Generators for groups of permutatlon polynomrals
over finite fields :

By CHARLES WELLS in Cleveland (Ohio, U. S. A.)*)

1. Introduction. Let GF(q) denote the finite field of order g=p" If & is a
function from GF(q) to GF(q), a polynomial f over GF(g) is said to represent ¢
if £(&)= (&) for all £€ GF(g). If follows from the Lagrange interpolation formula’
that every such function @ is represented by a unique polynomial f of degree =¢g—1.
(No-such simple theorem is true over the ring of mtegers (mod p”), see CARLITZ (5],
NOBAUER [12], REDEI and SzELE [13].) - :

© A permutation polynomial is simply a polynomial which represent a permutation. -
The first systematic investigation of permutation polynomials was undertaken by
DicksoN [8, 9]; the permutation polynomials over GF(p) had previously been
investigated by HErRMITE [11]. Other references to early work done on special cases
may be found in DicksoN [8].

DicksoN’s work suggested much of the work done since with permutation
polynomials. His longest' and most detailed investigation culminated in his listing
of all the permutation polynomials of degree =6 for all GF(g). (We note here that
CAVIOR [6] extended these results partlally to -octic binomial permutation poly-
nomials.) :

By means of this list DICKSON proved that the symmetric group on 7 letters
was generated by the permutations x° and ax+f (oc, BEGF(T), a£0). This sug-
gested our Theorem 4. 1, first proved by CARLITZ [2]. By a modification of CARLITZ’s
method, FRYER [10] found generators for the alternatmg group on p letters (Theorem
4. 6). . .
The present paper contains a number of new theorems on genérators of the .
symmetric group on ¢ letters and its subgroups. These include a sharpening of
CARLITZ’s result (Theorem.4. 2) and the presentation of generators of three small
subgroups (Theorem 4.4). A more interesting result is the discovery of ‘several
sets of generators for the alternating group on q letters (Theorems 4.7 and 4. 8).
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None of these sets of generators is a-direct generalization of FRYER’s Theorem;
it may be that that result cannot be generalized in a satisfactory way.

Theorems on generators of S;,; and 4, , are found in Sections 6—8 by means
of a device used by BURNSIDE [1; p. 185], CARLITZ [3], and others. An element
is added to GF(g), forming the extended domain G F(g): Rational functions f(x)/g(x)
(where f and g are polynomials over GF(g)) are well defined as mappings of GF(q)
into GF(q), and all permutations of GF(g) are representable by rational functions,
as Carritz showed [3, p. 326—327]. Theorems 7.2, 7.3, 8.2; and 8.3 exhibit
generators of S ,+1 and Aq+1 in terms of rational functions.

2. Preliminaries. . Throughout the following, g will be assumed to ‘be fixed
and greater than 2. Many of the theorems are false for g =2 (for example Lemma_
4.3).. ' : '

GF(q) always 1ncludes GF(p) In this paper the elements of GF(p) will be
written.as integers; it will be understood that k. and k+mp are the same element
of GF(p) for all m. It is in this sense that a formula like (3. 2) below should be
understood. : ‘

If two polynomials represent the same function, then they differ by a polynom_ial .
multiple of x2—x. The reduced form of a polynomial will here be taken to be the"
remainder obtained when the polynomial is divided by x? — x. When two permutation
polynomials are combined by the operation of composition, the result may be
assumed to be in reduced form; in this senise the set of permutation polynomials
of degree =g —1 represents the symmetric group S,. It is not hard to prove that
in fact a permutation polynomial cannot have degree g—1. : '

It is convenient to -write
@n () ) =)

when f(g(x))=h(x) (mod x4—x). Then (g(x)) is the function represented by g(x).
" However, except when it is convenient to write out formulas like (2. 1), we shall o
follow the usual practice of identifying the polynomial and the function.

3. We collect here some elementary facts about permuta_tion polynomials.
" In the first place, it follows from the cancellation laws that ax and x4 f are per-
mutation polynomials for any B and any a#0 in GF(q). It follows from a theorem
of DICKSON [9; p. 59] that x* is a permutation polynomial for any integer b such
that (b, g—1)=1. This .may also be proved directly: let ¢ be a primitive root of
GF(q), set a=p", f=¢°, and note that of=p? if and only if rb=sb (mod g-—1).

~In partlcular x=2 is a permutatlon polynom1al It is, in fact the function .
that takes every nonzero element into its inverse.
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For later use we note the followmg rules of calculat1on

(3.1 (x+a)(x+p)= <x+oz+ﬁ> (o, BEGF(q)).
(3.2) S Ax4ay=(x+s0) = (2€GF(g), s any i‘n.teger).
(3.3) o <ax>s_=<asx> (oc €GF(g), x#0, s any integer). .
G4 (=22 = (). |
(3.5 : (ax) {x+ By ={ax + ﬁ) (a, BEGF(g), a5 O)
66 . G =(x)  (x€GF(g), a#0).

