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1. Let {i2, -P} be :a probability space, i.e. let sd be a cr-algebra of some 
subsets of the basic set Q and for AM ¿4 let P(A) denote the probability measure 
of A. Random variables are defined as functions on Q, which are measurable with 
respect to the cr-algebra ¿2. The elements of s i will be called events. A denotes 
the event consisting in the non-occurrence of the event A. The elements of Q will be 
denoted by co. If A is an event then %A denotes the indicator of A, i.e. Xa — 1> if 
co£A and XA = 0, if CO$A. Let be another cr-algebra of some subsets of Q. 

We denote by M(c,\sd') the conditional expectation of the random variable i.e. 
such a random variable, which is measurable with respect to srf' and for which 

¡M(^')dP =ftdP 
A A 

holds, if A$_si'. If, especially, £,=XA then M(y.A\sf') (A £ si) will be called the 
conditional probability of the event A with respect to sd' and will be denoted by 
P(A \s4'~). The simplest properties of the conditional expectation will be used 
in this paper. 

A. RENYI ([1]) calls the sequence {Bn} of random events 'mixing with density d 
if for any fixed random event E 

(1) lira P(BnE) = dP(E) n-> + OO 

holds, where d is a fixed number, 0 < i / < 1. It follows that lim P(Bn) = d. For 
mixing sequences {i?n} with density d the following limit relation also holds: for 
every fixed random event E 
(1') lim P(E\Bn) = P(E). 

+ oo 

A sequence {J3„}, satisfying the relation (1'), is mixing in the sense of the defini-
tion of A . RENYI if the limit lim P(B„) = d exists and 1. 

N-V+OO 
It is obvious that, if the sequence {#„} is mixing with density d, then the sequence 

{£„} is also mixing with density 1 — d. Thus we have for every fixed E 

(1") . lim P(E\Bn) = P(E). 
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The facts expressed by (1') and (1") can be unified in the following manner: 
let denote the class {£?, Bn, B„, 0} of sets, where O is the empty set and Q is 
the basic set. It is easily seen that J^ is a er-algebra. For every fixed event £ we have . 
with probability 1 

P(E\3Fn) = P(E\Bn)lBn + P{E\Bn){\-lBn), 

where P(E\^„) denotes the conditional probability of E with respect to the cr-
algebra J^,, /_B„ and 1 — ~/_Bn are the indicators of the events Bn and Bn, respectively. 
From the fact that {£„} is a mixing sequence with density d, it follows that we have 
with probability 1 
(2) lim P{E\!Fn) = P{E) 

and so this limit relation holds in probability measure, too. 
However, relation (2) implies the mixing property (1) of the sequences {!?„} 

and {Bn} onlv if lim P(B„) = d exists and 0 < i / < l . 

Relation (2) suggests a more general formulation of the notion of mixing 
sequences of events. 

Let {&„} (n = l ,2 , - ; f „ c ^ ) be a sequence of cr-algebras. 

De f in i t i on . The sequence {%} of cr-algebras is called mixing if for every 
fixed event E the sequence 

(3) P { E P N ) , ( " = 1-, 2, • ••) 

converges in probability to P{E), as n^-
Examples, showing that the class of the mixing sequences of cr-algebras is not 

empty, are given e.g. in papers [1], [2], where concrete mixing sequences of events 
in the sense of the definition of A. RENYI have been studied. 

ROSENBLATT ([3]) introduced the notion of the strongly mixing and KOLMOGOROV 
([6]) used the notion of the completely regular sequences of cr-algebras. Both notions 
require more than that of the regular sequences of c-algebras. A sequence 

(« = 1,2, •••) of a-algebras is called regular if the cr-algebra] f] (Sn is a trivial one. 
n=l 

(The trivial c-algebra is that cr-algebra which contains only sets with measure 0 
or 1.) In this note we shall show that the properties of mixing sequences of cr-algebras 
are close to those of regular sequences. 

2. First we shall show the following 

Theorem 1. Let E^sl be an arbitrary fixed event and let {&„} be a mixing 
sequence of a-algebras. Then 

(4) lim sup \P(EB) —P(E)P(B)\ = 0. 
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P r o o f . It can be easily seen that 

sup \P(EB)-P(E)P(B)\ = sup I f (P{EY$n) - P(E))dP I ^ 
BC»n II 1 

S sup f\P(E^„)-P(E)\dPs ¡\P(E\<Sn)-P(E)\dP. 

