On summability of Fourier series -

By LASZLO LEINDLER in Szeged*) .

Introduction

Let X ¢, be a given infinite series and let s, denote its n-th partial sum. Let
A={4,} be a monotone non-decreasing sequence of integers such that 1, =1 and
Aot —An=1. '

The mean

.V,,(/l)=)¥i Z_’ s, (=l

n'v=n—An,

- defines the n-th generalized de la- Vallée Poussin mean of the sequence {s,} generated
by the sequence {1,}. The series Xc, is said to be (¥, 1)-summable if V,(1) converges,
and absolutely (¥, A)-summable or, in brief, |V, 1]-summable if the séries -

PO AL

converges.

In the previous papers [7] and [8] we have dealt with (¥, A)- summablhty of
general orthogonal series and lV Al-summability of Fourier series, multiplied
by a factor sequence.

The main purpose of the present paper is'to unite, in terms-of (¥, A)- summation, -
some classical theorems on the partial sums, the (%, 1)-means, and the proper
de la Vallée Poussin means, of Fourier series. Indeed, it is easy to see that, by
suitable choice of A={1,}, the V,(1) means include the partial sums (1,=1,

V(M) = s) the (%, 1)-means (4,=n, V,+:(A)=0,) and the proper de la Vallée

1
- Poussin means (,,,: [5] )Vz,,()) = V] as special cases.

*) This research was supported by the National Research Council of Canada while the author,
stood at the University of Toronto. .
') [»] denotes the integral part of y.
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Analogous problems will be investigated for the so-called “strong (V A)-
summability’”’ (Theorems 5—7).

Furthermore, the method introduced in the present paper shall be used also
- to give a very simple proof of a theorem on strong (%, «, k)-summability of Fourier
series which generalizes ZYGMUND’s theorem [13] concerning strong (H, k)-summa-
bility (Theorem 8).

Finally we prove some theorems concermng absolute (¥, 4)- summablhty

Let f(x) be a functnon integrable in the sense of Lebesgue and periodic with
period 2x; and let

D : %+ 2, (a, cos nx + b, sin nx)
I . n=1
be its Fourier series. s,(x)=s,(f; x) and V,(4; x)=V,(/, 4; x) will denote the
n-th partial sum of (1) and the n-th generalized de la Vallée Poussin mean of (1),

. respectively.

We prove the following theorems:

Theorém 1. If the function f(x) is bounded; lf(x)léM,'then the means
V,(1; x) sansfy ‘the znequahty ' ’ : :

@) - N W0 x)|<M[3+1 g 2 ; ’1"].

n

If ,=1 or A,=n, this theorem reduces. to classical results of LEBESGUE and

FEJER, respectively. 2)
’ We will write as usual (px(t) = flx+2t)+ f(x — 2t) 2f(x) and

&) = f 0. ()] .
0.

Theorem 2. If the sequence {A,} tends to.infinity and the conditions

4
n

'(p’}(t)' di=ol) (-,

®

:vfr—\

@ . nqﬁx[l]—o(l) (1 o)
are fulﬁlled then the means V,(1; x) converge to f (x)

2) In this and in similar statements it will be understood that the constant factors occurring
in the new and the known estimates should not be necessarily the same.
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If n=0(2,), then (3) and (4) are fulfilled at any Lebesgue point of f(x) and
consequently almost everywhere, hence this theorem includes the classical Fejer—
Lebesgue theorem and the following

Corollary 1. If the sequence {n,/3} is bounded, then for any integrable F
the means V,(%; x) converge almost everywhere to f(x). .

Let E,=E,(f) denote the best approximation to f(x) in the space #(0, 2n)
of continuous functions in (0, 27) by a .trigonometric polynomial of order not
higher than n.

Theorem 3. If f (x) is continuous, then the estimate

|Vna;‘x)4f<x)| = [4+1 og 2”1 - ]

A holds true for all x uniformly.

