
Inequalities for polynomials and their derivatives 
By A. K. VARMA in Edmonton (Alberta, Canada) *) 

' Introduction 

1. Recently J . BALAZS and P . TURAN [2] have obtained certain interesting ine-
qualities which arise from their consideration of (0, 2) interpolation on n-abscissas-
(n„(x) = (1 - x2)P'n _ P„(x) being the Legendre polynomial of degree ^n). 
By (0,2) interpolation they mean the problem of finding interpolatory polynomials. 
R„(x) of degree s 2n — 1 for which 

(1.1.1) Rn(xk) = ak, BS(xJ = h (k=l,2,-,n) ' 

are prescribed. From this consideration they proved the following 

Theo rem 1. 1. 1. Let n be even and further if we are given for a polynomia-
Qin-iix) of degree S 2 r i - 1 

( 1 . 1 . 2 ) | ( £ - 1 , 2 , - , H ) 

then for - l s x s + 1 we have 

(1.1.3) ie2„-i(*)l + 
and 

(1.1.4)- I Q ^ i x ^ ^ ^ n ^ A + n ' B n ^ . 

2. The appearence of the exponent 5/2 in (1. 1. 4) is unusual. They proved that, 
the results (1. 1.3) and (1. 1.4) are also best possible in a certain sense. The object 
of this note is to obtain analogous results when the xk's are taken to be the zeros 
of (1 —x2)Tn(x), Tn(x) being the Tchebycheff polynomials of the first kind. 

*) The author acknowledges financial support for this work from the University of Alberta. 
Post-Doctoral Fellowship (1966—67). 
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In an earlier work [3] we proved that (for n even) there exists a unique polynomial 
R„(x) of degree ^ 2n + 1 for which 

(1.2.1) Rn(xk) = ak (k = 1,2, •••,n + 2), 

•(1.2.2) . K{xk) = bk (k = 2,3, •••,n+l) 

are prescribed in advance. Let 

(1.2.3) 1 = xl > -x 2 > — > x n + 2 = — 1 

be the zeros of the polynomial (1 —x2)Tn(x), Tn(x) — cos (n arc cos x). From our 
earlier work [3] we have 

n+2 n+ I 

(1.2.4) R„(x) = 2 akrk(x) + % bkQk(x) (n even), 
k=1 k=2 

where fundamental polynomials rk(x) and gk(x) are mentioned in the next section. 
From the uniqueness theorem [3] it follows that if Q2„ + i(x) is an arbitrary polynomial 
of degree s 2 « + l, then 

i 
n+2 n+1 

(1 .2 .5) Q2n+l(x) = 2 Q2n + l(xk)rk(x) + 2 Q2n + l(xk)Qk(x). 
k=1 k"2 

Based on this we shall prove the following main theorem: 

T h e o r e m 1. 2. 1. Suppose the polynomial Q2n+l(x) of degree %.2 n + 1 (n even) 
satisfies: 

(1.2.6) .¡Q2n+i(xk)\ ^ A (k = 1,2,-,n + 2), 

<1-2.7) \Q2n + 1(xk)\ ^ (k = 2,3, -,n+l).-

Then for —lSx^+1 we have 
( 1 . 2 . 8 ) . l e ^ + i W I S q ^ i + f i « - " 2 ) wiA (cx = 54) 
and 
(1.2.9) \Q'2n+l(x)\sc2(n^A + Bn^) with c2 = 251. 

First we remark that the result (1. 2. 8) is essentially best possible, i.e. we can 
find a suitable polynomial /0(x) of degree s2n + 1 which satisfies (1.2. 6) and (1. 2. 7) 
and for a numerical positive c3 

(1.2.10) \f0(dn)\ >c3(An*» + Bn-U*) ' . 

71 71 
where d„ = cos x„, = — — — . Thus comparing the results on these two abscissas 

we find that (1. 2. 8) is not so good as (1. 1. 3) although (1. 2. 8) is. best possible 
as explained above. Nevertheless, the estimation of the derivative in both cases 
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are equally good. If we apply MARKOV'S inequality on (1. 2. 8) in the closed interval 
— l S x S + 1 we get 
( 1 . 2 . 1 1 ) 1 6 2 , + i W I S c ^ A n W + B n W ) . 

The result stated in' (1. 2. 9) is much better than (1. 2. 11). If, however, we 
consider only closed subintervals of (—1, 1), S. BERNSTEIN'S inequality gives from 
(1. 2. 8) that 

(1.2.12) \Q'2n+i(x)\ =i j^-lAnM + BnW] for - 1 + e S x 5? 1 - e . 