We have 0 ^ PiE^S^) = 1 with probability 1. Since the sequence {S?„} is mixing 
we obtain (4) from (3) by LEBESGUE'S convergence theorem. 

R e m a r k . If, for n = l, 2, •••, then relation (4) is the necessary 
and sufficient condition for to be a regular sequence of cr-algebras. (See e.g. [5].) 

It is known that the set-theoretical intersection of cr-algebras is also cr-algebra. 
By the union of cr-algebras we mean that c-algebra which is generated by the 
set-theoretical union of these cr-algebras. It is obvious that the union of trivial 
(7-algebras is their set-theoretical union. We mean by the "limes inferior" of 
a sequence of cr-algebras the a-algebra 

u ri ^ 
n= 1 k = n 

and we denote it by lim inf <Sn. n-»oo 

T h e o r e m 2. Let {&„} be a mixing sequence of o-algebras. Then lim inf <Sn 
. + oo 

is a trivial o-algebra. 
oo 

P r o o f . It is enough to show that for « = 1,2, ••• the cr-algebras f | rSk are 
k = n 

trivial. Applying assertion (4) of Theorem 1 to the event E£ f | % (and writing 
k = n 

E instead of B in (4)) we obtain P(E) = (P(E))2. From this our assertion follows. 
. The following theorem asserts that regular sequences of cr-algebras are mixing. 
T h e o r e m 3. Let be a monotonically decreasing sequence of o-algebras, 

i.e. for n — 1,2, ••• let (Sn ZJ +,. In order that the sequence {&„} be mixing, it is 
necessary and sufficient that the sequence {$„} be regular. 

P r o o f . If the sequence Wn} is mixing then, by Theorem 2, lim inf (Sn = f) <3n 

is a trivial a-algebra. 
Conversely, if for « = 1, 2, ••• we have then for every fixed event 

E the sequence 
P(E\%) ( « = 1 , 2 , - ) 

is a martingale which converges with probability 1 (and, consequently, in probability 
measure, too) to the random variable 

P{E\ n 
n - 1 
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(See e.g. DOOB [4], Section VII, Theorem 4. 3.) Since in our case is a trivial 
n - 1 

c-algebra, the last conditional probability is equal .to P(E) with probability 1. This 
proves our assertion. 

3. Let {&„} be a sequence of a-algebras. Further consider all the random 
variables defined on Q and measurable with respect to the er-algebra sd which are 
square integrable. If ^deno tes the set of these random variables, then for £(<y) 6 
rj(co) £ JF we define the inner product of and rj by 

/ 1-ndP, 
a 

and we denote it by (c, rf). The norm of a random variable £ is defined as (£, £)* 
and it is denoted by ||£||. Then is a Hilbert space with the inner product (£, rf) 
Let E ( n = 1,2, •••) and consider the linear combinations of the random 
variables / E — P(E), further consider also the limits in ¡the mean of these linear 
combinations. The set of these random variables will be denoted by . Clearly, 
ffly is a subspace of the Hilbert space =5f. Let us also consider that subspace 
of № which is orthogonal to ^ . 

We prove now the following assertion which is well known. We prove it only 
for the sake of completeness! 

Lemma If ' s a random variable, then we have for every n 

P(M(CX): M(Q)) - \ . 

P r o o f . It is enough to prove this assertion in case that M(£) = 0. Let 
A be the event {a>: where e is an arbitrary fixed positive number. 
Then, since is ^„-measurable, we have A £ % . Further 

¡ M ( ^ „ ) d P = j M ( ^ n ) d P = f i x A d P . 
A -Q ¡1 

Since, by our supposition, £ and y_A — P{A) are orthogonal, we obtain that 

f M(£\9JdP = P(A)M(£) =0. 
A 

On the other hand 

0 = j M ( ^ n ) d P ^ E P ( A ) ^ 0 . 
A 

This results that P(A) = 0. Let further B be the event {co: - e } 0=>0). 
Then B(i and we obtain in such a way as above that 

J M{c %)dP - 0. 
B 
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On the other hand 

. 0 = f M(Z\<&„)dP = -eP(B) s 0. 
B 

So we have P(B)=0. Since 

P{\M(№„)\> e) = P(A) + P(B) .= 0, 

and 8 > 0 was chosen arbitrarily, we proved that 

M ( £ \ 9 J = 0, ( « = 1 , 2 , - ) 
with probability 1. 