If A,=1, this theorem gives the well-known result of LEBESGUE [6]. If 2 —[ ]
then we get the classical theorem of DE LA VALLEE PoussiN [12]. ‘
Corollary 2. If there exist two positive numbers, K, and K, such that 1 <K, =

=

=K,, then for any function f(x)cLipa (0<a§.1) the estimate =

Va(d; x)—f(x)| = O(1/n%)

i
Z
is valid for all x uniformly.

For a sequence {4,} of general type we have

Theorem 4. If f(x)eLipa, then

0[%] Jor a<l,

n

) I’Vn(i;X)fJf(X)l = 0[1+Iog i

p) ] Jor a=1,

n

Sorall x uhiformly

This theorem covers BERNSTEIN’s results [3] concerning (%, 1)-means.
From Theorem 3 and Lemma 1 we 1mmed1ate]y obtam '

Corollary 3, Ifn=0(l,,), then, for any function f(x)€%(0, 2n), the means
" V(4; x) converge uniformly. ' :

We remark that Corollary 2 and 3 can also be deduced from a theorem of
Erimov [4] (see p. 770). - ‘
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The strong (¥, 1)-summability, i.e., the means of the form

. 1
n—1

T,(f, 2, ;3 ) z{li 2 s —f(x)i"}

can also be investigated. We can however prove the strong analc;gues “of the
previous theorems only under the restriction n=O0(4,).

Theorem 5. Suppose that n=0(4,). Then, for any f(x)€%(0, 2n) and k=0,

1

© {%Z 5,x) —»f(x)l"} =0(,.)
-holds; and if | f(x)[éM; then we have | .

V - .‘ 1 n—-1 - % ' “

() : {T 2 1sv(x)|k} = O(M).

See alSO‘ALEXITSffKRALIK [1], Satz 1, and [9], Satz 1.

Theorem 6 Suppose that f(x) -can be dzﬁ"ere_ntidted r times and f©(x)€ .
€Lipa (0<a=1), and that n:O(l,,'). Then for any k=0 : .

1 ) .
. 0 {;r-}-—a] for (r+oz)k -~ 1,»
®)  T(hAkx) = 1 .
. ' 1 . . n k R .
|0[W[1+10gm] ] for (I‘-I-(x)k = 1". .
unz'formly; The same estimate is also valid for the conjugate function F(x).

Furthermore, if (r + )k =1 (0 < =1), then there exist functions fi(x) and f,(x)
such that their r-th derivatives exist and belong to Lip o, moreover

— , c L n
» (9) » nlin;lo Tn(fl’lifkao) =. nrte [1+logn—ln+l]
and : B
: _ 1
— . e n *
“(10) "11210 T,(f2, 4, k;0) = e [1+1ogm] ,

where ¢=>0 is independent .of n.
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MARCINKIEWICZ [11} (k=2) and ZYGMUND [13] (k =0), proved for any integrable
function f(x) that :

. 1 < ' '
(1n | — _20 [, () —f)* = o(1) ae.
From this result and Lemma 3 we obtain the following theorems.
Theorem 7. If f(x) is integrable, then, for any positive k and 5;

: ; , :
(12.) T 2 Is, (X)—f(X)l"—O[(A]] a.e.

v=n—2An

Theorem 8. If f(x) is an mtegrable Sfunction and k is any positive value ‘then
for any positive a

(13) m 2 A‘“ Vs, (x)—f(x)l"~0(1) a.e,

k+oc]

v‘with' A,ﬁ“):( X

It is obvious that similar theorems can be proved on the conjugate function too.
Finally we prove two theorems concerning absolute (¥, 1)-summability of
Fourier series.

Let E® —E(Z) €2) denote the best approx1mat10n of f(x) in L2(0, 27).
Theorem 9. If

oo 1 . .
O | 2V B = -,

then the Fourier series of f(x) is |V, Al-summable a.e.

