On mixing sequences of σ-algebras

By J. MOGYORODI in Budapest

1. Let $\{\Omega, \mathscr{A}, P\}$ be a probability space, i.e. let \mathscr{A} be a σ-algebra of some subsets of the basic set Ω and for $A \in \mathscr{A}$ let $P(A)$ denote the probability measure of A. Random variables are defined as functions on Ω, which are measurable with respect to the σ-algebra \mathscr{A}. The elements of \mathscr{A} will be called events. \bar{A} denotes the event consisting in the non-occurrence of the event A. The elements of Ω will be denoted by ω. If A is an event then χ_{A} denotes the indicator of A, i.e. $\chi_{A}=1$, if $\omega \in A$ and $\chi_{A}=0$, if $\omega \notin A$. Let $\mathscr{A}^{\prime} \subset \mathscr{A}$ be another σ-algebra of some subsets of Ω. We denote by $M\left(\xi \mid \mathscr{A}^{\prime}\right)$ the conditional expectation of the random variable ξ, i.e. such a random variable, which is measurable with respect to \mathscr{A}^{\prime} and for which

$$
\int_{A} M\left(\xi \mid \mathscr{A}^{\prime}\right) d P=\int_{A} \xi d P
$$

holds, if $A \in \mathscr{A}^{\prime}$. If, especially, $\xi=\chi_{A}$ then $M\left(\chi_{A} \mid \mathscr{A}^{\prime}\right)(A \in \mathscr{A})$ will be called the conditional probability of the event A with respect to \mathscr{A}^{\prime} and will be denoted by $P\left(A \mid \mathscr{A}^{\prime}\right)$. The simplest properties of the conditional expectation will be used in this paper.
A. RÉNYI ([1]) calls the sequence $\left\{B_{n}\right\}$ of random events'mixing with density d if for any fixed random event E

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} P\left(B_{n} E\right)=d P(E) \tag{1}
\end{equation*}
$$

holds, where d is a fixed number, $0<d<1$. It follows that $\lim _{n \rightarrow+\infty} P\left(B_{n}\right)=d$. For mixing sequences $\left\{B_{n}\right\}$ with density d the following limit relation also holds: for every fixed random event E

$$
\lim _{n \rightarrow+\infty} P\left(E \mid B_{n}\right)=P(E)
$$

A sequence $\left\{B_{n}\right\}$, satisfying the relation (1^{\prime}), is mixing in the sense of the definition 'of A. RÉNYI if the limit $\lim _{n \rightarrow+\infty} P\left(B_{n}\right)=d$ exists and $0<d<1$.

It is obvious that, if the sequence $\left\{B_{n}\right\}$ is mixing with density d, then the sequence $\left\{\bar{B}_{n}\right\}$ is also mixing with density $1-d$. Thus we hạve for every fixed E

$$
\lim _{n \rightarrow+\infty} P\left(E \mid \bar{B}_{n}\right)=P(E)
$$

The facts expressed by (1^{\prime}) and ($1^{\prime \prime}$) can be unified in the following manner: let \mathscr{F}_{n} denote the class $\left\{\Omega, B_{n}, \bar{B}_{n}, O\right\}$ of sets, where O is the empty set and Ω is the basic set. It is easily seen that \mathscr{F}_{n} is a σ-algebra. For every fixed event E we have with probability 1

$$
P\left(E \mid \mathscr{F}_{n}\right)=P\left(E \mid B_{n}\right) \chi_{B_{n}}+P\left(E \mid \bar{B}_{n}\right)\left(1-\chi_{B_{n}}\right),
$$

where $P\left(E \mid \mathscr{F}_{n}\right)$ denotes the condtional probability of E with respect to the σ algebra $\mathscr{F}_{n}, \chi_{B_{n}}$ and $1-\chi_{B_{n}}$ are the indicators of the events B_{n} and \bar{B}_{n}, respectively. From the fact that $\left\{B_{n}\right\}$ is a mixing sequence with density d, it follows that we have with probability 1

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} P\left(E \mid \mathscr{F}_{n}\right)=P(E) \tag{2}
\end{equation*}
$$

and so this limit relation holds in probability measure, too.
However, relation (2) implies the mixing property (1) of the sequences $\left\{B_{n}\right\}$ and $\left\{\bar{B}_{n}\right\}$ only if $\lim _{n \rightarrow+\infty} P\left(B_{n}\right)=d$ exists and $0<d<1$.

Relation (2) suggests a more general formulation of the notion of mixing sequences of events.