We shall use this Lemma in the following assertion which facilitates to decide 
whether a sequence {$„} of c-algebras is mixing or not. 

T h e o r e m 4. Let {&„} be a sequence of o-algebras. A necessary and sufficient 
condition for {&„} to be mixing is that for every fixed Ed<&k (k = 1, 2, •••) the sequence 

P(E\<Zn) (#»= 1 , 2 , - ) 

of random variables converge in probability to P(E). 

P r o o f . The necessity part of the assertion is obvious. The sufficiency part 
of the proof can be performed as follows. Let e > 0 be an arbitrary fixed number 
and let E be an arbitrary event. Then 

(5) EP(\P(E\%)-P(E)\ >E)^M(\M((XE-P(E))\<Zn)\). 

Let us decompose Xe — P(E) in the form 

where and . and Jif2 being defined as above. Since 
M(Xe — P(E)) = 0, further M(£1) = 0, one has M(£2) = 0. So by our Lemma we 
have for every n 

M(<;2\Vn) = 0 

with probability 1. On the other hand 

with probability 1. So we have 

(6) M{\M{{Xe-P(E))\%)\) = M{\M(^\%)\). 

tlx, being element of , can be approximated in the mean by finite linear com-
binations of the elements yA — P(A), (A£.^k, k=\, 2, •••)• Denote the sequence, 
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approximating ^ in the mean, by r\2, ••• ( t i j^ .^)- For every fixed k• the 
sequence 

M M ) (« = 1 , 2 , •••) 

converges, obviously, in probability to 0. Let ¿ > 0 be arbitrary and let us put k 
such that Ĥ x — <<5 be satisfied. Then fix k. It is easily seen that rjk is bounded 
and so is M(t]k\<gn) with probability 1. Now we have 

(7) M(\M(Si\9J\) ^ M d M ^ - t j ^ D + M d M ^ m ) . 

The second member on the right-hand side of (7) by LEBESGUE'S theorem converges 
to 0, while the first is smaller than 

M(|M((£X -r,№„)\) si M(M(\^ -nk\\%j) =§ Ki-ml 

Conferring (7), (6) and (5) we obtain that 

(8) limsuPP(\P(E\$„)-P(E)\>e)^^. 

Since £ > 0 and <5 > 0 vary independently each of other, (8) means the assertion 
of the theorem. 

Theorem 4 gives similar conditions for {%} to be. mixing as the conditions 
of the theorem of A. RENYI ([1]) for the sequence of events {2?„} to be mixing with 
density, d (0 < d< 1). 

Theo rem 5. Let be a mixing sequence of a-algebras and let z be a random 
variable having finite mean-value. Then the sequence 

M{z\%) (« = 1 , 2 , - ) 

of random variables converges in probability to M(z). 

Proo f . The assertion of the theorem is true if z is of the form: 

j 
2 Ck /.Ek; 

*= 1 

where ck (k = 1, 2, •••, /) is a real number, Ek£s# {k= 1, 2, •••,]) are events such j 
that Ek Pi Ei = 0 , and U Ek = Q, further XEk denotes the indicator of Ek and j is 

k=2 
finite positive integer. Since M(z) is finite, the random variable z can be approxi-
mated in L1 norm by the random variables of the mentioned form as close as we 

.. please. Let z* be such a random variable for which 

M(\z*-z\)<s 
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holds. Then 

f\M(z\9J-M(z)\dP*f\M(z\9K)-MXz*\9J\dP + 
<1 si 

..+f\M(z*\<$n)-M(z*)\dP+f\z*-z\dPis-
a n 

7§ f M(\z-z*\\&n)dP+f\M(z*\<Zn)-M(z*)\dP + M(\z-z*\). 
a a 

The first and the third terms on the right hand side of this inequality are smaller 
than e and the second converges to zero. This proves the theorem. 