Theorem 10. Let A(x) (x=1) be a continuous functfon, linear between n and
n+1, furthermore let ~A(n)=Vnl,. If ‘

1

(15) / [f [f(x+t)—f(x—t)]2dx] dt < oo,
| STL A

then the Fourier series of f(x) is |V, A|l-summable a.e.

It- may be worth while to remark thét under the conditions (14) and (15),

the same conclusnons are valid for the functions: |f(x)], 7() and 1/f(x) if | S =
=c¢=>0. . :
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§ 1. Lemmas

Lemma 1. Ifg(t)EL(O, %) and [g(t)|§M in (0, 6), 5§g, then

% .
N — [sin A,¢sin @n~4,)¢] . _
. I(g, ) = (')[g(t) _ 2, SIn% ¢ dt =
(1.1) m—,
= 7 [3 +log = ]+ J(8,9),

where J(g, 0) is independen; of A, and J(g, %) =0.

. NN 2 ) o ( 2 ]
.Prooft. Let al_——cxl(n)—.mm (n(2n—l,,)’ 5» and o, =a,(n) = min e é].
- It is evident that A , A

: o a 5 3
. I(g,,l,,):f+f2+fflel+lz+13+14.

Each term J; can easily be estimated by the use of the inequalities |sin n¢|=n| sin ¢|

. and [smt]
.1 .
Ii = 5 Miy(2n ),,)Ofdt<—M
1 = F1 i 2n— 2,
IZ =—n?MAna-l/‘7dt =?M10 in >
5 ' .
1 -n? 1 3
I3§ZTM12 ?dt§?M,
1 : g()
T
=—— d) J )
A_M4J‘ r= (0

Summing up, we obtam (1. 1).
Lemma?2. If g(t)EL(O 2n) and Ig(t)[ <Mfor all t, then, for any q >0, we have

1

(1.2) o { mem4§ C, M.
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Proof. We can assume with no loss in generality that g =2. Indeed, if (1.2)
holds for a certain g, then it remains valid for any ¢* =0 not greater than ¢.
Using DIrRICHLET’s formula for the partial sums we obtain

kg Isl? = Ci(@) kgm; {[ ['n|gtx+t)| D) dt]

4] f gD, [} = 31+ 2,

|
where D,(¢) is DIRICHLET s kernel and I denotes the set [—n T\, (-—n—1— %)

It is obvious that :
: 21§C2(q)M‘1m A
and

22 C3(q) Z’ 'fg(x+t)cotg—smktdt +ifg(x+t)cosktdt]} =

_ =23+ 2
By using the Hausdorff—Youﬁg inequality and the _nota;ion r= %(g% 2),
we get '

‘ a v

3= [ [ES ) s e
and

9

Se=co@([le+ol a) = C g me.

Collecting our estimates, we obtain (1. 2)..

Lemma 3. Let {c,} be a given sequence. If for any positive B

(1.3) | | L 3er = o),
_ n y=0
then, for any triangular matrix .”oz,wll and for any positive y and p =1, we_have the

estimate
1

(1.4) C Salel = o[n“?{gwaml”} ]

v=0
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Proof. By HOLDER’s inequality, we get

. p—-1 . —_1_ 1

n n P p n P 1L n p

2 el = {2 Icvlp‘l}- {2’ }anvi”} =oln'"7) {Z lanvl"} ;
v=0 v=0 v=0 o

which is the required statement.

§ 2. Proof of -the theorems

Ad Theorem 1. A standard computation gives-that

7!
sin A,fsin (2n— 4,)t
sm2 t

1

@n V(s x) = f [f(x+2t)+f(x 2)]

dt.
Applymg Lemma 1 w1th g(t) = f(x+21) —f(x 2t) and 6 = —i—, we get the in-

equality (2).
Ad Theorem 2. Since the (V, A)-means of a constant function f (x)~c

equal to ¢, from (2. 1) it follows that

@) Vs0=fe) =

7 L -
j‘ o.(t sin A, ¢ 51.n §2n — i)t dr
F sin? ¢

. Divide the integral into three parts:

~ 1 T

n 2 :
fE 12+13.