Let $\left\{\mathscr{G}_{n}\right\}\left(n=1,2, \cdots ; \mathscr{G}_{n} \subset \mathscr{A}\right)$ be a sequence of σ-algebras.
Definition. The sequence $\left\{\mathscr{G}_{n}\right\}$ of σ-algebras is called mixing if for every fixed event E the sequence

$$
\begin{equation*}
P\left(E \mid \mathscr{G}_{n}\right), \quad(n=1,2, \cdots) \tag{3}
\end{equation*}
$$

converges in probability to $P(E)$, as $n \rightarrow+\infty$.
Examples, showing that the class of the mixing sequences of σ-algebras is not empty, are given e.g. in papers [1], [2], where concrete mixing sequences of events in the sense of the definition of A. RÉNY̌ have been studied.

Rosenblatt ([3]) introduced the notion of the strongly mixing and Kolmogorov ([6]) used the notion of the completely regular sequences of σ-algebras. Both notions require more than that of the regular sequences of σ-algebras. A sequence $\mathscr{G}_{n} \supset \mathscr{G}_{n+1}$ $\left(n=1,2, \cdots\right.$) of σ-algebras is called regular if the σ-algebra $\bigcap_{n=1}^{\infty} \mathscr{G}_{n}$ is a trivial one. (The trivial σ-algebra is that σ-algebra which contains only sets with measure 0 or 1.) In this note we shall show that the properties of mixing sequences of σ-algebras are close to those of regular sequences.
2. First we shall show the following

Theorem 1. Let $E \in \mathscr{A}$ be an arbitrary fixed event and let $\left\{\mathscr{G}_{n}\right\}$.be a mixing sequence of σ-algebras. Then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup _{B \in \mathscr{\mathscr { G }}_{n}}|P(E B)-P(E) P(B)|=0 . \tag{4}
\end{equation*}
$$

Proof. It can be easily seen that

$$
\begin{aligned}
& \sup _{B \in \mathscr{G}_{n}}|P(E B)-P(E) P(B)|=\sup _{B \in \mathscr{S}_{n}}\left|\int_{B}\left(P\left(E \mid \mathscr{G}_{n}\right)-P(E)\right) d P\right| \leqq \\
& \leqq \sup _{B \in \mathscr{G}_{n}} \int_{B}\left|P\left(E \mid \mathscr{G}_{n}\right)-P(E)\right| d P \leqq \int_{\Omega}\left|P\left(E \mid \mathscr{G}_{n}\right)-P(E)\right| d P .
\end{aligned}
$$

We have $0 \leqq P\left(E \mid \mathscr{G}_{n}\right) \leqq 1$ with probability 1 . Since the sequence $\left\{\mathscr{G}_{n}\right\}$ is mixing we obtain (4) from (3) by Lebesgue's convergence theorem.

Remark. If, for $n=1,2, \cdots, \mathscr{G}_{n} \supset \mathscr{G}_{n+1}$, then relation (4) is the necessary and sufficient condition for $\left\{\mathscr{G}_{n}\right\}$ to be a regular sequence of σ-algebras. (See e.g. [5].)

It is known that the set-theoretical intersection of σ-algebras is also σ-algebra. By the union of σ-algebras we mean that σ-algebra which is generated by the set-theoretical union of these σ-algebras. It is obvious that the union of trivial σ-algebras is their set-theoretical union. We mean by the "limes inferior" of a sequence of σ-algebras the σ-algebra

$$
\bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} \mathscr{G}_{k}
$$

and we denote it by $\liminf _{n \rightarrow \infty} \mathscr{G}_{n}$.
Theorem 2. Let $\left\{\mathscr{G}_{n}\right\}$ be a mixing sequence of σ-algebras. Then $\lim _{n \rightarrow+\infty} \inf \mathscr{G}_{n}$ is a trivial σ-algebra.

Proof. It is enough to show that for $n=1,2, \cdots$ the σ-algebras $\bigcap_{k=n}^{\infty} \mathscr{G}_{k}$ are trivial. Applying assertion (4) of Theorem 1 to the event $E \in \bigcap_{k=n}^{\infty} \mathscr{G}_{k}$ (and writing E instead of B in (4)) we obtain $P(E)=(P(E))^{2}$. From this our assertion follows.

The following theorem asserts that regular sequences of σ-algebras are mixing.
Theorem 3. Let $\left\{\mathscr{G}_{n}\right\}$ be a monotonically decreasing sequence of σ-algebras, i.e. for $n=1,2, \cdots$ let $\mathscr{G}_{n} \supset \mathscr{G}_{n+1}$. In order that the sequence $\left\{\mathscr{G}_{n}\right\}$ be mixing, it is necessary and sufficient that the sequence $\left\{\mathscr{G}_{n}\right\}$ be regular.

