On mixing: sequences of c-algebras

' By J.. MOGYORODI in Budapest

1. Let {Q, o7, P} be a probability space, i.e. let & be a g-algebra of some
subsets of the basic set Q and for 4 €. et P(A) denote the probability measure
of 4. Random variables are defined as functions on @, which are measurable with
respect to the o- algebra /. The elements of .« will be called events. A dénotes
the event consisting in the non-occurrence of the event 4. The elements of Q will be
denoted by w. If A is an event then y, denotes the indicator of 4, i.e. y =1, if
. weAand y,=0,if w¢ 4. Let &’ Csf be another g-algebra of some subsets of Q. -
We denote by M(¢|«’) the conditional expectation of the random - variable ¢, i.e.
such a random variable, which is measurable with respect to o/’ and for which

fM(i[d)dP fgdP

holds, if A€s’. If, especially, £=y, then M@l (A E.sa() will be called the
conditional probability of the event 4 with respect to &/’ and will be denoted by
P(A|4’). The simplest properties of the conditional expectation will be used
in this paper. :

A. RENvYI ([1]) calls the sequence {B,} of random events ‘mixing with density d
if for any fixed random event FE

) . : llmw P(B,E) = dP (E)

holds, where d is a fixed number, 0 <d<1. It follows that hm P(B,,) d. For

mixing sequences {B,} with den51ty d the followmg limit relatlon also holds: for
every fixed random event E
) : - lim_P(E[B) = P(E).

A sequence {B,}, satisfying the relation (1%), is mixing in'thé sense of the defini-
tion of A. REnvl if the limit ligrn P(B,) =d exists and 0 <d<1. -

It is obvious that, if the sequence {B,} is mixing with density d, then the sequence
{B} is also rmxmg with density 1 —d. Thus we have for every fixed E .
a Jim P(EIB,.) = P(E).
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. The facts expressed by (1°) and (1”) can be unified in the following manner:
let &, denote the class {Q, B,, B,, O} of sets, where O is the empty set and Q is
the basic set. It is easily seen that &, is a.o- algebra For every fixed event E we have
with probability 1 '
‘ P(EIF) = P(EIB,.)XB,.+P(EIB,.)(1 — X8>

where P(E|%,) denotes the cond®tional probability of E with 'respect to the o-
" algebra &,, xp, and 1 —y;, are the indicators of the events B, and B,, respectively.
From the fact that {B,} is a mixing sequence w1th density d, it follows that we have
with probabrhty 1

@) lim P(E[ﬁ) = P(E)

and so this limit relation holds in probab1l1ty measure, too.
However, relation (2) implies the- mixing property (l) of the sequences {B,}
and {B} only if hm L P(B,)=d exists and 0<d<1.

Relation (2) suggests a-more general formulation of the notion of mixing
sequences of events. . : A .
Let {%,} (n=l 2,-+; 9, o) be a sequence of g-algebras.

Definition. The sequence {¥%,} of o-algebras is called nnxmg if for every
fixed event E the sequence

3) | P(El‘ (n"=1-,2,---)

converges in probability to.P(E), as n— -- oo, .

- Examples, showing that the class of the mixing sequences of o- algebras is not’
~ empty, are given e.g. in papers [1], [2], where concrete mixing sequences of events -
in the sense of the definition of A. RENyI have been studied. '

ROSENBLATT ([3]) introduced the notion of the strongly mixing and. KOLMOGOROV
([6]) used the notion of the completely regular sequences of g-algebras. Both notions
' requrre more than that of the regular sequences of g-algebras. A’ sequence Y09, 1

(n= 1, 2, ---) of g-algebras is called regular if the a-algebral ﬂ @, is a trivial one.
n=1

(The trivial o-algebra is that o-algebra- which contains only sets with measure 0 -
or 1.) In this note we shall show. that the properties of m1x1ng sequences of o-algebras
are close to those of regular sequences.