2
J=f+1+
An

These integrals can easily be estimated by _stand‘ard‘methods: :
1 .

~
:|"'

2=

1 = x n = An x i s
1 0(1)0f|<p ()| A, dt o[‘ nd (n)]
- T
L=o® [ 1.0 ’1;2‘ dr = o[z [ Iq”‘t(t)l_dt],

n

S
[IA

~/1n.

N 3
0(1)f "”x(’)’ it = O()[®..(1)1- 2]2 +0(1)f ?:3(’) dt =

i.n
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From these estimates we get that
| 1
. _ } ’
9 = 0[ne (1) + f “”x()' iy, (l ]]+o(l),
which gives the conclusion of Theorem 2 by (3) and (4).

Ad Theorem 3. Let Ty(x) denote the trigonometric polynomial of best
approximation of order not higher than m. From the definitions of 5,(f; x) and
V,(f, &; x) it is clear that if n— 2, =m, then : :

V=T A0 = Vo(f 45 3) — Th().
Tn*;l,(x)MT*_ D)=
e 45+ By |

Hence we have

IV (f,/1 )=/ = Valf, 40—

(2.3)
S ’ IV (f—
According to (2. 1) we get
- :
' . 1 sin 4,7 sin (2n A )tl
I . - n,
an(f Tn—}.ns /t{sx) - T 6/‘ 2.En~},,, smzt
Usfng Lemma 1 with g(t)=2E,_,, and 6:% , we obtain

v, (f~T,’,k_,1" A; %) SE —/1,,[34'10% 2n/{ A ]

©. 4)
The statement of Theorem 3 follows from (2.3) and (2. 4). .
Ad Theorem 4. If f(x)ELlp a, we obtain, using- (2 2),

, [sin 4,¢sin (2n l,,)t]
- 2

s x)—f(x)l 0(1)1 f

Let us ‘split the integra_l into three parts
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Il' and I, can easily be estimated for any a =1 as follows.
| o
2n—in .
| 1 : 1
I = = LLQ2n-2)dt = ——— = —,
T I @n— ,.) %
i
1 1 I 11
— ] = — a—1 =
Tl 1fz hdi = o7
2n—2n
The estimate of I, differs according to whether a<1 or a=1:
. BN
: : 2 'ml—:, if « < 1
—1I é—ft“'zdt§ :
A 2T A Y . |1+log_/1,l PO
7_ T’ 1 o= 1.

Collecting our - estimates, we obtain (5). _ _
Ad Theorem 5. Using the notations introduced in the proof of Theorem 3,

it is obvious that if v=m, then
sv(f T %) = 5,(f3.%) — T*(X)

: From this it follows that
1

5 e f(x)l"} =52 .(ls (= Ti a0l

n v=n—24

2.5 - : . . - _ .
; . . "y i n—1 4 *
+ IT:—A"(X) _f(x)lk)} = 21 k [{/1i ' 2 |S (f n—i. 5 x)ik} +En—}.nJ .

=n—-/.n

Applying Lemma 2 (with g(z)= S()—TF (1) and g=k), we get the required

estimate (6) by (2. 5).
The statement can immediately be derived from Lemma 2.

The proof of Theorem 5 is thus completed. _
Ad Theorem 6. The assumption f®(x)€Lip « 1mphes that E(f)= 0( r+a)

and E(f)= 0( ! ) (see [14], (13. 14) Theorem, p. 117., and (13 29) Theorem p:

121). From these and (6) we get, with 1, = [—;-] and n=2m, that
' 1

2. 6) | hm(fk;x) {1 Z |5, x)—f(x)l"} 40[n1,+a]
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and
1