Since the 'composition of two permutations is a permutation, it follows that
the functions on the right side of the above equations are all permutations.

4. Generators. of 4. In >[2] CARLITZ proved:
‘Theorem 4. 1. S, is generated by . .
@1 . ax+Bx2  (a, BEGF(g), 20).

_ The proof consists in noting that the polyhomlal
(4.2) : &) ==y [((e=n=2 4y~ 2 =y ]

represents the transposition (0y). .

Of course, several sets of generators of the abstract symmetric group are known;
see, for example, COXETER and MOSER [7; pp. 63—66]. The transpositions form
" such a set. The value of the generators found in this section is that they are simple
as polynomials; it is evident from (4. 2) that simplicity- as polynomlals and srmpll—
city as permutations are not equrvalentl

We may simplify Theorem 4. 1 as follows. Let g be a pmmtrve root_of GF(q)

Theorem 4 2. S, is generated by '
A (4 3) . ox, Xx+1, and X2,

‘Proof. Let a, B GF(g), uff 0. Let a=g% f=¢" Then the proof follows,

from (3. 3) and -
4. 4) | (o + By =(oxy "+ 1) (gx).
By an elaboration of these methods we may find ‘generators for the alternating

group A,. Since the polynomials given in (4. 1) and (4 3) do not necessarily represent
~ even permutatrons we_first prove

Lemma 4. 3. For all o, Xx+o and (x9"24o)2"2 are',euerz; “ax is even if and
only if o is a nonzero square; x*~2 is even if and only if =3 (mod 4). '
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n—1

_ Proof. By (3. 1) x+« is composed of p cycles of length p. Thus, if p is
odd, or if ¢=2" and n=>1, then x+o is even. Since ((x‘l Zqaym2y={(x'" 2}
«(x+a) (x1%), it iseven regardless of what x?~2 is.

By (3. 3) ax is'a power of gx (as permutations), which is a cycle of length g —1.
The second clause follows from this and the fact that every element of GF(2™ is
square.

As.a permutation, x2~2 consists of dlSjOlnt transpositions containing all elements
of GF(q) except 0,1, —1. It therefore contains 4(g—3) transpositions when q
is odd and (g —2) whén q is even (since then 1 = —1). This proves the lemma.

We now define the following sets:
| {ocx—l—[floz BEGF(g), a#O}
AL _{a x+pla, ﬁEGF(q) a#O}
={(2 4 ot)" !lee GF (q)}

The followmg equat1ons 1mply that L,, AL,, and Qq are actually groups

' 4.5) B (ocx+ﬂ)(yx+5> = {ayx+fy +5>
@6). (@ 2 - 2>—<(x" " ot - 2>

_ Evidently the Order of L, is g(¢g—1), that of AL is $q(qg— l), g odd, and that
. of Qq is g. Q, is isomorphic to the add1t1ve group of GF(q) We have

Theorem 4.4. L, is generated by gx and x+1. AL, is generated by 0%x and
x+1. The elements of Qq may- be obtamed from (x1~ Z—I—l)q 2 and .0%x. Further-
more, AL,S A,, Q,S 4,

~ Proof. The first two sentences follow from (4. 4) and the fact that every element
"in afinite field is the sum of two squares (see [12; p. 46]). The th1rd sentence follows
from the last mentioned fact, (3. 3), and :

@7 (K72 4+ o212 = (@2 )12 4 1)1 2><a-2 9.

| “The last sentence follows from Lemma 4 3.
The groups L, and AL were first considered by BURNSIDE [1; pp. 181—185]

We now prove a lemma on generators for the alternating group A4, on n letters
{0, 1,---,n—1}. Let R=(012) and S=012.-- n—1)..

Lemma 4. 5. For odd n, A, is generated by R and S.
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Proof. We have _ ' A

. ' (013)=S"'R-'SR -
~and , R .
01i+1)=(1 i)'s-i+.1Rsf~1(o 1)~101i=1),

for i=3,--,n—1. ‘Since the permutatlons 013 (1—2 3 n—-l)‘ generate A,,
this proves- the lemma. : : ' o
Usmg this lemma FryEgr [10] proved

" Theorem 4. 6. Let p be an oddprzme Then A is generated by x +1 and mx?—2
where m is any square if p=3 (mod 4) and any nonsquare zf p=1 (mod 4). Other—_
. wise x+1 and mxP~2 generate S,.