2. First we shall show the following

Theorem 1. Let Ec.s/ be an arbztrary fixed event and let {9,}. be a mixing
sequerice of c-algebras. Then '

@ lim sup |P(EB)— P(E)P(B)[ = 0.

n—o BEY,
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Proof. It can be easily seen that

:gp |P(EB)— P(E)P(B)| = sup ] f (P(E|%,) - P(E))dp{

= sup [|P(EI%)— P(E)|dP = f \P(EIS) — PE)| dP.
: B9 npB

We have 0=P(E|9)=1 wrth probability 1. Since the-sequence {%,} is mixing
we obtain (4) from (3) by LEBESGUE’S convergence theorem. ‘

Remark. If, for n=1,2, --‘-,?,,D%H', then relation (4) is the necessary '
and sufficient condition for {%,} to be a regular sequence of o-algebras. (See e.g. [5].)
It is known that the set-‘_[heoref(ical intersection of g-dlgebras is also o-algebra.
By the union of g-algebras we mean that o-algebra which is generated by the
set-theoretical union of these o-algebras. It is obvious that the union of trivial
0~ algebras is their set-theoretical union. We mean by the “limes inferior” of
a sequence of o-algebras the o- algebra
Unéa.
n=1k=n
and we denote it by hm 1nf g,.

Theorem 2. Let {%,} be a mixing sequence of g-algebras. Then lim 1nf {9

n- + oo

is a trivial o- algebra.

'Proof It is enough to show that for n=1,2, ... the o-algebras ﬂ @, are

trivial. Applyrng assertion (4) of Theorem 1 to the event F E ﬂ Y, (and writing

E instead of B in (4)) we obtain P(E)= (P(E))2 From this our assertron follows.
. The following theorem asserts that regular sequences of g-algebras are mixing.

Theorem 3. Let {9} be a monotonically decreasing sequence of o-algebras,
ie. for n=1,2,..- let 4,5% .. In order that the sequence {¥,} be mixing, it is
necessary and sufficient. that the sequence {%,} be regular. '

Proof. If the sequence {{% } is mrxmg then, by Theorem 2, hm mf G, = ﬂ g,

is a trivial g-algebra. : a
Conversely, if for n_l 2, --- we have %D%H, then for every fixed event
E the sequence o - :
"P(E%)  (n=1,2,--)
is a martingale which converges with probability 1 (and, consequently, in probability
measure, too) to the random variable R ‘

P(E| () )



190 ) L Mogyor()di

i (See e. g Doos [4], Section VII, Theorem 4. 3) Since in our case ﬂ 9, isa trivial

c-algebra, the last conditional probability is equal to P(E) with probablhty 1. This
proves our assertion.

3. Let {¢%,} be a sequence.of a-algebras Further consider all the random
variables defined on Q and measurable with respect to the o-algebra &/ which are
square integrable. If 5 denotes the set of these random variables, then for EHw)EH
n(w) € # we define thé inner product of ¢ and 5 by '

ff_-ndP,
2

and we denote it by (¢, #). The norm of a random variable & is defined as (¢, &t
and it is denoted by ||£||. Then ¢ is a Hilbert space with the inner product (&, #)
Let E€¥%, (n=1,2,---) and consider the linear combinations of the random
variables y;— P(E), further consider also the limits in {the mean of these linear .
combinations. The set of these random variables will be denoted by 5#,. Clearly, .
S, is a subspace of the Hilbert space 5 Let us also cons1der that subspace 9?2
of # which is orthogonal to . -

We prove now the following assertion which is well known. We prove 1t only
for the sake -of completeness.

Lemma If £€J%, is a random variable, then we have for every n.
P(M(¢£]%,) = M(Q) = 1.

Proof. It is én’ough to prove this assertion in case that M(&)=0. Let
A be the event {w: M(¢|%,)>¢}, where ¢ is an arbitrary fixed - positive number.
Then, since M(£|%,) is ¥,-measurable, we have 4 €9, . Further '

[ M@gyap = [ M%) dP = [xaap.
A . 2 2

Since. by our-supposition, ¢ and g, — P(4) are orthogonal, we obtain that
' L ’

fM ¢|9,)dP = P(A)M(g) -0
On the other hand ' '
0= f M1, dp = P(4)= 0.

