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1. Introduction. Let GF(q) denote the finite field of order q=pn. If $ is a 
function from GF(q) to GF(q), a polynomial / over GF{q) is said to represent <P 
i f / (£ ) = <£(£) for all t £ GF{q). If follows from the Lagrange interpolation formula 
that every such function $ is represented by a unique polynomial/of degree S q — l . 
(No such simple theorem is true over the ring of integers (mod p"); see CARLITZ [5]} 

NOBAUER [12], REDEI a n d SZELE [13].) 

A permutation polynomial is simply a polynomial which represent a permutation. 
The first systematic investigation of permutation polynomials was undertaken by 
DICKSON [8,9]; the permutation polynomials over GF(p) had previously been 
investigated by HERMITE [11]. Other references to early work done on special cases 
may be found in DICKSON [8]. 

DICKSON'S work suggested much of the work done since with permutation 
polynomials. His longest and most detailed investigation culminated in his listing 
of all the permutation polynomials of degree for all GF(q). (We note here that 
CAVIOR [6] extended these results partially to octic binomial permutation poly-
nomials.) 

By means of this list DICKSON proved that the symmetric group on 7 letters 
was generated by the permutations x s and ax + /? (a, fl £ GF(7), a=^0). This sug-
gested pur Theorem 4. 1, first proved by CARLITZ [2]. By a modification of CARLITZ'S 
method, FRYER [10] found generators for the alternating group on p letters (Theorem 
4.6). 

The present paper contains a number of new theorems on generators of the . 
symmetric group on q letters and its subgroups. These include a sharpening of 
CARLITZ'S result (Theorem 4. 2) and the presentation of generators of three small 
subgroups (Theorem 4. 4). A more interesting result is the discovery of several 
sets of generators for the alternating group on q letters (Theorems 4. 7 and 4. 8). 

*) Supported by National Science Foundation Grant GF—1891. 
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None of these sets of generators is a direct generalization of FRYER'S Theorem; 
it may be that that result cannot be generalized in a satisfactory way. 

Theorems on generators of Sq+1 and Aq+1 are found in Sections 6—8 by means 
of a device used by BURNSIDE [1; p. 185], CARLITZ [3], and others. An element CO 
is added to GF(q), forming the extended domain GF(q). Rational func t ions f ( x ) jg (x ) 
(where / and g are polynomials over GF(qj) are well defined as mappings of GF(q) 
into GF(q), and all permutations of GF(q) are representable by rational functions, 
as CARLITZ showed [3, p. 326—327]. Theorems 7. 2, 7. 3, 8. 2, and 8. 3 exhibit 
generators of Sq+1 and Aq+j in terms of rational functions. 

2. Preliminaries.. Throughout the following, q will be assumed to be fixed 
and greater than 2. Many of the theorems are false for q = 2 (for example Lemma 
4-3). 

GF(q) always includes GF(p). In this paper the elements of GF(p) will be 
written.as integers; it will be understood that k and k + mp are the same element 
of GF{p) for all m. It is in this sense that a formula like (3. 2) below should be 
understood. 

If two polynomials represent the same function, then they differ by a polynomial 
multiple of xq — x. The reduced form of a polynomial will here be taken to be the 
remainder obtained when the polynomial is divided by xq—x. When two permutation 
polynomials are combined by the operation of composition, the result may be 
assumed to be in reduced form; in' this sense the set of permutation polynomials 
of degree — 1 represents the symmetric group Sq. It is not hard to prove that 
in fact a permutation polynomial cannot have degree q — 1. 

It is convenient to write 

( 2 . 1 ) ' (?(*)> </(*)> = </*(*)> 

when f(g(x)) = h(x) (mod xq — x). Then (g(x)) is the function represented by g(x). 
'. However, except when it is convenient to write out formulas like (2. 1), we shall 

follow the usual practice of identifying the polynomial and the function. 