Comparing (1.2.9) with (1.2.12) we observe that both inequalities assert in 
- 1 + E ^ x S l - E essentially the same thing. 

2. Preliminaries 

1. The explicit forms of the fundamental functions rk(x) and Qk(x) 
(k = 2, 3, •••, n + 1) that we have obtained in [3] are the following: 

(\-x2)^Tn(x) 
2T'n(xk) 

A f Tn(t) ^ , f 4( 
A * J ( 1 _ , 2 ) 1,4 d t + J 

- 1 - 1 

( 0 ( 2 . 1 . 1 ) e k ( x ) 

where 

(2.1.2) 
- i - l 

and lk(t) is the fundamental polynomial of Lagrange interpolation . 

Tn{t) 

!)l/4 dt 

A Y^1M_<U__ f '*(0 d t kJ (1 -t*yi*at~ J (l-t2)1'* 

(2.1.3) 

(2.1.4) 

where. 

(2.1.5) 

4 ( 0 (t-xk)T'n(xk) 
(k = 2,3, - , n +1), 

+ 

2(1 ~xl) 

(1 -x*yi*Tn(x) 
4(1 -x2)T'n(xk) 

2(1 -xl)T'„(xk) 

v f r„(Q , f tl'k(t) 
k J (l-t2y>* + J-• ( I - t 2 y * 

dt 

, n2 1 
= " ~ + l - x 2 (1 ^ x l ) 2 ' 

+ 1 + 1 +1 

( 0 
z 2 ) 1 ' 4 i/i. 
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For k — 1 and k = n + 2 we have 

(2.1.7) r i ( x ) = l ± ^ T 2
n ( x ) + (l-x2)Tn(x)rn(x)-0 x2y'4T"W 

and 

(2.1.8) rn+2(x) =. ~ T 2 ( x ) - ( l - x2)Tn(x) T'n(x) - 0 ~ ^ T' 

) f T'n( 
J (1 - t 
- l 

(0 

;(*) f T'J 
J a - ? 

2)1/4 

(0 

dt 

1)1/4 dt. 

2. We wish to express these fundamental polynomials in another form, suitable 
to our purpose. For this we denote 

(2. 2.1) 

and 

(2. 2. 2) 

Pirix) = -4-%'K) 
« -'•N) 

T2i+1(x) = 

= Polynomial part of (1 —x2)_3 /4 

V2r-l(x) = 

I £ - i 

M M i l U i M 
t'l "<Ki 

* 

( 0 

'K) 

t2yi4 

T2i(x) 

= .(1 - X 2 ) - 3 ' 4 (t)dt 
,2)1/4 * 

Thus Qk(x) and rk(x) can be written, for k = 2, 3, •••, « + 1, in the following forms 

(2. 2. 3) 

where 

, ( l - x 2 ) r „ ( x ) ' 

(2. 2 . 4 ) <?„_, (*) = AkPn(x) + — 2 [T2r(xk)P2r{x) + T2r_, (xk)Vir. t (x)] 
n r = i 

and ^ is defined by (2. 1. 2), further 

(2. 2.5) „(x) = 1 - x * 2 4r„(x t ) ( l -x t
2 ) 
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where ^ -^ .v ) is given by 
n V 

(2.2.6) ^ ( x ) = A'kPn(x)~^ 2 (4/-2T2 r(xk)P2 r(x) + (2r- l ) 2 T 2 r _ , ( x k ) V2r_,(x)). 
n r=l 

Here bk and A'k are stated in (2. 1. 5) and (2. 1. 6). 

3. We will prove some results which we require in the estimation of the fundamen-
tal polynomials. 

Lemma 2.3.1. For k±2, 3, •••, n+1 we have 
' ' '•• + i 

(2.3.1) / 

+ i 

- I 

This lemma is established in our earlier work [see formula (5. 8) and (4. 7) 
in [4]]. 

Lemma 2.3.2. For k = 2, 3, ••• ,«+1 we have 

... I Y . tl'k(t) 4 1 

- 1 

Proof . From a result of L. FEJER we have 

M = ~ 2 Tr(xK)RR{T). 
n r= 1 

Integration by parts and using the differential equation for Tr(t) yields 

/(' 'I 
tT'r(t) , VTC 2 U 4J , n , ,, ' dt = ~—r2 —- for r even, = 0 for r odd. / ( l - i * ) » / * ™ 2 ' r ( r 5\ 

4"J 
From this the result follows by using ABEL'S inequality. 