This results that P(A)=0. Let further B be the event {w: M ({l?)< —a} (e=0).
Then B€ %, and we obtain in such a way as above that

[m@g)yap = o.
F A
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On the other hand | .
0= _/M(él?}’,,) dP = —¢P(B) = 0.

So we have P(B)= 0 Since »
P(M(E%)] > ) = P(4)+P(B) = 0,
and &>0 was chosen arbitrarily, we proved that

w1th probability 1. '
We shall use this Lemma in the followmg assertion which facilitates to decide
whether a sequence {%, } of o-algebras is mixing or not.

Theorem 4. Let {94} be a sequence of o-algebras. A necessary and sufficient
condition for {%, } to be mixing is that for every fixed E€%, (k=1,2, - ) the sequence

P(Elg) (”l= 152:“')
of random variables com/erge in probabllzty to’ P(E)

Proof. The necessity part of the assertion is obvious. The sufficiency part
of the proof can be performed as follows. Let ¢=>0 be an arbitrary fixed number
_ and let E be an arbitrary event. Then

&) . eP(PEG)—PE) > &) = MM ((rz— P(E))Y,))-
Let us. decompose y;— P(E) in the form -
&i+¢

where £, €3¢, and ¢&,€5,, 3¢, and %, being defined as above. Since

M(xg—P(E))=0, further M(éjl) 0, one has M(&,)=0. So by our Lemma we

’ have for' every n :
ME,i9) = 0

with probablhty 1. On the other hand

M((XE—P(E))[g) = M, I%)+M(€z|‘fn) = M(f l
with probability 1.-So we have
(6) M(IM((XE P(E))l?)l) = M(IM(é I ).

¢, being element of o, can be approx1mated in the mean by finite linear com- '
binations ‘of the elements y,—P(A), (4€%,, k=1,2, ). Denote the sequence,
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approximating ¢; in the mean, by 75,7, -+ (n;€#;). For every fixed k- the

sequence
M(”k,gn) (n = 1: 2) ')

conQerges, obviously, in probability to 0. Let =0 be arbitrary and let us put k
such that }|&; —n,]l <0 be satisfied. Then fix k. It is easily seen that 7, is bounded
-and so is M (n;|%,) with probability 1. Now we have

(7 M(IM &%) = M(IM((E — %))+ MM @%,)).

The second meniber on the right-hand side of (7) by LEBESGUE’s theorem convefges
to 0, while the first is smaller than

M(M(E—m(G)) = MM(E =nd9) = 1=l

Conferring (7), (6) and (5) we obtain that
(3) - lim sup P(|P(E|%,)— P(E)] > g) = —i—

n—eco

Since £>0 and §=>0 vary 1ndependently each of other (8) means ‘the assertion
of the theorem.

' Theorem 4 gives similar condltlons for {#,} to be .mixing as the conditions
of the theorem of A. REnvi ([1]) for the sequence of events {B,} to be rmxmg w1th
dens1ty d(0<d< 1). :

Theorem 5. Let {.‘9} be a mixing sequence of o-algebras and let z be a random
‘variable having finite mean-value. Then the sequence :

M(Zlgu) (n=172"")
of random variables converges in probability to M(z).

Proof. The assertion of the theorem is true if z is of the form:
J
Z C XEka
k=1 .

where o k=1, 2' . ,j) is a real number, E € (k=1,2,---,j) are events such
that E;NE,= ¢, and U E,=Q, further Ax, denotes the indicator of £, and j is

finite posmve integer. Smce M(2) is finite, the random variable z can be approxi-
mated in L! norm by the random variables of the mentioned form- as close as we
. please. Let z* be such a random variable for which’

M(lz —zD)=e
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holds. Then _ o . ’
[IMEI%) - M @) dP = [ M%) - ME19)| P+

Q

.,+v‘/‘|M(zv*Ig")—M(z*)| dP+f|z*—z| dP =
. “7 J

= f M(iz—z*H D P f |M(z*!{4)—M(z*)idP+M(|z—z*|).
The ﬁrst and the third terms on the right hand side of this inequality are smailer -
than ¢ and the second converges to zero. This proves the theorem.