3. We collect here some elementary facts about permutation polynomials. 
In the first place, it follows from the cancellation laws that ax and x + fi are per-
mutation polynomials for any [3 and any a ^ O in GF{q). It follows from a theorem 
of DICKSON [9; p. 59] that xb is a permutation polynomial for any integer b such 
that (B, <7—1) = 1. This may also be proved directly: let Q be a primitive root of 
GF(q), set a = Qr,P=Qs, and note that a.b = Pb if and only if rb = sb (mod 1). 

In particular, xq~2 is a permutation polynomial. It is, in fact, the function 
that takes every nonzero element into its inverse. 
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For later use we note the following rules of calculation: 

(3. 1) 

( 3 . 2 ) 

(3. 3) 

( 3 . 4 ) 

( 3 - 5 ) 

( 3 . 6 ) 

(x + a) (x + /?) = (x + a + p) (a, P£GF(q)). 

(x + a)s = (x + sa) (a.£ GF(q), s any integer). 

(ax)s = (asx) (a £GF(q), a^O, s any integer). 

<;.v«-2>2=(x>. 

(ax) <x + p) = (ax + p) (a, P <E GF{q), a^O). 

(xq-2)(ax) = (axq-2) (a £ G F(q), a^O). 

Since the composition of two permutations is a permutation, it follows that 
the functions on the right side of the above equations are all permutations. 

4. Generators of Aq. In [2] CARLITZ proved: 

Theorem 4.1. Sq is generated by 

represents the transposition (Oy). 
Of course, several sets of generators of the abstract symmetric group are known; 

see, for example, COXETER and MOSER [7; pp. 63—66] . The transpositions form 
such a set. The value of the generators found in this section is that they are simple 
as polynomials; it is evident from (4. 2) that simplicity as polynomials and simpli-
city as permutations are not equivalent.] 

We may simplify Theorem 4. 1 as follows. Let Q be a primitive root, of GF(q). 

Theorem 4. 2. Sq is generated by 

( 4 . 3 ) QX, x + 1 , and xq~2. 

Proof . Let <x,P£GF(q), ajS^O. Let OL = QS,P = Q'. Then the proof follows 
from (3. 3) and 
( 4 . 4 ) ' ( a x + P) = {QX)S~'(X + 1) {QX)'. 

By an elaboration of these methods we may find generators for the alternating 
group Aq. Since the polynomials given in (4. 1) and (4. 3) do not necessarily represent 
even permutations, we. first prove 

Lemma 4. 3. For all a, x + a and [xq~2 + y.)q~2 are even; ax is even if and 
only if a is a nonzero square; xq~2 is even if and only if q = 3 (mod 4). 

(4. 2) 

(4. 1) ) ax + j3, x«-2 (a, P£ GF(q), a ^0) . 

The proof consists in noting that the polynomial 

) gy(.x) = - y2[((x - y)«-2 + y~l)"-2 - y]« - 2 
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P r o o f . By (3. 1) x + a is composed of pcycles of length p. Thus, if p is 
odd, or if q = 2" and n> 1, then x + a is even. Since ((xq~2 + a)q~2) = (xl~2)-
•(x + a) (xq~2), it is even regardless of what xq~2 is. 

By (3. 3) ax is a power of QX (as permutations), which is a cycle of length <7 — 1. 
The second clause follows from this and the fact that every element of GF(2") is 
square. 

As a permutation, xf~2 consists of disjoint transpositions containing all elements 
of GF(q) except 0,1, —1. It therefore contains \(q — 3) transpositions when q 
is odd and %(q — 2) when q is even (since then 1 = — 1). This proves the lemma. 

We now define the following sets: 

Li = {ax + p\a, p € GF(q), a *0} 

ALq = {a2x + p\ a, p € GF(q), a ^0} 

Qq^{{x«~2 ±a)"-2\>xr-GF{q)}. 