Lemma 2. 3. 3. For — 1 SxS + 1 we have 

(2.3.4) | P 2 r ( x ) | ^ l , \ V 2 r _ d x ) \ ^ h 

(2.3.5) |(1 -x2Y'2P2r(x)\^j, |(1 - * 2 ) 1 / 2 K 2 r _ 1 ( * ) | ^ } ' ( r s l ) , 

(2.3.6) | ( l - x 2 )P 2 r (x ) | 2, | ( l - * 2 ) K i r _ 1 ( * ) | ^ 2 , 

where P2r(x) and V2r_1(x) are defined in (2. 2. 1) and (2. 2. 2), respectively. 
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Proof . We will prove results for P2,(x), the corresponding results for K2r_1(x) 
are similar. From (2. 2. 1) we have 

4-i) rK) 
rK) 44) 

44) In order to prove (2. 3. 5) we observe .that — —- is a monotonically increasing 

'('•J 
function of /. Using ABEL'S inequality we get ' 

• R ) 
r r + 

44)44)' 
Again, using ABEL'S inequality, we have 

. max 
S p S r - J 

^ cos (2*+ 1)0 sin 0 
i = 1 

| ( l -x 2 )P 2 r (x ) | P max ^ s i n ( 2 i ' + l ) 0 s i n 0 
1 l S p ^ r - l - t l 

r + ~r 

S 2. 

This completes the proof of the above Lemma by using the representation 
of qn-i(x) as given in (2. 2. 4). From the above lemma we get 

Lemma 2.3.4. For — lSxS + 1 we have 

(2.3.7) ^„^(x) ] S 4 + 2Q« 3 ' 2 , 

(2. 3. 8) 

(2.3.9) 

Here Ck is given by 

(2. 3. 10) 

Let us denote 

|(1 - x2)^ qn_, (x)| s - log n + 2«1/2 Ck, 

K l - ^ ^ - i W I - S 8 + 4«3/2 c t . 

+ I 

C, (0 
, 2 ) 1 / 4 dt. 

110) = 0 - *2) 7; (x) qn _! (x). 
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Then from Lemma 2. 3. 4 we have at once 

( 2 . 3 . 1 1 ) I ^ O O I s - l o g i i + ^ C t ( - l s s x s + 1 ) , 
n 

(2. 3.12) 1t\(x)| s 20 log n + lOn3'2 Ck ( - 1 ^ x ^ + 1 ) . 

3. Estimates of the fundamental polynomials 

1. The above Lemmas lead us to formulate: 

Lemma 3. 1. 1. For — l ^ x ^ + 1 we have 

l & t o l ^ 14 
n+i n+i 

(3.1.2) 2 l&(x)l — 2 — 80n1/2 . 
k= 2 *= 2 1—Xk 

(3. 1. 1) 
k = 2 

n+1 

4=2 i— 

From (2. 2. 3), (2. 3. 10), (2. 3. 1), (2. 3. 2) and (2. 3. 11) we have 

12 " i ' l a W ! 
i 

l 

2 n 
4 n + 1 1 — log« V . + 2 • n112 • 

k=2 i\-X2
k 

Using again the above relations and (2. 3. 12) we have 

A 1 
1 

xk 2 n 
20 log n "2 1

 2 + 10n3/2 • 12 
k=2 Vl — Xk 

^ 8 0 n 1 / 2 . 

2. In order to determine the estimate of the fundamental polynomials of the 
first kind we need the following Lemmas: 

Lemma 3.2.1. For — lSx S f 1 we have 

(3.2.1) 
" + 1 ( l - x 2 ) № 2 k = 2 1 - X 2 

(3.2.2) 
n^\(\~x2)l2

k(x) 
k= 2 1 - X 2 S 36«2, 

where dash denotes differentiation with respect to x. 

A proof of (3. 2. 1) is given in our earlier work [4], and (3. 2. 2) follows very 
easily by using the inequalities: 

(3.2. 3) 

(3.2.4) 

| 4 ( x ) | s 2 ( - i s x s + l ) , 

|(1 - x 2 ) 1 ' 2 /¿(x) | S 2 n 1). 
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Lemma 3.2.2. For —l^x+1 we have 

•(3.2.5). k„_ 1 (x ) | ^3« 2 + 2«3 /2K|, 

(3.2.6) |(1 - x ^ s ^ ^ l \6n + 2nll2\dk\, 

<3.2.7) | ( 1 - x 2 ) ^ . ! ^ ) ! ^ \n2 + 4n^\dk\, • 

where dk is defined by (2. 3. 3), and s„_i(x) is a polynomial in x of degree ^n — 1 
given by (2. 2. 6). 