4. It is interesting to investigate the analogon of Theorem 4 in .case of the
-almost everywhere convergence. Theorem. 6 makes this for martingales.

Theorem 6> Let {9, } be a sequence of c-algebras and suppose that for euery
event E the conditional probabilities P(E|9,) (n=1, 2, ---) form a martingale. If for
every fixed E€Y, (k—l 2, -+) we have

P(lim_P(E|%) = PEY=1, -

then the same holds for every event E. o
Proof. We have for arbitrary fixed E
0= P(EY) = 1.

- Thus by the convergence .theorem of the martmgales (cf. DOOB {4], Sectlon VII,

Theorem 4.1.) the limit
A llTP P(Elgn) = ¢p(w),

exists with probability 1, where {g(w) is a random variable. We have further
M(¢g(w)) = P(E). So it remains to prove that P(¢z(w)=P(E))=1. Let us consider
for this purpose M(|£(w)—P(E)|). We have

©) . M(Ex(@)— PE)) = M(|¢x(w)— PCEIG)) + M (M (1 — PE))IE,))-

By LEBESGUE’S theorem, the first term on the right hand side converges to zero as
n oo, For dealing with the second member let us decompose the random variable
xi: — P(E) into the form - : '

£l+€29

where ¢, €3, and &, €56, %’1. and ##, being defined as above. Since &, €5,
one has M(¢;)=0 and so M(£,)=0. By our Lemma we have for every n

 MEIg) =0
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with prdbablhty 1. On the otﬁer hand

M((xe— PE)NG,) = M\ |9)+ M (&%) = M(é AN
with probability 1. So _
(10) M(IM((rz~ P(E))IS)) = MM, I%)I)

&, , being element of J#,, can be approximated in ‘the mean by finite line'ar: com-
binations of the elements y,— P(4) (AE.%, k=1,2,.-:); Denote this sequence,
approximating &, in the mean, by 5,, %5, --- . For every ﬁxed k we have with pro-

bablllty 1
'HT M%) = 0.

Let é'>0 be arbitrary and let us put k such that ||, —n| <& be satisfied. Then .
fix k. It is obvious that #, is bounded and so is M (nk]g,,)_. Now we have

(tn - MM & 19)) = MIM(E —ndG)) + MM @l9D).
The second member on the rlght hand side of (11) converges to 0, while the ﬁrst
is smaller than M€ —nell. Conferrlng (11), (10), and (9) we see that

M(léE(w) P(E)I) = llmlnfM(lﬁs(w) P(E|%))+

12
2 +lim infM(lM((é1 ~’r]‘,‘)[g)l)~|-‘lim inf M(IM(n,|%))) = e.

Smce £=0 was chosen arbltrarlly, the mequahty (12) means our assertion:

5. By the .aid of the mixing sequences of o- algebras sequences of random_
events, which are mixing with density d(()<d< 1) can_ be constructed as follows: .

_ Theorem 7. Let {%,} be a mixihg sequence of o-algebras and {B,} asequence
' of random events, for which B,€9,, further liin P(B,,):d exists. Then {B,} is
a mixing sequence of events with denszty d. R

Proof. Let E be an arbitrary event. By our supposmon the condition of :
Theorem 1 is satlsﬁed So we have : '

IP(EB,.)—dP(E)I sup IP(EB) P(E)P(B)I+P(E)IP(B) d..

‘Letting s -» oo, the limit of the right hand side will be 0. This proves the theorem.

6. Consider now some consequences of the above results. We say that a se quence
{¢,} (n=1,2, --+) of random variables is mixing if the sequence of the corresponding
o-algebras ¥, (n=1, 2, ---) generated by the random variable {, is mixing.

Theorem 8. If the sequence {, (n=1,2,---) of random variables is mixing
and n is an arbitrary random uvariable the {, is asymptotically independent of n. If,
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in addition, {, conuerges in probabllzty toa random variable {, then { is constant with
probabzhty 1. -

Proof. The first assertion follows lmmedlately from Theorem 1. In fact,
x and y belng arbitrary real numbers, by (4) we obtain if n—>co

\P(C <x,n<»)-P{, <P <) =
= sup |P(B,n < y)— P(B)P(n < y)I -~ 0.