The following equations imply that Lq, ALq, and Qq are; actually groups 

(4.5) (ax + P)(yx + 5) = (ayx + py+5) 

(4.6). . ((xq-2+a )q-2)(lxq-2.+ P)q-2) = {{xq-2+a + P)q-2),. 

Evidently the order of Lq is q(q — 1), that of ALq is iq(q— 1), q odd, and that 
of Qq is q. Qq is isomorphic to the additive group of GF(q). We have 

Theo rem 4. 4. Lq is generated by QX and x+ 1. ALq is generated by o2x and 
x + 1 . The elements of Qq may be obtained from (xq~2 + l)q~2 and Q2X. Further-
more, ALq^Aq, Qq<==Aq. 

P r o o f . The first two sentences follow from (4. 4) and the fact that every element 
in a finite field is the sum of two squares (see [12; p. 46]). The third sentence follows 
from the last mentioned fact, (3.3), and 

(4.7) ((x"-2 + a2)q-2) = (a2x)((xq-2 + l)q-2)(a-2x). 

The last sentence follows from Lemma 4. 3. 
The.groups Lq and ALq were first considered by BURNSIDE [1; pp. 181—185]. 
We now prove a lemma on generators for the alternating group A„ on n letters 

{0, 1, • • • ,« - !} . Let R = (0 1 2) and S = (0 1 2 ••• n - 1 ) . 

Lemma 4. 5. For odd n, An is generated by R and S. . 
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P roo f . We have 
(0 1 3) ^ - S - ' R - ' S R 

and 
(o i / + i ) = (o i i j s - ' + . i j e s ' - ' c o l l 

for / = 3, •••,« — 1. Since the permutations (0 1 i) (/ = 2,3, •••,« — 1) generate A„, 
this proves the lemma. • 

Using this lemma, FRYER [10] proved 

Theorem 4. 6. Let p be an odd prime. Then Ap is generated by x + 1 and mx"~2^ 
where m is any square if p = 3 (mod 4) and any nonsquare if p=\ '(mod 4). Other-
wise x + 1 and mxp~2 generate Sp. 

Now FRYER'S proof depends on the fact that in GF(p) the permutation x + 1 
is a single cycle containing all the elements of the field, and so is the S of Lemma 4. 5. 
But fór generál GF(p"), x + 1 contains n cycles and FRYER'S proof does not work. 

However, we may find generators for the general case using (4. 2). For the ele-
ments (0 1 a) (a € GF(q)) generate Aq, and 

(0 1 a) = (0 1)(0 a) =;<ga(x)> (gjx)) = . 

= (x — l)Q(x+ l)Q(x — l)Q( — x) (x — a)Q(x — cc~ 1)Q(x — <x)Q( — oc2x), 

where Q denotes the permutation xq~\. 
Now for q = 0 or 1 (mod 4) this has the form 

(4. 8) EiOEO) EiOEEO) E(OEO) E 

where E stands for any even permutation and O for any odd one. Grouping in 
the manner shown we obtain the generators a2x + ¡3 (a, p € GF(q), a ^ 0) and 
(x9 - 2 + y)q~2(y £ GF(q)). For q=3 (mod 4) we have 

(4.9) EEEEEEOEEEEEEO, 

but we may bring the two odd permutations together by noting that — x commutes 
(as a permutation) with ax and with xq~2, and that 

< - X > < X + l > = < X - l > ( - X > . . • 

After this is done we may group them as in (4. 8) to obtain the same set of 
generators. We therefore have 

Theo rem 4. 7. The alternating group Aq is generated by its subgroups. ALq 

and Qq. 
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Of course, (4. 9) implies the existence of a simpler set of generators, which is 
incorporated in the following theorem: 

T h e o r e m 4. 8. The alternating group Aq is generated by g2x, x+l, and any 
one of the elements in the following list: 

. . (i) („11 q), 

(ii) x"~2 • (q = 3 (mod 4)), 

(iii) ax4-2 (¡7 = l (mod 4), a not square', or q=3 (mod 4), a square). 