2m—-1 ' . .
. 1
RAZEE { > 15,09~ f(x)lk} = [,n,+,], -
where 5,(x)=s,(f; x). ‘ . .
Suppose that 2" =p—4,+1 <2"'{‘j” and 2'"2<_’n§ 2m2+1_ Then, by (2. 6), we ,

have
my 2m+1_3

F I, (x) =L > Z Is, (x) ~f) =

nv n—4a )‘nm ml\—

0(1) 2 2m1=k(r+a) = =D,.

nmml

If k(r+o)<a, then, by n=0(2,) and 2™ <n,

. . : 7 . | .
) 2_1 §- o) 7:1_ 2m(l-k(r+a)) = O [;m]a
and if k(r+1)=1, then '

1 1{ no |
212 00) - oms=m) = 0 (14108,

From these estimates the statement (8) obviously follows.
The statement for the conjugate function can s1m11ar1y be verified.
- In order to prove the statements (9) and (10) let us define the following functions.
If r is an even integer, let
< cosnx
fl (x) 2 nl +rt+a

and’

et & [sin(5-2"—l)x sin(5-2;'+l)_x]_
12t = 2 G2 =nr G-+l )

T
ne1 2™ o2y

and if r is an odd integer, let

(- 1)n+1 < 2n [005(5-2_"—1)X cos(5-2"+l)x]'
fl(x) 2 na (52"—[)"] T (52"+1)rl

I=2n-141

< Sinnx
L) = 2 e
n=1 1. o

and

It is proved that the r-th derivatives of these functions belong to Lip « (see [9],
Satz IV). We shall now verify the inequalities (9) and (10) only for even r since
the other case would be an analogous computation. o
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On account of (r+a)k=1 and n=0(4,), we have
1

1 n—1 oo 1 KNk
noo 1
1 n—1 1 k n Yk
=C (k){ ”’Zlnj} = Cz(k){ log———/l,,+1} =
B L B
=C (k) l 1+1 L kzc (k —r=alq I n k
=2 n 0gn—l,,+1 - e )ln +Ogn—l,,+l ’

which gives (9). :
The proof of (10) is more complicated. We will first prove (10) in case

} is bounded. Let n=12-2" and let a; =max (n—4,,

' : n
that the sequence {
q n—A4i,)

22.2m-1) g, =max (ozl., 23.2"-1) and oy =max (ocz, n— [l";_ ! ]) . Then

: , 1
n—1 k
Tn(fz,z,k;O);{ 2 (0)—f(0)l"} =
1
2m+1

. k}T.

n* oy 1o2met B

S

. - v=ay vV=a2
It is clear by n=0(4,), that-
k

az—l 1 2m+1 2m+1 1 k
2 oy : r] = (0, — o) — i
v=a; | W i=v-T0.2m4+1 N N p=g;—10.2m R
. . .
m—1
. = (“2—“1) r+1+¢ min (2 ln) = C (k)(d2 “1) (r+¢)k .
Similarly,
am+t 1 2m+1 k
> = - | & L
s i = \U3—0;
veaz | B 1=y—1G2m41 17l e (]

k
= Cz(k)(“s‘“z) (,-+a)k .

1T (s A
meln[Z 1,—n—]

= (03— )
Hence we get L
1

x o 1 1 "
T,(f2, 4, k;0) = C;5(k) {(“3—0‘1)771(,—”)7} C4(k) e

. which proves (10) under the assumption that {n _n 1 } is bounded.

n
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If
n—4,
=4.2"*! and 4- W=n— Ay t+d4<4. 2’““1

1 m—1 42"+l

T, (2, 4k 0) = {7.2 2

n p=p+1v=4.2P+1
@7

12.2p-1

2

1.
.= {'Tnp %1" 11-2

I, can easily be estimated as follows

m—1

v

23.2pP~2 [ 1 2p

v=11.2pP-1

23.2p-2 [ 1 2p

=

v=11.2P-1
. ‘ . Lo ) 1 .
= Ci (k)2 s =

From this and- (2. 7) wé get

1

e ' A
Tn(fz,i,k;O);c;[_(m u— z)] - ;{1[

=C,(r,k) =

159

tends to infinity, then the proof is sirﬁpler Supﬁose that 4.2"<n =

and that m > u+2. Then we have.