From this it follows especrally that if {, converges in probablhty to C, then for every A

real x
: lim P, <x{< x) (P(C < x))z.

oo
_On'the other hand, if ¢=0 is an arbitrary number
PC<xl<®)=Pl<x{<x|lL~l<d+PlL<x{<x|L-{=
The second member on the rlght hand side converges to 0, while the first satisfies
the 1nequa11ty
Pl <x—&|l,—l <& =Pl <x{=<x|l,—{ <29 é-P(C,.j<'x)i
If x and x—¢ are-cdhtinuity points of the drstribution functien of {, then the right

hand side converges to P({<x) and the liminf of the left hand side of the ine-
quality is greater than P({<x—¢). Since >0 was chosen arbitrarily, we see that

_ lim P({, <x,{ < x)=P( <‘x).2 :
So we have | ’ . :

PC <x)=(PC <x)
which means that for every real x

- P(l<=x)=0, or 1.
This proves our assertion. - '

Theorem 9. Let {%.} be a mixing sequence of c-algebras in the probability
space {Q, &, P}. If Q is another probability measure, defined on £, and it is absolut-
ely continuous with respect to P, then for every event E the sequence

Q%) - (n=1,2,)

of conditional Q probabzlztzes converges in P (and, consequently, in Q) probabtlzty .
to Q(E), as n— oo,

Proof. Q(E|¥9,), being condltlonal Q- probabrhty, is a random variable,
which is measurable with respect to %, and for every 4€%, we have

0(E4) = [ 0(EI9) do = [ 0(EIg)A(w) P,
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where A(w) is the RadonmNikodym derivaltive of Q with respect to P. Now we have
(EA) fQ(E|e)A dp = fM (E|e);|e)dp fQ(Ew)M(;}fe)dP

" On the other hand- for every Ae{ﬁ

0@ - J yeddp = JMGeng)ar.

Since the conditional expectation is uniquely determined. mod_P,'.we have vvith
. probability 1 v
o ' Q(E|G)M(AF,) = M (1£4%,)
By Theorem 5 the random variables .

M%) and M%)

converge in probabrhty to 1 and to

M(zz2) = f AdP = Q(E)

respectively. Froni this and from the preceding equality onr'th'eorem follows.

Corollary If A E%, 11m P(An) d, then under the condztzons of Theorem 9

we have for every event E
lim Q(4,E) = dQ (E)?

ie., if a sequence {A,} is mixiﬁg with density d in’ the probability space {Q, o, P}
then it is mixing with the same density in {Q, o, Q} provided that Q- is absolutely
contmuous probabtltty measure with respect to P. :

" Proof. By Theorem 9, O(F |{¢ ) converges in probabllrty to Q(E) and so
oc4, £) = f 0(E1%,) dQ ~ O(E) lim P(4,) = dQ(E),
as n—oo, becaus_e lim 0(4,) = lim f M(|9)dP = Jim lD(A,,) ~d. .

" As another consequence of Theorem 9 we prove now

Theorem 10. Let {g} be a mixing sequence of o- algebras in the probabzlzty
space {Q, o, P} and {(,} a sequence of random variables such that {, is ¥,-measurable
(n=1,2, ). Let further Q be a probability measure whrch is absolutely contznuous
with respect to P. If

: Clim P, <.x) = F(x),

n- oo
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where F(x) is a distribution function and the limit relation holds for every fixed x
which is a continuity point of F(x), then we have at every continuity point of F(x)

Jim_ 0@, <) = F(x.

Remark. Theorem 10 is a genefalizatidn of Theorem 3.1 of [5] and of the
corresponding theorem of 1], where a similar assertion has been proved for regular
sequences of o- algebras '

Proof. Let x be an arbltrary fixed contmu1ty point "of .F (x) Then the event
4 —{u) {(w)<x} belongs to. %,. So by the Corollary to Theorem 9 (puttmg Q
instead of E) we obtain our assertlon
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