Now FRYER’s proof depends on the fact that in GF (p) the permutation x+1

_is a single cycle containing all the elements:of the field, and so is the S of Lemma 4. 5.

But for general GF (p)), x+1 contains n cycles and FRYER’s proof does not work.

However, we may find generators for the general case using (4. 2). For the ele-
ments (0 1 o) (¢€GF(q)) generate 4,, and '

01)=(01)00)= <g1(x)> <ga(x)> =
= (= 1)Ox + )Qx 1>Q< = %) (r = ) ~ o )Ox = QK ~ax),

where O denotes the permutation x4~ 2,
Now for ¢g= 0 or 1 (mod 4) this has the form

| “.9) | _ E(OEO)E(OEEO)E(O_EO)E

where E stands for any even permutation and O for ény odd one. Groupihg in
. the manner shown we' obtain the. generators o x+ ﬂ(a,ﬁEGF(q) a#O) and
T (T2 4 ) 2(yeGF(q)) For g=3 (mod 4) we have

(4.9 EEEEEEOEEEEEEO,

but we may bring the two odd’ permutatrons together by noting that —x commutes
(as a permutatron) wrth ax and with x?~ 2, and that

(=0 &+ h=x-D{~ X>

- After this is done we may group them as in (4 8) to obtain the same set of )
generators. We therefore have

Theorem 4. 7 Ti he alternatzng group A Is' generated by r'ls.subgroups_ALq
and O, o
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Of course, (4. 9) implies the existence of a simpler set of generators which is
incorporated in the following theorem:

Theorem 4.8. The alternatmg group A, is generated by 0%x, x+1, and any
one of the elements in the following list: )

@ 241672 (all g),
(i) x¢~% - (g=3(mod 4)),
(iii) oxd2 . (¢=1(mod 4), .oc not square; or qz 3 (mod 4), «-square).

Proof. The theorem follows from Theorems 4.4 and 4. 7 and from (4. 9)
- Lemma 4. 3 and the following formula:

@10 (G2 = (e 2y G a (axi=2),

5. Another method of proof. The fact that AL,I and x7-2 generate A, whenever’
“ax?7? is even may also be deduced independently by a method resembling the
proof of FRYER’s Theorem (Theorem 4. 6). It follows from Lemma 4 5 by properly
renumbering the elements of GF(g) that the permutatlons

6.0 o (01@) and T:(OIQQ..IIZ)

generate A,. Let s=1if g=1 (mod 4) and s=2 if g=3 (mod 4), and let U be the
: permutatlon 0° x772, A lengthy calculation shows that ’

©01o=T1" 1[(TUT)2 U(TU T)Z]“T '

50 that Tand U generate A,.

. Since T=(gx) (g,(x)), we may deduce by a method like that in (4. 8) and o
4. 9) ‘that 4, is generated by

(5.2 ox—1)"2, (x9"2—1)17%, o?x, x+1, and ox?2
when.g=1 (mod 4) and .
(5.3) . —ox, x—1, x1=2 and g?x212% -

when g=3 (mod 4). But' we may replace (x1~2—1)7-2 by (x¥=2+1)-2 in (5. 2)
since the former is merely the p-lst power_ of the latter (as permutatlons) and we
may eliminate (Qx—l)q 2 by means of the equation '

<(ax—1)" 2y = (gtx —p)(xt~2)."

We may replace - 0x by 0%x in (5 3) because the former is the }(q— l)st power
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: h'”x"l 2 for ¢°x7~2 for m the proper parity
. (that is, we must have m=s (mod 2)) in both (5. 2) and (5. 3) by means of

<Q x4= 2>__<Q xi= 2><QS myq— 2>

This shows that ax?~2? and AL, generate Aq when ox?~2 is even.

of the latter. Finally.we may substitute '

6. The extended domain. -Let r(x)=f(x)/g(x) be a rational function .over

GF(q), where f and g are relatively prime polynomials over GF(q) and g is primary.

-If g has a root f€GF(q), then r does not represent a function from 'GF(q) into

GF(q) since r(B) is undefined. We may evade this difficulty by addmg an element
o to GF(g) obeying the followmg rules of calculatlon

o . f(ﬁ)g(ﬁ)‘ (2(B) = 0)
and o '
_ P C (degg < degf)
(6.2 o r(=) =10 - (degg > degf)

Sgnf - (degg = degf )-

From (6. 1) and (6. 2) we may deduce the usual rules of calculatlon For example
for @, B, v, € GF(q) we have - ‘

(6. 3) : , Proo =.9/0 = o (y # 0)
N . d°°+B _ o . .
(6.4)  | S (y % 0)
(6.5) flee) == (f€GFlg,x], degf = 1).