Proof. If the sequence $\left\{\mathscr{G}_{n}\right\}$ is mixing then, by Theorem 2, $\liminf _{n \rightarrow \infty} \mathscr{G}_{n}=\bigcap_{n=1}^{\infty} \mathscr{G}_{n}$. is a trivial σ-algebra.

Conversely, if for $n=1,2, \cdots$ we have $\mathscr{G}_{n} \supset \mathscr{G}_{n+1}$, then for every fixed event E the sequence

$$
P\left(E \mid \mathscr{G}_{n}\right) \quad \quad(n=1,2, \cdots)
$$

is a martingale which converges with probability 1 (and, consequently, in probability measure, too) to the random variable

$$
P\left(E \mid \bigcap_{n=1}^{\infty} \mathscr{G}_{n}\right)
$$

(See e.g. Doob [4], Section VII, Theorem 4. 3.) Since in our case $\bigcap_{n-1}^{\infty} \mathscr{G}_{n}$ is a trivial σ-algebra, the last conditional probability is equal to $P(E)$ with probability 1 . This proves our assertion.
3. Let $\left\{\mathscr{G}_{n}\right\}$ be a sequence of σ-algebras. Further consider all the random variables defined on Ω and measurable with respect to the σ-algebra \mathscr{A} which are square integrable. If \mathscr{H} denotes the set of these random variables, then for $\xi(\omega) \in \mathscr{H}$ $\eta(\omega) \in \mathscr{H}$ we define the inner product of ξ and η by

$$
\int_{\Omega} \xi \cdot \eta d P
$$

and we denote it by (ξ, η). The norm of a random variable ξ is defined as $(\xi, \xi)^{\frac{1}{2}}$ and it is denoted by $\|\xi\|$. Then \mathscr{H} is a Hilbert space with the inner product (ξ, η) Let $E \in \mathscr{G}_{n}(n=1,2, \cdots)$ and consider the linear combinations of the random variables $\chi_{E}-P(E)$, further consider also the limits in the mean of these linear combinations. The set of these random variables will be denoted by \mathscr{H}_{1}. Clearly, \mathscr{H}_{1} is a subspace of the Hilbert space \mathscr{H}. Let us also consider that subspace \mathscr{H}_{2} of \mathscr{H} which is orthogonal to \mathscr{H}_{1}.

We prove now the following assertion which is well known. We prove it only for the sake of completeness:

Lemma If $\xi \in \dot{\mathscr{H}}_{2}$ is a random variable, then we have for every n.

$$
P\left(M\left(\xi \mid \mathscr{G}_{n}\right)=M(\zeta)\right)=1
$$

Proof. It is enough to prove this assertion in case that $M(\xi)=0$. Let A be the event $\left\{\omega: M\left(\xi \mid \mathscr{G}_{n}\right)>\varepsilon\right\}$, where ε is an arbitrary fixed positive number. Then, since $M\left(\xi \mid \mathscr{G}_{n}\right)$ is \mathscr{G}_{n}-measurable, we have $A \in \mathscr{G}_{n}$. Further

$$
\int_{A} M\left(\xi \mid \mathscr{G}_{n}\right) d P=\int_{\Omega} M\left(\xi \chi_{A} \mid \mathscr{G}_{n}\right) d P=\int_{\Omega} \xi \chi_{A} d P
$$

Since, by our supposition, ξ and $\chi_{A}-P(A)$ are orthogonal, we obtain that

$$
\int_{A} M\left(\xi \mid \mathscr{G}_{n}\right) d P=P(A) M(\xi)=0
$$

On the other hand

$$
0=\int_{A} M\left(\xi \mid \mathscr{G}_{n}\right) d P \geqq \varepsilon P(A) \geqq 0
$$

This results that $P(A)=0$. Let further B be the event $\left\{\omega: M\left(\xi \mid \mathscr{G}_{n}\right)<-\varepsilon\right\}(\varepsilon>0)$. Then $B \in \mathscr{G}_{n}$ and we obtain in such a way as above that

$$
\int_{B} M\left(\xi \mid \mathscr{G}_{n}\right) d P=0 .
$$

On the other hand

$$
0=\int_{B} M\left(\xi \mid \mathscr{G}_{n}\right) d P=-\varepsilon P(B) \leqq 0
$$

So we have $P(B)=0$. Since

$$
P\left(\left|M\left(\xi \mid \dot{G}_{n}\right)\right|>\varepsilon\right)=P(A)+P(B)=0
$$

and $\varepsilon>0$ was chosen arbitrarily, we proved that

$$
M\left(\xi \mid \mathscr{G}_{n}\right)=0, \quad(n=1,2, \cdots)
$$

with probability 1.
We shall use this Lemma in the following assertion which facilitates to decide whether a sequence $\left\{\mathscr{G}_{n}\right\}$ of σ-algebras is mixing or not.