4. It is interesting to investigate the analogon of Theorem 4 in case of the 
almost everywhere convergence. Theorem 6 makes this for martingales. 

T h e o r e m 6. Let {&„} be a sequence of o-algebras and suppose that for every 
event E the conditional probabilities P(E (n = l, 2, •••) form a martingale. If for 
every fixed E£^k (k = 1,2, •••) we have 

P( lim P(E\%) = P{E)) = 1, 

then the same holds for every event E. 

P r o o f . We have for arbitrary fixed E 

0 - P(E Vn) 2 1. 

Thus by the convergence. theorem of the martingales (cf. DOOB [4], Section VII, 
Theorem 4. 1.) the limit 

lim n m . ) -
N-» + OO 

exists with probability 1, where £E(a>) is a random variable. We have further 
M(^E(ca)) = P(E). So it remains to prove that P{^E(co) = P(E))= 1. Let us consider 
for this purpose M(|££(co) — P(£)|). We have 

(9) . M ( | ^ ( C « ) - P ( £ ) | ) S M ( | ^ ( Q ) ) - P ( £ | ^ ) | ) + M ( ] M ( ( Z £ - P ( £ ) ) | ^ ) | ) . 

By LEBESGUE'S theorem, the first term on the right hand side converges to zero as 
n For dealing with the second member, let us decompose the random variable 
XE — P(E) into the form 

. . _ . " . . c V - c 2 . 

where and ; a n d being defined as above. Since 
one has Af(^ 1 )=0 and so M(^2) = 0. By our Lemma we have for every n 

M(c,2f'n) - 0. 

13 A 
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with probability 1. On the other hand 

with probability 1. So 

(10) M(\M((xE-P(E))\Vn)\) = M(\M(M)\). 

being element of J ^ , can be approximated in the mean by finite linear com-
binations of the elements XA~P(A) (A£%,k = 1, 2, •••)• Denote this sequence, 
approximating in the mean, by rj2, ••• . For every fixed k we have with pro-
bability 1 

lim = 0. 
. n-> + 00 

Let £ > 0 be arbitrary and let us put k such that — »fj < e be satisfied. Then 
fix k. It is obvious that rjk is bounded and so is M(r\kNow we have 

(11) M d M i ^ i ^ D s M d M ^ - ^ i ^ D + M d M ^ i ^ ) ! ) . 

The second member on the right hand side of (11) converges to 0, while the first 
is smaller than ||£i — C o n f e r r i n g (11), (10), and (9) we see that 

Mfl^oO-POE)!) ^ \\mMM(\ZE{co)-P{E\%)\) + 
(12) 

+ l i m i n f M ( | M ( ( ^ - ^ ) | ^ ) | ) + l i m i n f M ( | M ( % | ^ ) | ) ^ £. 
tl—• n—*oo 

Since e > 0 was chosen arbitrarily, the inequality (12) means our assertion; 

5. By the . aid of the mixing sequences of c-algebras sequences of random 
events, which are mixing with density d(0<d<l) can be constructed as follows:. 

T h e o r e m 7. Let {%} be a mixing sequence of a-algebras and {Bn} a sequence 
of random events, for which B„ £ (Sn, further lim P(Bn)~d exists. Then {#„} is 

n~* + oo 
a mixing sequence of events with density d. 

P r o o f . Let E be an arbitrary event. By our supposition the condition of 
Theorem 1 is satisfied. So we have 

|P{EBn) - dP (2s)| s sup |P{EB) -P{E)P{B)| + P(E) \P(Bn) - d\. . 
• B£9„ . 

Letting n — t h e limit of the right hand side will be 0. This proves the theorem. 

6. Consider now some consequences of the above results: We say that a sequence 
{in} (« = 1.2, •••) of random variables is mixing if the sequence of the corresponding 
a -algebras ( « = 1 , 2 , •• •) generated by the random variable £„ is mixing. 

T h e o r e m 8. If the sequence (n (« = 1,2, •••) of random variables is mixing 
and rj is an arbitrary random variable the i„ is asymptotically independent of rj. I f , 
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in addition, £„ converges in probability to a random variable then £ is constant with 
probability 1. 