The structure obtained from GF(g) by adding e in this manner is called the

_extended domain and is denoted by GF(q).

CarLITZ [3; pp. 326—327] showed that every permutation of GF(g) is represent- .
able by a rational. function. In fact, he shows that every permutation is representable
in the form g(t(x)) where g is a polynomial over GF(g), and ¢ is a member of the
general linear fractional group of functions of the form -

_ oax+f o
‘ t(x) - ,yx+5 (“:ﬁ;%‘sEGF(q), aé. ﬂ? # O)
7. Generators for S " We may find generators for S,+1 by -Usihg' the follow-

. mg lemma

. ' Lemma 7.1. Let ¥ and & be in S’,,,i with @ a c.ycle'contain;'ng.n—l elemeﬁt_y
-and ¥ a transposition containing the element not in ®. Then @ and ¥ generate S,.
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T_he proof follows from the formula
az-- n—l)"§ oOna2--n-—1D=0k+1)(1 ékéﬁ—Z).

Now - cons1dered as permutations of GF(p), l/x” 2 is (0 o) and x+1 is
©12:-p=1), so by the lemma they generate S,.

" For the general case g=p" we consider the permutatlon gx+1 where ¢ is a-
‘primitive root of GF(q). This permutatlon takes oo —<o, and

0-'1—>Q+1—>Q —I—Q+1—>Q +Q +o+1 - -—»g‘l 2+Q‘1 Py —|—Q+1—0

Since g is a primitive g-lst root of unity, it follows that the above series contains
" Mo zeros except for the first and last elements. Hence, ox+1 isa ¥ asin the lemma
and we have o

Theorem 7.2, Sp4q IS generated by x+1 and l/x" 2, For all qg=p", S
is generated by ox+1 and 1/x172,

From this we have 1mmed1ately
Theorem_ 7.3, Sp4q is generated by 1/x, x272, ox, and x+1

Theorem 7. 3 is, by Theorem 4. 4, equivalent to a theorem proved by CARLITZ
[3; p. 328] (his proof uses the canonical form mentioned at the end of Section 6)

8. To find generators for the alternatmg group’ AqH, we first prove a lemma
analogous to Lemma 4, 3.

Lemma 8. 1.. The permutatlon X+a is even over GF(q) for all ocEGF(q) :
- X1=2 is even if and only if q=3 (mod 4); 1/x is odd zfand only if g=3 (mod 4).

: Proof The first two clauses follow immediately from Lemma 4.3, since
x+a and -x17 2 leave unchanged The other follows from .

"(8'1) o <xq”'2>’,%.<?><ow)."

This proves the lemma. i
Now AqH is generated by the elements (Ooooc) (ozEGF(q)) But V

 (0eet) = (2) (0<)

4

and for any. ocEF(q) 1ncludmg a—OA

'(8.2) R (o) = <(x O()qz+>
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RERRE ><x“ =l

we may write (Ooooz) in two ways

Since

(8.3) - - (0=w) = <x+cx>< ><x’1 2><x+a>(x‘1 2)< >
and '
(8.4 | | (Ococt) = <x+oc><x‘1 2>< ><x+a)< ><xq 2.

Grouping the .third, fourth and ﬁfth factors together in each of (8. 3) and.(8. 4),
~ we find that when g=0or 1 (mod4), 4,,, is generated by 1/x, SL,, and Q,, ‘where
SL, 1is the group of permutations of the form x+a (¢€GF(g)); and when
- g=3(mod 4), A, is generated by x2~2, SL,, and Q, where Q is the group of
permutatlons (x~1+p)~(BEGF(9)).

Now it is easy to see that Q,, @;, and SL, are all isomorphic to the additive
group of GF(g) in the obvious manner. When g =p, these groups are cyclic, and we
’ have the following partlcularly sxmple theorem:

The_orem 8.2, AI,+1 is generated by
%,' x+1, (xP~231)r-2 (p = 0,1(mod 4))

- , x4+, (x4 l). L (p= 3(mod4))

By Theorem 4. 4 the elements of Qq may be obtained from (x2-2 + 1)‘1 2 and
.@*x, and the elements of SL, from ¢?x and x+1 (since SL 1 EAL,). Slrrularly
- @*x and (x~1+1)"1 give the elem‘ents of Q. Hence, we have

xP=2

Theorem 8. 3. A;H is generdted by

.-Jl?, x+1, @*x, (x*72+1)"% - (g =0,1(mod 4))
S x472, x41, Q_Z_x, (x"t+D-1 (g = 3(mod 4)).
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