Theorem 4. Let $\left\{\mathscr{G}_{n}\right\}$ be a sequence of σ-algebras. A necessary and sufficient condition for $\left\{\mathscr{G}_{n}\right\}$ to be mixing is that for every fixed $E \in \mathscr{G}_{k}(k=1,2, \cdots)$ the sequence

$$
P\left(E \mid \mathscr{G}_{n}\right) \quad(n=1,2, \cdots)
$$

of random variables converge in probability to $P(E)$.
Proof. The necessity part of the assertion is obvious. The sufficiency part of the proof can be performed as follows. Let $\varepsilon>0$ be an arbitrary fixed number and let E be an arbitrary event. Then

$$
\begin{equation*}
\varepsilon P\left(\left|P\left(E \mid \mathscr{G}_{n}\right)-P(E)\right|>\varepsilon\right) \leqq M\left(\left|M\left(\left(\chi_{E}-P(E)\right) \mid \mathscr{G}_{n}\right)\right|\right) . \tag{5}
\end{equation*}
$$

Let us. decompose $\chi_{E}-P(E)$ in the form

$$
\xi_{1}+\xi_{2}
$$

where $\xi_{1} \in \mathscr{H}_{1}$ and $\xi_{2} \in \mathscr{H}_{2} ; \mathscr{H}_{1}$. and \mathscr{H}_{2} being defined as above. Since $M\left(\chi_{E}-P(E)\right)=0$, further $M\left(\xi_{1}\right)=0$, one has $M\left(\xi_{2}\right)=0$. So by our Lemma we have for every n

$$
M\left(\xi_{2} \mid \mathscr{G}_{n}\right)=0
$$

with probability 1 . On the other hand

$$
M\left(\left(\chi_{E}-P(E)\right) \mid \mathscr{G}_{n}\right)=M\left(\xi_{1} \mid \mathscr{G}_{n}\right)+M\left(\xi_{2} \mid \mathscr{G}_{n}\right)=M\left(\xi_{1} \mid \mathscr{G}_{n}\right)
$$

with probability 1. So we have

$$
\begin{equation*}
M\left(\left|M\left(\left(\chi_{E}-P(E)\right) \mid \mathscr{G}_{n}\right)\right|\right)=M\left(\left|M\left(\xi_{1} \mid \mathscr{G}_{n}\right)\right|\right) . \tag{6}
\end{equation*}
$$

ξ_{1}, being element of \mathscr{H}_{1}, can be approximated in the mean by finite linear combinations of the elements $\chi_{A}-P(A),\left(A \in \mathscr{G}_{k}, k=1,2, \cdots\right)$. Denote the sequence,
approximating ξ_{1} in the mean, by $\eta_{1}, \eta_{2}, \cdots\left(\eta_{j} \in \mathscr{H}_{1}\right)$. For every fixed k. the sequence

$$
M\left(\eta_{k} \mid \mathscr{G}_{n}\right) \quad(n=1,2, \cdots)
$$

converges, obviously, in probability to 0 . Let $\delta>0$ be arbitrary and let us put k such that $\left\|\xi_{1}-\eta_{k}\right\|<\delta$ be satisfied. Then fix k. It is easily seen that η_{k} is bounded and so is $M\left(\eta_{k} \mid \mathscr{G}_{n}\right)$ with probability 1 . Now we have

$$
\begin{equation*}
M\left(\left|M\left(\xi_{1} \mid \mathscr{G}_{n}\right)\right|\right) \leqq M\left(\left|M\left(\left(\xi_{1}-\eta_{k}\right) \mid \mathscr{G}_{n}\right)\right|\right)+M\left(\left|M\left(\eta_{k} \mid \mathscr{G}_{n}\right)\right|\right) \tag{7}
\end{equation*}
$$

The second member on the right-hand side of (7) by LebesGue's theorem converges to 0 , while the first is smaller than

$$
M\left(\left|M\left(\left(\xi_{1}-\eta_{k}\right) \mid \mathscr{G}_{n}\right)\right|\right) \leqq M\left(M\left(\left|\xi_{1}-\eta_{k}\right| \mid \mathscr{G}_{n}\right)\right) \leqq\left\|\xi_{1}-\eta_{k}\right\|
$$

Conferring (7), (6) and (5) we obtain that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} P\left(\left|P\left(E \mid \mathscr{G}_{n}\right)-P(E)\right|>\varepsilon\right) \leqq \frac{\delta}{\varepsilon} \tag{8}
\end{equation*}
$$

Since $\varepsilon>0$ and $\delta>0$ vary independently each of other, (8) means the assertion of the theorem.

