [ (¢) is the fundamental polynomiql _of Lagrange 1nterpolat1on ) »
(213) . lk(t)_m (k'_‘2=3"' :n+1)1
2
r(x) = 2((11 )) lk( )‘i‘ )lkzgx;1; ())C) + by Qk(x) +
(2.1.4) n
(1—x2)1/4T (x) RAUES tl; (t) 1
M=) DT [ / a=mm “ +f a kﬂ)l/‘* ]
where. o . _
@Ls by = n !

—x " (=xp’

+1

- T(t) th,(2)
(2.l.6) _ ‘ Ak,/( 12)1/4 /(1 t2)1/4
1 .
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For k=1 and k=n+2 we have

O .

Q17 ri(x) = ! -;x Tf(x.)'*'(l = x)T,(x) Th(x)— d -—XZ);M_T"().C) f(l — 1)t
and | _ | o o
(218) a) =.1%X'T;2| )—(1— x2)T,,(X) T, (x) _ (¢! —xz);/4 Tn(x)f(l i:lt(zt))ll‘t di.

2. We wish to express these fundamental polynonuals in another form, sultable :
to our purpose. For this we denote :

Py, (x) = Thi+1(x)
(’+4] or(ivy)
(2.2.1) | x
= Polynomial part of (I —x2)-3/4 / (1_];% o
and - t :
'—F[’——] F[—]V ,_lr[i+—]
Vars ) = b & T =
F(’+Z) F(Z’) : F{z-l—z) ~
@.2.2) . i -
‘ . ’ 2r d
- f T

Thus g,(x) and r,(x) can be written, for k=2, 3,',---., n+1, in the following forms
o _1-AT,®
. (2 2’ 3) v . Qk'(x) - ZT;(xk) qn-1 (x)

where
n

@24 410 = API+E ST, (0 Py (0 + Tor o (Vs (]

- and A, is défined by (2. 1. 2), further

(2.2.5) r(x) = (—l)m*'bk""( )+( 4;“ ():Z,:;E)IC)—S";g)(x)
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where s,_,(x).1is given by

(2 2.6) 5,_1(x) = AkP x)—— 2(4’2 T2r(xk)P2r(x)+(2r_ 1)2 T2r 1(xk) Var- 1(x))
Here b, and 4; are stated in (2 1. 5) and (2 1. 6).

3. Wewill prove some results which we requlre in the estimation of the fundamen-
tal polynonuals

 Lemma 2.3.1. For k=2, 3, o, n+1 we have
o ‘ L) e
(2f 3. 1) . f (1 - 2)1/4 0,

. nt+l
L®
(2.3.2) 2 s1n0k/(l 12)1/4 =12.

This lemma is -established in our earher work: [see formula (5. 8) and (4 7
in [4]].

Lemma 2. 3. 2. For k= 2 3,- ’n+1 we have '
1

. tIk(t) _i_ i
(2.3. 3) | |di| = I f (1= 2)1/4 =V Vl—-—_x,f

Proof. From a result of L. FEJER we have

) n—1 )
O =3 2 T 0.

Integration by parts and using the differential equation for T,(¢) yields.

r 1
f tTL(2) _ V?rzr_[i_Z]
= )1/4 2 r 5
| r (T“Z)

" From this the result follows by using ABEL’s inequality.

for r even,'-= 0 for r oddt

"Lemma 2.3.3. For —1=x= +1 ‘we have
@.3.9 | PL =1, VoI =1,
2395 (1-PP,E S+, [(1—)V, =+ 21,

(2.3.6) A=) P =2, |-V ()] =2
where P,/(x) and Vé,_l(x) are defined in (2. 2. 1) and (2. 2. 2)," respectively.
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Proof. We will prove resuits for P,,(x), the corresponding results for ¥,,_,(x)
are similar. From (2.-2. 1) we have
(-2 el .

'léz;(a;)lér( )F( )

is a monotonically 1ncreasmg

Il/\

I

A p(
In order to prove (2. 3. 5) we observc that
| e )

i4

h—/‘/-ﬁ

Alw -Mu:

1+

functlon of i Usmg ABEL s 1nequahty we get

1 1
_F[r——] F{r—i——]
(1= x2)12 P, (6)] = — o 4

= 5 ( 1) Ispa s
F(f-l—z r r—Z

Again, using ABEL’s inequality, we have

(A
.*|’_

-y p 0o = | ED
_ o

- max Zsm(Zz—f—l)()smH =2

1=p=r—-1

This completes the proof of the above Lemma by using the representation
" of g,_,(x) as given in (2. 2'4) From the above lemma wé get

Lemma 2 3.4, For —1=x=+41 we have

2. 3-7) ' - g, - 1(x)l <4+2Ckn3’2
| 1 2 1./2 4 1/2
(2.3.8) I(1=x%)12g, 1 (x)| = —-logn+2n12C,,
@39 _'xz)q;_l(x)]-g 8+ an312C,.
Here C, is given by
‘ L.()
@310 /(1 klz)m

- Let us denote
4,() = (=X T, (), (-
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Then from Lemma 2. 3. 4 we have at once
2.3.11) lt1(x)|§ %logn+2t_11/2Ck (;1 =x=+41),

(2.3.12) C ()| = 20logn+10m32C,  (~1=x=+1).