The proof of this lemma is clear from Lemma 2. 3. 3 and (2. 1. 6), and so we 
•omit the details. Let us denote: 

<3.2,8) /2(x) = ( l -x 2 ) r„ (x) i„_ 1 (x ) ; 

then by the above Lemma 3. 2. 2 it follows that 

<3.2.9) |r2(x)| 55 16n + 2«1/2|<4| ( - 1 ^ x ^ + 1 ) , 

<3.2.10) \t'2(x)\ 33w2 + 10«3'2|<4| ( - 1 s x s + l ) . 

3. Next we state: 

Lemma 3.3.1. For — 1 ^ x ^ + 1 we have 

<3.3.1) M * ) | s 3 « , \rn+2(x)\ ^ 3n, 

<3.3.2) K(x) | =E 13«2, K + 2 (x ) | s 13n2. 

A proof of (3. 3.1) is given in our earlier work [formula 6.10, [4] ] and (3. 3. 2) 
can be obtained easily by a simple computation using similar ideas as in Lemma 2. 3. 3. 

Lemma 3.3.2. For - l S i S i l , we have 

<3.3.3) "z |rk(jc)| =S C5n3 '2 with C5 = 54 
k= 1 

•and 

(3.3.4) 2 K W | S C 6 « S ' 2 with C6 = 251. 
*=i 

Proof . Using the representation of rk(x) as given in (2. 2. 5) we have 

k f i kTz V - x * ) k=2 4 n y i - x i 

14 "i,1 1 
== 8 + 2«2 - — - + 4« log.Ji+ 4« 2 TT ^ 48n3'2. 

/j1'2 11=2 k2 
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Here we have used (2. 3. 3), (3. 2. 1), (3. 1. 1). Combining with (3. 3. 1) we 
obtain (3.3.3) with C5 ='48. Again, 

n + 1 • n + 1 l ó i t ó l " + 1 3 3 n 2 +10w 3 ' 2 \dJ\ 
J \r'k(x)\ si 36w2 + 2«2 y y 1 S 

Á í á d - ^ ) Á 4«]/\ — xk 

s 36n2 + 2n2 • 80nl>2 + 9n2 log n + 20«2 225n5 '2 . 

Here we have used (2. 3. 3), (3. 2. 2) and (3. 1. 2). Combining with (3. 3. 2) we obtain 
3.-3.4. " 

P r o o f of T h e o r e m 1.2.1. From the representation of Q2n+i(x) as given 
in (1. 2. 5) we have on using (1. 2. 6), (1. 2. 7): 

l02„ + i (* ) l S A Z\rk{x)\ + B Z ^ j - ^ CdAn^+Bn^2).' 
k= 1 k = 2 L—Xk 

Here we have used only Lemma 3. 1.1 and Lemma 3. 3. 2. Similarly using the same 
Lemmas 

i e ' 2 » + i ( * ) l ^ A Z Wk(x)}+B 2 S C^AnW + BnW). 
fc=l k = 2 i—Xk 

Now it remains to prove (1. 2. 10). From our earlier work [5. 3, 6. 9 [4] ] we know 

(3.3.5) £ 
k = 2 l—** 

(3 .3 .6 ) • Z \rk(dn)\ S 2-IO„3/2 ; 
k= 1 

, 71 7Z where dn = cos /„, x„ = -x — T~ • The polynomial f0(x) stated in (1. 2. 10) has the 2 4 n 
following representation: 

n + 2 n + 1 

fo(x) = z ^ s i g n rk(dn)rk(x)+ 2 Bok{x) • (\-xl)-1 sign ok(dn). 
k=1 k=2 

Obviously, 
fo(xk) = a sign rk(dn), fo(xk) = B(l-xl)-1 • sign Qk(dn). 

Therefore 

fo(dn) = AZ VÁdn)\ + B 2 ^ C3(An312 + Bn~il2) 
Jt = 1 k = 2 I ~ X k 

from (3. 3. 5) and (3. 3. 6). This completes the proof of the theorem. 

No te . It is rather easy to prove that 

I K ( 0 ) | S C 5 ^ and ^ - M i ^ Q « * ' 2 , 
k — 0 k=2 i — X k 

10 A 
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from which it follows that (1. 2. 9) is also best possible, i.e. we can find a polynomial 
fiipc) of degree + l which satisfies (1. 2. 6) and (I. 2. 7) and for a numerical 
positive C7 

/ í ( 0 ) I? C^An^ + Bn1'2). 

The author is thankful to Professors P. TÚRÁN,- A . SHARMA, and A . MEIR for 
some valuable suggestions. 
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