Theorem 4 gives similar conditions for $\left\{\mathscr{G}_{n}\right\}$ to be mixing as the conditions of the theorem of A. RÉNYI ([1]) for the sequence of events $\left\{B_{n}\right\}$ to be mixing with density. $d(0<d<1)$.

Theorem 5. Let $\left\{\mathscr{G}_{n}\right\}$ be a mixing sequence of σ-algebras and let z be a random variable having finite mean-value. Then the sequence

$$
M\left(z \mid \mathscr{G}_{n}\right) \quad(n=1,2, \cdots)
$$

of random variables converges in probability to $M(z)$.
Proof. The assertion of the theorem is true if z is of the form:

$$
\sum_{k=1}^{j} c_{k} \chi_{E_{k}}
$$

where $c_{k}(k=1,2, \cdots, j)$ is a real number, $E_{k} \in \mathscr{A}(k=1,2, \cdots, j)$ are events such that $E_{k} \cap E_{l}=\varnothing$, and $\bigcup_{k=2}^{j} E_{k}=\Omega$, further $\chi_{E_{k}}$ denotes the indicator of E_{k} and j is finite positive integer. Since $M(z)$ is finite, the random variable z can be approximated in L^{1} norm by the random variables of the mentioned form as close as we please. Let z^{*} be such a random variable for which

$$
M\left(\left|z^{*}-z\right|\right)<\varepsilon
$$

holds. Then

$$
\begin{aligned}
& \quad \int_{\Omega}\left|M\left(z \mid \mathscr{G}_{n}\right)-M(z)\right| d P \leqq \int_{\Omega}\left|M\left(z \mid \mathscr{G}_{n}\right)-M\left(z^{*} \mid \mathscr{G}_{n}\right)\right| d P+ \\
& \quad+\quad \int_{\Omega}\left|M\left(z^{*} \mid \mathscr{G}_{n}\right)-M\left(z^{*}\right)\right| d P+\int_{\Omega}\left|z^{*}-z\right| d P \leqq \\
& \leqq \int_{\Omega} M\left(\left|z-z^{*}\right| \mid \mathscr{G}_{n}\right) d P+\int_{\Omega}\left|M\left(z^{*} \mid \mathscr{G}_{n}\right)-M\left(z^{*}\right)\right| d P+M\left(\left|z-z^{*}\right|\right) .
\end{aligned}
$$

The first and the third terms on the right hand side of this inequality are smailer than ε and the second converges to zero. This proves the theorem.
4. It is interesting to investigate the analogon of Theorem 4 in case of the almost everywhere convergence. Theorem 6 makes this for martingales.

Theorem 6. Let $\left\{\mathscr{G}_{n}\right\}$ be a sequence of σ-algebras and suppose that for every event E the conditional probabilities $P\left(E \mid \mathscr{G}_{n}\right)(n=1,2, \cdots)$ form a martingale. If for every fixed $E \in \mathscr{G}_{k}(k=1,2, \cdots)$, we have

$$
P\left(\lim _{n \rightarrow+\infty} P\left(E \mid \mathscr{G}_{n}\right)=P(E)\right)=1
$$

then the same holds for every event E.
Proof. We have for arbitrary fixed E

$$
0 \leqq \dot{P}\left(E \mid \dot{\mathscr{G}}_{n}\right) \leqq 1
$$

Thus by the convergence theorem of the martingales (cf. Doob [4], Section VII, Theorem 4. 1.) the limit

$$
\lim _{n \rightarrow+\infty} P\left(E \mid \mathscr{G}_{n}\right)=\xi_{E}(\omega)
$$

exists with probability 1 , where $\xi_{E}(\omega)$ is a random variable. We have further $M\left(\xi_{E}(\omega)\right)=P(E)$. So it remains to prove that $P\left(\xi_{E}(\omega)=P(E)\right)=1$. Let us consider for this purpose $M\left(\left|\xi_{E}(\omega)-P(E)\right|\right)$. We have

$$
\begin{equation*}
M\left(\left|\xi_{E}(\omega)-P(E)\right|\right) \leqq M\left(\left|\xi_{E}(\omega)-P\left(E \mid \mathscr{G}_{n}\right)\right|\right)+M\left(\left|M\left(\left(\chi_{E}-P(E)\right) \mid \mathscr{G}_{n}\right)\right|\right) \tag{9}
\end{equation*}
$$