P r o o f . The theorem follows from Theorems 4. 4 and 4. 7, and from (4. 9), 
Lemma 4. 3, and the following formula: 

( 4 . 1 0 ) {(xq~2 + l)q-2) = (ayfi-2){x + a){axq-2). . 

5. Another method of proof. The fact that ALq and xq~2 generate Aq whenever 
axq~2 is even may also be deduced independently.by a method resembling the 
proof of FRYER'S Theorem (Theorem 4. 6). It follows from Lemma 4. 5 by properly 
renumbering the elements of GF(q) that the permutations 

(5.1) ( O l p ) and T=(0 I Q Q2 ••• Q"-2) 

generate Aq. Let s = l if g = 1 (mod 4) and 5 = 2 if q = 3 (mod 4), and let U be thé 
permutation gs xq~2. A lengthy calculation shows that . 

(0 1 g) = T~1[(TU T)2 U(T U T)2]AT 

so that T and U generate Aq. 
Since T=(QX) (g iM) , we may deduce by a method like that in (4. 8) and 

(4. 9) that Aq is generated by 

(5.2) (QX-1)"-2, (xq-2-l)q~2, Q2X, x+l, and Qxq~2 

when q= 1 (mod 4) and 

(5.3) -Qx, x — 1, x"~2 and g2xq~2 

when <7 = 3 (mod 4). But we may replace ( x « " 2 - l)«-2 by (xq~2 + l)q~2 in (5.2) 
since the former is merely the /?-lst power of the latter (as permutations), and we 
may eliminate (gx — l)q~2 by means of the equation 

<(Qx-\)q-2) = (g2x-p)(gxq-2>.' 

We may replace — gx by g2x in (5. 3) because the former is the \(q — l)st power 
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of the latter. Finally we may substitute g'"xq 2 for Qsxq 2 for m the proper parity 
(that is, we must have m = s (mod 2)) in both (5. 2) and (5. 3) by means of 

(e
sxq-2) = <(gmxq-2)(ßs-mxq-2>. 

This shows that axq~2 and ALq generate Aq when axq~2 is even. 

6. The extended domain. Let r(x}=f(x)/g(x) be a rational function over 
GF(q), where / and g are relatively prime polynomials over GF(q) and g is primary. 
If g has a root ß£GF(q), then r does not represent a function from GF(q) into 
GF(q) since r(ß) is undefined. We may eva!de this difficulty by adding an element 
°o to GF(q) obeying the following rules of calculation: 

... ffiß)g(ß)-1 w * 0) 
( 6 1 ) . . = { g ( ß ) = 0) 

and 

(6.2) r'(~)=. 
°° (deg g < deg/) 
0 (deg g > deg/) 
sgn / (deg g = deg/). 

From (6. 1) and (6. 2) we may deduce the usual rules of calculation. For example 
for a, /?, y, ô £ GF{q) we have 

(6.3) y.oo = 7 / 0 =. oo (y ^ 0) 

( 6 . 4 ) : = i ( y V o ) yoo — f) y 

(6.5) / ( - ) = - (f(iGF[q, x], deg f ^ 1). 

The structure obtained from GF(q) by adding ¡ n this manner is called the 
extended domain and is denoted by GF(q). 

CARLITZ [3; pp. 326—327] showed that every permutation of GF(q) is represent-
able by a rational, function. In fact, he shows that every permutation is representable 
in the form g(iOe)), where g is a polynomial over GF(q), and t is a member of the 
general linear fractional group of functions of the form 

= {*,P,y,ŐZGF(q), aö^py 

7. Generators for We may find generators for Sq+l by using the follow-
ing lemma: 

Lemma 7. 1. Let ¥ and <P be in Sn, with <P a cycle containing n — 1 elements 
and <F a transposition containing the element not in <P. Then $ and ¥ generate S„. 
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The proof follows from the formula 

(\2---n-\yk{Q\)(\2-n-\)k = (0k + \)(\^k^n-2). 