3. Estimates of the fundamental polynomials

1. The above Lemmas lead us to formulate:

Lemma 3.1.1. For —1=x é + 1 we have

n+1 n+1
Y el _ 14
3.1 1) kg’ lex ()] = k;; (1=x2) = nii2’
n+1 nt+1 ’ : .
(.12 Sl = 3 A5 - gon
k=2 k=2 1—x;

From (2. 2. 3), (2. 3. 10), (2.3.1), (2.3.2) and (2.3. 11) we have -

n+1 |Qk(x)l _ 1 4. © on+1 1 vz
Z l—x,f :E ;lognz '/1 _xk+2 n 12

k=2 k=2

Using again the above relations and (2. 3. 12) we have

& o)

l—xk -

n+l . :
1 [ZOlogn 2 +10n3/2-12] = 80n1/2,

,/—*._ X2

2. In order to determine the estimate of the fundamental polynomlals of the
ﬁrst kind we need the followmg Lemmas:

k=2

T.emma 3.2.1. For —1=x=+1 we have

_ S A=x)RBx) _
3.2.1) 2 =6
(3.2.2) ' 3‘1 [M] = 36n

k=2 l—xk

where dash denotes dzﬂerentiation with respect to Xx.

A proof of (3.2.1) is given in our earlier work [4], and (3. 2. 2) follows Very
easily by using the inequalities:

(3.2.3) . |5 ()| =2 (-1=x=+1),
(3.2.4) (A—x)1Lx)| =2 (~1=x=+1).
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Lemma 3.2.2. For —1=x+1 We have'

(.2:5) | I50—1 (0)] = 3n2+ 203/ d),
(3.2.6) (1 =x2)12s,_, (x)| = 16n+2n112|d,],
(.2.7) ' I(1=x2)s,_ ()] = 1n2 +4n?2|d,], ' ;

where d, is defined by 2. 3. 3), and s,_,(x) is a polynomial in x of degree =n—1
given by (2. 2. 6).

The proof of this lemma is clear from Lemma 2.3.3 and (2 1. 6), and so we
omit the details. Let us denote :

G2y -b@—ﬂ—ﬂTMad@

then by the above Lemma 3. 2.2 it follows that

(3.2.9) It (0l = 16n-+2n112]d| (—1 =x=+1),

(3.2.10) |t2(x)| =324 10n20d,  (~1=x=+ 1.
3. Next we state: _ .
'Lemma 3.3.1. For —1=x=+1 we have |

REER) N o R e [P

(3.3.2) Iri ()] = 1302, |r,’,+2(x)|.s 13n2.

A proof of (3. 3. 1) is given in our earlier work [formula 6.10,[4] ] and (3. 3.2)
can be obtained easily by a simple computation using similar ideas as in Lemma 2. 3. 3.

Lemma 3.3.2. For —1=x §,+1, we have

.o n+2 -
. v‘(3. 3. 3) o Z’ |rk(x)] = C5n3/2 With C5 =54
“and ) ,
n+2
(G.3.4) S @) = Cenlr with  Cg=251.
o k=1 .

Proof. Using the representation of r(x) as given in (2.2.5) we have

n+1 i+l o, ()| "l 2nii2|d|+16n
r.(x)| = 8+ 2n? 4 KT =
kgzl e k=22' (1—x¢) k;zv 4ny1—x2

n+-1 1

4 +4nlogn+4n = 48mdi2,

= 84 2n?
+2n nil2 S k2
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Here we have used (2 3 3, 3.2.1), 3. 1. 1) Combmmg with (3 3. 1) we
obtain (3.3.3) with Cs="48. Again,

, - 2 ‘Qk(x)l n+133n2 4 10n3/2 A -
2 Irk(x)l = 36n*+2n? kgz' (0= x2 2 PRSTF e =

| k=2 =2

= 3672+ 212 - 80n*/2 + 912 log n + 202 = 225n57.

Here we have used (2. 3. 3), (3. 2. 2) and (3. 1. 2) Combmmg with (3. 3.2) we obtain _
3:3.4. ‘

. Proof of Theorem 1.2. 1. From the representation of QZ,,H(x) as glven
in (1 2. 5) we have on using (1. 2. 6), (1.2.7):

‘n+2 n+1

1@l =4 2 @B 2 ‘Q"(")‘ = Cy(nh 4 B,

bHere we have used only Lemma 3. 1.1 and Lemma 3. 3. 2. Similarly using the same

Lemmas .
n+2 . nt+1

10 @1 = 4 2 W8 2 'Q"(")‘ = C,(Ansl + Buil?),

Now it remains to prove (1. 2. 10). From our earlier work [5. 3, 6.9 [4] ] we know

: .n+1
IQk(d)|> _1/2
(3.3.5) 21 ="
: n+2 . .
(3.3.6) 2 re(d)| = 2-10n312,

where d,=cos %,, Xn = —41 The polynomial f(x) stated in (1. 2. 10) has the

T
2
following representation:
n+2 - . X V n+.1 .
Jo(x) = 'k‘-21 A sign rk(d,.)rk(X)+k_Z; B, (x) - (1—x2)~ " sign ox(d,).
Obviously, ' ' '

fo(x) = Asignr(d,), [o(x) = B(1—x¢)~" :signo(d,).
Therefore

n+2 n+1 .
fold) = 4 2 @B 3 'Qk(dn)' = C, (A2 + Bn-112)

- from (3. 3. 5) and (3. 3. 6). This completes the proof of the theorem.

Note. It is rat'her easy to prove that

n+2 n+1

2 |ri(0)] = CsnsP2 and

10 A
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from which it follows that (1. 2. 9) is also best possible, i.e. we can find a polynomial
fi(x) of degree =2n+1 which satisfies (1. 2. 6) and (l’. 2.7) and for a numerical

positive C,
F7(0) = C,(4n52 + Bn1/?),

The author is thankful to Professors P. TURAN; A. SHARMA and A. MEIR for
some valuable suggestions.
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