By Lebesgue's theorem, the first term on the right hand side converges to zero as $n \rightarrow \infty$. For dealing with the second member, let us decompose the random variable $\chi_{E}-P(E)$ into the form

$$
\xi_{1}+\xi_{2}
$$

where $\xi_{1} \in \mathscr{H}_{1}$ and $\xi_{2} \in \mathscr{H}_{2} ; \mathscr{H}_{1}$ and \mathscr{H}_{2} being defined as above. Since $\xi_{1} \in \mathscr{H}_{1}$, one has $M\left(\xi_{1}\right)=0$ and so $M\left(\xi_{2}\right)=0$. By our Lemma we have for every n

$$
M\left(\xi_{2} \mid \mathscr{G}_{n}\right)=0
$$

with probability 1 . On the other hand

$$
M\left(\left(\chi_{E}-P(E)\right) \mid \mathscr{G}_{n}\right)=M\left(\xi_{1} \mid \mathscr{G}_{n}\right)+M\left(\xi_{2} \mid \mathscr{G}_{n}\right)=M\left(\xi_{1} \mid \mathscr{G}_{n}\right)
$$

with probability 1 . So

$$
\begin{equation*}
M\left(\left|M\left(\left(\chi_{E}-P(E)\right) \mid \mathscr{G}_{n}\right)\right|\right)=M\left(\left|M\left(\xi_{1} \mid \mathscr{G}_{n}\right)\right|\right) \tag{10}
\end{equation*}
$$

ξ_{1}, being element of \mathscr{H}_{1}, can be approximated in the mean by finite linear combinations of the elements $\chi_{A}-P(A)\left(A \in \mathscr{G}_{k}, k=1,2, \cdots\right)$. Denote this sequence, approximating ξ_{1} in the mean, by $\eta_{1}, \dot{\eta_{2}}, \cdots$. For every fixed k we have with probability 1

$$
\lim _{n \rightarrow+\infty} M\left(\eta_{k} \mid \mathscr{G}_{n}\right)=0
$$

Let $\varepsilon>0$ be arbitrary and let us put k such that $\left\|\xi_{1}-\eta_{k}\right\|<\varepsilon$ be satisfied. Then fix k. It is obvious that η_{k} is bounded and so is $M\left(\eta_{k} \mid \mathscr{G}_{n}\right)$. Now we have

$$
\begin{equation*}
M\left(\left|M\left(\xi_{1} \mid \mathscr{G}_{n}\right)\right|\right) \leqq M\left(\mid M\left(\left(\xi_{1}-\eta_{k} \mid \mathscr{G}_{n}\right) \mid\right)+M\left(\left|M\left(\eta_{k} \mid \mathscr{G}_{n}\right)\right|\right)\right. \tag{11}
\end{equation*}
$$

The second member on the right hand side of (11) converges to 0 , while the first is smaller than $\left\|\xi_{1}-\eta_{k}\right\|$. Conferring (11), (10), and (9) we see that

$$
\begin{gather*}
M\left(\left|\xi_{E}(\omega)-P(E)\right|\right) \leqq \liminf _{n \rightarrow \infty} M\left(\left|\xi_{E}(\omega)-P\left(E \mid \mathscr{G}_{n}\right)\right|\right)+ \\
+\liminf _{n \rightarrow \infty} M\left(\left|M\left(\left(\xi_{1}-\eta_{k}\right) \mid \mathscr{G}_{n}\right)\right|\right)+\liminf _{n \rightarrow \infty} M\left(\left|M\left(\eta_{k} \mid \mathscr{G}_{n}\right)\right|\right) \leqq \varepsilon . \tag{12}
\end{gather*}
$$

Since $\varepsilon>0$ was chosen arbitrarily, the inequality (12) means our assertion:
5. By the aid of the mixing sequences of σ-algebras sequences of random events, which are mixing with density $d(0<d<1)$ can be constructed as follows:

Theorem 7. Let $\left\{\mathscr{G}_{n}\right\}$ be a mixing sequence of σ-algebras and $\left\{B_{n}\right\}$ a sequence of random events, for which $B_{n} \in \mathscr{G}_{n}$, further $\lim _{n \rightarrow+\infty} \dot{P}\left(B_{n}\right)=d$ exists. Then $\left\{B_{n}\right\}$ is a mixing sequence of events with density d.