Now considered as permutations of GF(p), l/xp~2 is (0°=) and x + 1 is 
(0 1 2 ••• p — 1), so by the lemma they generate Sp+1. 

For the general case q=pn we consider the permutation gx + 1, where Q is a 
primitive root of GF(q). This permutation takes — a n d 

0 - l - < 3 + l -<? 2 + e + l - £ 3 + e2 + (? + l - - - e « - 2 + + - + 0 + 1 = 0. J 

Since g is a primitive #-lst root of unity, it follows that the above series contains 
no zeros except for the first and last elements. Hence, QX+ 1 is a V as in the lemma, 
and we have 

Theorem 7.2. Sp+1 is generated by x+l and l/xp~2. For all q=pn, Sq+1 

is generated by ox + 1 and l /x 4 - 2 . 

From this we have immediately 

The orem 7: 3. Sq+1 is generated by l/x, xq 2, QX, and x+ ' l . 

Theorem 7. 3 is, by Theorem 4. 4, equivalent to a theorem proved by CARLITZ 
[3; p. 328] (his proof uses the canonical form mentioned at the end of Section 6) 

8. To find generators for the alternating group Aq + 1-, we first prove a lemma 
analogous to Lemma 4. 3. 

Lemma 8. 1. The permutation x + a is even over GF(q) for all a^GF(q); 
xq~2 is even if and only if q = 3> (mod 4); l/x is odd if and only if q = 3 (mod 4). 

Proof . The first two clauses follow immediately from Lemma 4. 3, since 
x + a and x 9 - 2 leave °o unchanged. The other follows from. 

. ( 8 . 1 ) 2 ) C ) ( ( K ) -

This proves the lemma. 
Now Aq+1 is generated by the elements (0°o<x) (adGF(q)). But 

( 0 o o a ) = ( a ° o ) ( 0 o ° ) 

and for any a £F(q), including a = 0, 

(8 -2 ) ^ = 
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Since 

we may write (0o°a) in two ways: 

(8. 3) (0=a) = <x + a) <x*-2><x + a)(xqr2) 

and 

(8.4) (Go3a) = <x + a > < x « - 2 > ^ < x + a > ^ < ^ - 2 > . 

Grouping the third, fourth and fifth factors together in each of (8. 3) and (8. 4), 
we find that when q = 0 or 1 (mod 4), Aq+1 is generated by 1/x, SLq, and Qq, where 
SLq is the group of permutations of the form x + a (a 6 GF(q)); and when 

<7 = 3 (mod 4), Aq+1 is generated by xq~2, SLq, and Q'q, where Qq is the group of 
permutations (x_1+j3)~1(j3eGF(<7)). 

Now it is easy to see that Qq> Qq, and SLq are all isomorphic to the additive 
group of GF(q) in the obvious manner. When q=p, these groups are cyclic, and we 
have the following particularly simple theorem: 

Th eorem 8.2. Ap+1 is generated by 

P x+-l, (XP-2 + 1)"-2 (/7 = 0,1 (mod 4)) 

or 
x " - \ x + 1 , . (x _ 1 + l ) _ 1 (p = 3(mod4)). 

By Theorem 4. 4 the elements of Qq may be obtained from (xq~2 + \)q~2 and 
Q2X, and the elements of SLq from O2x and x + 1 (since SLqQALq). Similarly 
Q2X and (x _ 1 + l ) _ 1 give the elements of Q'q. Hence, we have 

The or em 8. 3. Aq+1 is generated by 

P x + 1 , Q2X, (x«-2 + l ) i - 2 (q = 0,1 (mod 4)) 

or 
x*~2, x + 1 , e2x, ( x - 1 + l ) - 1 (q = 3(mod4)). 
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