P roo f . The first assertion follows immediately from Theorem 1. In fact, 
x and y being arbitrary real numbers, by (4) we obtain if n °° 

\P(t„ < X, r, < J ) - P ( C „ < x)P(r, < y)\ 

• r sup IP(B, V y)-P(B)P(r, < y)\ - 0. 
B£SI„ 

From this it follows especially that if converges in probability to then for every 

lim P(Cn < C < x) = (P(C < x))2. n-» + CO 
On the other hand, if e > 0 is an arbitrary number 

P ( L < x , c < X) = P(C„ < x , £ < x , 1C-—CI < + < x , c < X, IC . -CI s £). 

The second member on the right hand side converges to 0, while the first satisfies 
the inequality 

. P(L < x - e , IC.-CI <•£ ) S P(C„ < x , C < x |C„-C| < £) s . P ( C a < x) . 

If x and x —£ are continuity points of the distribution function of (, then the right 
hand side converges to P (£<x) and the liminf of the left hand side of the ine-
quality is greater than P(C<x — E). Since s > 0 was chosen arbitrarily, we see that 

lim P(C„ < x, C < x) = P(C < x).J 

So we have , 
P(C < X) = (P(t < x ) ) V 

which means that for every real x 
P(C<x) = 0, or 1. 

This proves our assertion. 

Theorem 9. Let {9„} be a mixing sequence of u-algebras in the probability 
space {£2, si, P}. If Q is another probability measure, defined on si, and it is absolut-
ely continuous with respect to P, then for every event E the sequence 

Q(E\%) (n = 1,2,.-.) 

of conditional Q-probabilities converges in P (and, consequently, in Q)-probability 
to Q(E), as n — o°. 

P roo f . Q(Ebeing conditional Q-probability, is a random variable, 
which is measurable with respect to % and for every A^_eSn we have 

Q(EA) = ¡Q(E\%) dQ = J Q{E\<8n)X(d) dP, 
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where A(a>) is the Radon—Nikodym derivative of Q with respect to P. Now we have 

Q{EA) = / Q { E \ % ) X d P = JM{Q(EY$n)?pn)dP = JQ(E\$n)M(}.\%) dP. 
A A A 

On the other hand for every AÇ&„ 

Q(EA)=fxEXdP = jM(xE^n)dP. 
A A 

Since the conditional expectation is uniquely determined mod P, we have with 
probability 1 

Q{E\%)M{X\fn) = M(xM). 

By Theorem 5 the random variables 

M(X\%) and M(lEX 

converge in probability to 1 and to • 

M(xEX)=JldP=Q(E), 

respectively. From this and from the preceding equality our theorem follows. 

Coro l la ry . If A„£rSn, lim P(A„) = d, then under the conditions of Theorem 9 n-> + «s • 
we have for every event E 

lim Q{A„E) = dQ(E), 
n~* oo 

i.e., if a sequence {An} is mixing with density d in the probability space {I2, si, P), 
then it is mixing with the same density in {Q, Q} provided that Q is absolutely 
continuous probability measure with respect to P. 

P r o o f . By Theorem 9, Q(E\^„) converges in probability to Q(E) and so 

Q(AnE) = f Q(E\<$„) dQ Q(E) lim P(A„) = dQ(E), 
J n-»oo An 

as because lim<2(^„)= lim f MQ.\<$n)dP = lim P(An) = d. . 
An 

As another consequence of Theorem 9 we prove now 

Theorem 10. Let be a mixing sequence of o-algebrds in the probability 
space {Q, si, P) and {£„} a sequence of random variables such that £„ is ^„-measurable 
{n = \, 2, •••)• Let further Q be a probability measure which is absolutely continuous 
with respect to P. If 

lim />(£„<*) = F(x), 
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where F(x) is a distribution function and the limit relation holds for every fixed x 
which is a continuity point of F(x), then we have at every continuity point of F(x) 

lim QiCn < x) = F(x). 
.•+00 

R e m a r k . Theorem 10 is a generalization of Theorem 3.1 of [5] and of the 
corresponding theorem of [1], where a similar assertion has been proved for regular 
sequences of cr-algebras. . 

P r o o f . Let x be an arbitrary fixed continuity point 'of F(x). Then the event 
A„ = {fj}'.C„(co)<x} belongs to eSn. So by the Corollary to Theorem 9 (putting Q 
instead of E) we obtain our assertion. 
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