Proof. Let E be an arbitrary event. By our supposition the condition of Theorem 1 is satisfied. So we have

$$
\left|P\left(E B_{n}\right)-d P(E)\right| \leqq \sup _{B \in \mathscr{g}_{n}}|P(E B)-P(E) P(B)|+P(E)\left|P\left(B_{n}\right)-d\right|
$$

Letting $n \rightarrow \infty$, the limit of the right hand side will be 0 . This proves the theorem.
6. Consider now some consequences of the above results. We say that a sequence $\left\{\zeta_{n}\right\}(n=1,2, \cdots)$ of random variables is mixing if the sequence of the corresponding σ-algebras $\mathscr{G}_{n}(n=1,2, \cdots)$ generated by the random variable ζ_{n} is mixing.

Theorem 8. If the sequence $\zeta_{n}(n=1,2, \cdots)$ of random variables is mixing and η is an arbitrary random variable the ζ_{n} is asymptotically independent of η. If,
in addition, ζ_{n} converges in probability to a random variable ζ, then ζ is constant with probability 1.

Proof. The first assertion follows immediately from Theorem 1. In fact, x and y being arbitrary real numbers, by (4) we obtain if $n \rightarrow \infty$

$$
\begin{aligned}
& \left|P\left(\zeta_{n}<x, \eta<y\right)-P\left(\zeta_{n}<x\right) P(\eta<y)\right| \leqq \\
& \leqq \sup _{B \in \mathscr{S}_{n}}|P(B, \eta<y)-P(B) P(\eta<y)| \rightarrow 0 .
\end{aligned}
$$

From this it follows especially that if ζ_{n} converges in probability to ζ, then for every real x

$$
\lim _{n \rightarrow+\infty} P\left(\zeta_{n}<x, \zeta<x\right)=(\dot{P}(\zeta<x))^{2}
$$

On the other hand, if $\varepsilon>0$ is an arbitrary number

$$
P\left(\zeta_{n}<x, \zeta<x\right)=P\left(\zeta_{n}<x, \zeta<x,\left|\zeta_{n}-\zeta\right|<\varepsilon\right)+P\left(\zeta_{n}<x, \zeta<x ;\left|\zeta_{n}-\zeta\right| \geqq \varepsilon\right) .
$$

The second member on ṭhe right hand side converges to 0 , while the first satisfies the inequality

$$
P\left(\zeta_{n}<x-\varepsilon,\left|\zeta_{n}-\zeta\right|<\varepsilon\right) \leqq P\left(\zeta_{n}<x, \zeta \leqslant x\left|\zeta_{n}-\zeta\right|<\varepsilon\right) \leqq P\left(\zeta_{n}<x\right)
$$

If x and $x-\varepsilon$ are continuity points of the distribution function of ζ, then the right hand side converges to $P(\zeta<x)$ and the liminf of the left hand side of the inequality is greater than $P(\zeta<x-\varepsilon)$. Since $\varepsilon>0$ was chosen arbitrarily, we see that

$$
\lim _{n \rightarrow \infty} P\left(\zeta_{n}<x, \zeta<x\right)=P(\zeta<x)
$$

So we have

$$
P(\zeta<x)=(P(\zeta<x))^{2}
$$

which means that for every real x

$$
P(\zeta<x)=0, \quad \text { or } .1
$$

This proves our assertion.
Theorem 9. Let $\left\{\mathscr{G}_{n}\right\}$ be a mixing sequence of σ-algebras in the probability space $\{\Omega, \mathscr{A}, P\}$. If Q is another probability measure, defined on \mathscr{A}, and it is absolutely continuous with respect to P, then for every event E the sequence

$$
Q\left(E \mid \mathscr{G}_{n}\right) \quad(n=1,2, \cdots)
$$

of conditional Q-probabilities converges in P (and, consequently, in Q)-probability to $Q(E)$, as $n \rightarrow \infty$.

Proof. $Q\left(E \mid \mathscr{G}_{n}\right)$, being conditional Q-probability, is a random variable, which is measurable with respect to \mathscr{G}_{n} and for every $A \in \mathscr{G}_{n}$ we have

$$
Q(E A)=\int_{A} Q\left(E \mid \mathscr{G}_{n}\right) d Q=\int_{A} Q\left(E \mid \mathscr{G}_{n}\right) \lambda(\omega) d P
$$

where $\lambda(\omega)$ is the Radon-Nikodým derivative of Q with respect to P. Now we have

$$
Q(E A)=\int_{A} Q\left(E \mid \mathscr{G}_{n}\right) \lambda d P=\int_{A} M\left(Q\left(E \mid \mathscr{G}_{n}\right) \lambda \mid \mathscr{G}_{n}\right) d P=\int_{A} Q\left(E \mid \mathscr{G}_{n}\right) M\left(\lambda \mid \mathscr{G}_{n}\right) d P
$$

On the other hand for every $A \in \mathscr{G}_{n}$

$$
Q(E A)=\int_{A} \chi_{E} \lambda d P=\int_{A} M\left(\chi_{E} \lambda \mid \mathscr{G}_{n}\right) \dot{d} P
$$