1

15,(0) —f(O)]"} =

1. 1

150 —f(O)I"}T= {li '"21 }

1 k
Z —| =
2P“ I1=v—102P-141 6r_.2prl] =

1 k
27 g2ri) =
1=23.2P-2-10.2P-141

C2>O

1
1 no

iy

log2 1Ogn—/l,,+1

—_ OO

Since (r+a)k=1 and ﬁ_l , it is easy to see that, for n large enough,

1

’ k
T(j;,AkO)g [1+1og++1]}

where ¢=>0 is 1ndependent of n.
We have completed our proof

- Ad Theorem 7. To prove (12), by (11) and (1. 4), it is sufﬁ01ent to choose
p(=1)so close to 1 that 1—% =9, Wthh is possible.

"Ad Theorem 8. In order to prove (13), it is sufficient to show that, by sultable‘
'ch01ce of p occurring in (1. 4), the estimate
1

1 n ) .
2.9) n“F{_Z_(Ast:”)P} = 0(45)
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holds true. Let us choose p such that (@a=1p > —1. Then we have

n

Z(A#‘:v”)”=[2 + 2 ](Aﬁt‘vl’)"é ,
v=0 R v=0 - v=[%]+l_ )

2] :
=0(l) J n@Vr+0(1) 3 ve-De = out+t-br), -
v=0 v=1

From this we obtain
. 1

{ 3 (Agsvy } = 0r)

Wthh is equ1va1ent to (2. 8) as was requ1red to be proved ) .
. Ad Theorems9and 10. In [10] it is proved that if 1(x) is a posmve monotomc
functlon with the property 4

2.9 ' S gl

then the conditions .

: ., ‘
fl—llf[f(x+t)—f(x—;)]2dx dt <
o ZZZ [7] 3 N . | . - .
are equivalent. ' :
The function A(x) occumng in Theorem 9 satisfies (2 9), viz.

et 1 1 21 1
—— = Y==K :
n=2n: n an ) /1 n=27m n3/2 lmzm ’
(14) and (15) are therefore equivalent. - .
‘ By virtue of  the equivalence, it is sufficient to prove that condition (14)
implies the |V, Al-summability of (1).

We proved in [7] (Satz VIII) that any orthogonal series 2 C@a(x) is [V, Al-
summable a.e. under the condition

oo, Bm+1 )% .
L2 2 | < =,
‘m=0 \n=pp+1 * )
m—1 :

where py=1 and U= 2 Ay, . Therefore, it dﬁly remains to prove that the inequality
k=0 ) g

' oo oo 'm'+l S
(2.10) .. mgo = ;{ g+1'(a3+b3)}- <
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follows from condition (14). Since 3 (af +b%)=(EX(f))?, we obtain by .

. . . . . k=n+1 . . .

a simple coinputation that s

. o 2Mm+1_1 oo "‘2""+l 1 . o M .
2.11) zc— 2 > C, = 2 {2 cZ}< 22255,22{".

m=1 n=2m n=2m m=1

‘If we can show that

' 0 1.
2.12 s =22,
@12 . . n=ugm-s+1Vnh, 4
then, by(2 11) and (2. 12), we have o
oo oo Hym oo
Sc=e3 3 LEg=
. n=2 m=1n=pgym-1+1 Vn,l #am . " .
-i.e. the condition (l4),implies. (2. 10) indeed as we stated.
‘It remains to prove . 12). Using the definition of y,, we get
Ham - - st 2m—1
1 : 1
e pimert1 l’"; 2 LRS! an T Viters sy
2m-1 1 R EL RN GNP SR T I S 1, m
L= Z )u”k—_—-——é_ 2 L = %Zzza

-1 1
7, 8 TE

kK= 2'"(— 1 . 2 Vl.lk ll‘k 2 k=2m-1

v
x?)

and this completes the proof.

1 A
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