Since the conditional expectation is uniquely determined $\bmod P$, we have with probability 1

$$
Q\left(E \mid \mathscr{G}_{n}\right) M\left(\lambda \mid \mathscr{G}_{n}\right)=M\left(\chi_{E} \lambda \mid \mathscr{G}_{n}\right) .
$$

By Theorem 5 the random variables

$$
M\left(\lambda \mid \mathscr{G}_{n}\right) \quad \text { and } \quad M\left(\chi_{E} \lambda \mid \mathscr{G}_{n}\right)
$$

converge in probability to 1 and to

$$
M\left(\chi_{E} \lambda\right)=\int_{E} \lambda d P=Q(E)
$$

respectively. From this and from the preceding equality our theorem follows.
Corollary. If $A_{n} \in \mathscr{G}_{n}, \lim _{n \rightarrow+\infty} P\left(A_{n}\right)=d$, then under the conditions of Theorem 9 we have for every event E

$$
\lim _{n \rightarrow \infty} Q\left(A_{n} E\right)=d Q(E)
$$

i.e., if a sequence $\left\{A_{n}\right\}$ is mixing with density d in the probability space $\{\Omega, \mathscr{A}, P\}$, then it is mixing with the same density in $\{\Omega, \mathscr{A}, Q\}$ provided that Q is absolutely continuous probability measure with respect to P.

Proof. By Theorem 9, $Q\left(E \mid \mathscr{G}_{n}\right)$ converges in probability to $Q(E)$ and so

$$
\begin{array}{r}
Q\left(A_{n} E\right)=\int_{A_{n}} Q\left(E \mid \mathscr{G}_{n}\right) d Q \rightarrow Q(E) \lim _{n \rightarrow \infty} P\left(A_{n}\right)=d Q(E), \\
\text { as } n \rightarrow \infty, \text { because } \lim _{n \rightarrow \infty} Q\left(A_{n}\right)=\lim _{n \rightarrow \infty} \int_{A_{n}} M\left(\lambda \mid \mathscr{G}_{n}\right) d P=\lim _{n \rightarrow \infty} P\left(A_{n}\right)=d
\end{array}
$$

As another consequence of Theorem 9 we prove now
Theorem 10. Let $\left\{\mathscr{G}_{n}\right\}$ be a mixing sequence of σ-algebras in the probability space $\{\Omega, \mathscr{A}, P\}$ and $\left\{\zeta_{n}\right\}$ a sequence of random variables such that ζ_{n} is \mathscr{G}_{n}-measurable $(n=1,2, \cdots)$. Let further Q be a probability measure which is absolutely continuous with respect to P. If

$$
\lim _{n \rightarrow+\infty} P\left(\zeta_{n}<x\right)=F(x),
$$

where $F(x)$ is a distribution function and the limit relation holds for every fixed x which is a continuity point of $F(x)$, then we have at every continuity point of $F(x)$

$$
\lim _{n \rightarrow+\infty} Q\left(\zeta_{n}<x\right)=F(x)
$$

Remark. Theorem 10 is a generalization of Theorem 3.1 of [5] and of the corresponding theorem of [1], where a similar assertion has been proved for regular sequences of σ-algebras.

Proof. Let x be an arbitrary fixed continuity point of $F(x)$. Then the event $A_{n}=\left\{\omega: \zeta_{n}(\omega)<x\right\}$ belongs to \mathscr{G}_{n}. So by the Corollary to Theorem 9 (putting Ω instead of E) we obtain our assertion.

References

[1] A. Rényi, On mixing sequences of sets, Acta Math. Acad. Sci. Hung., 9 (1958), 215-228.
[2] A. Rényi-P. Révész, On mixing sequences of random variables, Acta Math. Acad. Sci. Hung., 9 (1958), 338-343.
[3] M. Rosenblatt, A central limit theorem and a strong mixing condition, Proc. Nat. Acad. Sci. $U S A, 42$ (1956), 43.
[4] J. L. Doob, Stochastic processes (New York, 1953).
[5] T. Nemetz-Gy. Varga, Határeloszlástételek kiterjesztéséröl, Magyar Tudományos Akadémia III. Oszatály Közleményei, 14 (1964), 416-421.
[6] В. А. Волконский-Ю. А.. Розанов Некоторые предельные теоремы для случайных функций, Теория вероятностей и её применения, 4 (1959), 186-207.
[7] И. А. Ибрагимов, Некоторые предельные теоремы для стационарных процессов, Теория вероятностей и её применения, 7 (1962), 361-392.

