On a classification of primes

By 1. KÁTAI in Budapest

1. Let l, D be coprime natural numbers. The letters $p, p_{1}, \cdots, q, q_{1}, \cdots$ denote prime numbers. Let $\mathscr{A}_{D, l}$ denote the set of those p for which $q \nmid p+1$, if $q \equiv l(\bmod D)$. Let $N(x, D, l)$ be the number of the elements of $\mathscr{A}_{D, l}$ which are smaller than x. It seems to be interesting to know whether $N(x, D, l) \rightarrow \infty$ for $x \rightarrow \infty$ or not. Using the variance-method due to Yu. V. Linnik [1], or the method of C. Hooley [2] combined with Bombieri's large sieve theorem (see [3]), we deduce the inequality

$$
\begin{equation*}
N(x, 4,3) \gg \frac{x}{(\log x)^{4}} \tag{1.1}
\end{equation*}
$$

Sharpening the method of Hooley we are also able to prove that

$$
\begin{equation*}
N(x, D, l) \gg \frac{x}{(\log x)^{4}}, \tag{1.2}
\end{equation*}
$$

provided that there exists some Dirichlet character $\chi(\bmod D)$ such that $\chi(l)=-1$. For the remaining cases we are unable to prove that $N(x, D, l) \rightarrow \infty$ for $x \rightarrow \infty$.

Furthermore, by Selberg's sieve method we obtain

$$
\begin{equation*}
N(x, D, l) \ll x /(\log x)^{1-1 / \varphi(D)} . \tag{1.3}
\end{equation*}
$$

It seems probable that this is the exact order of $N(x, D, l)$.
We shall give a detailed proof of the inequalities (1.1)-(1.2) in another paper. Here we investigate only the special case $l=D-1, D$ prime, and one of its applications.

Let $\varphi(n)$ denote the Euler function, and $\sigma(n)$ the sum of the positive divisors of n. Let $\varphi(n)=\varphi_{1}(n), \sigma(n)=\sigma_{1}(n), \varphi_{k}(n)=\varphi\left(\varphi_{k-1}(n)\right), \sigma_{k}(n)=\sigma\left(\sigma_{k-1}(n)\right)$ for ali $k \geqq 2$.

Let D be a fixed odd prime. We say, that the prime number q belongs to the r th class, if $\varphi_{r}(q) \equiv 0(\bmod D)$ but $\varphi_{k}(q) \not \equiv 0(\bmod D)$, whenever $k<r$. Let $f(D, r, x)$ denote the number of the primes in the r th class smaller than x. Using
the prime-number theorem for arithmetical progressions and the eratosthenian sieve, Erdoos [4] proved that

$$
f(D, 1, x)=(1+o(1)) \frac{x}{(D-1) \log x} ; \quad f(D, 2, x)=(1+o(1)) \frac{D-2}{D-1} \cdot \frac{x}{\log x}
$$

But he has left open the problem whether $f(D, 3, x) \rightarrow \infty$ as $x \rightarrow \infty$.
We formulate now analogous questions for $\sigma(n)$ instead of $\varphi(n)$.
We say, that the prime number q belongs to the r th class, if $\sigma_{r}(q) \equiv 0(\bmod \cdot D)$ but $\sigma_{k}(q) \not \equiv 0(\bmod D)$ whenever $k<r$. Let $g(D, r, x)$ denote the number of the primes in the r th class smaller than x. Using the same method as Erdős, it is easy to see that

$$
g(D, 1, x)=(1+o(1)) \frac{1}{D-1} \frac{x}{\log x} ; \quad g(D, 2, x)=(1+o(1)) \frac{D-2}{D-1} \frac{x}{\log x}
$$

In this paper we shall prove, that $g(D, 3, x) \gg x(\log x)^{-4}$ if $x \rightarrow \infty$. The method cannot be applied to the lower estimation of $f(D, 3, x)$.

Theorem. We have $\quad g(D, 3, x) \gg \frac{x}{(\log x)^{4}}$.
Remark. Sharpening the method we are able to improve this inequality (see [5]).
2. For the proof we need some lemmas.

Lemma:l. (E. Bombieri [3])

$$
\sum_{D \leqq Y} \max _{\substack{l(\bmod D) \\(l, D)=1}} \max _{z \leqq x}\left|\pi(z, D, l)-\frac{\operatorname{li} z}{\varphi(D)}\right|<\frac{x}{(\log x)^{A}},
$$

where

$$
Y=x^{1 / 2}(\log x)^{-B}, \quad B \geqq 4 A+40,
$$

A being an arbitrary constant.
Let $\chi(n)$ denote a character $\bmod D$ such that $\chi(-1)=-1$. Let further

$$
r(n)=\sum_{d \mid n} \chi(d)=\prod_{p^{\alpha}| | n}\left\{1+\chi(p)+\cdots+\chi\left(p^{\alpha}\right)\right\}
$$

Let

$$
K(x)=\sum_{\substack{q \leq x \\ q \neq-1(\bmod D)}} r(q+1)|\mu(q+1)|
$$

Using the method of C. Hooley [2] combined with the theorem of Bombieri (Lemma 1), we can prove the following

Lemma 2. $K(x)=A_{D} \operatorname{li} x+O\left(\operatorname{li} x \cdot(\log \log x)^{-x}\right)$, where $\alpha>0, A_{D} \neq 0$ are suitable constants.

We shall give a detailed proof of this assertion in another paper.
Lemma 3. Let $N(k, x)$ denote the number of the couples of primes satisfying the conditions $p+1=k q, p \leqq x$. Then

$$
N(k, x) \ll \frac{x}{\varphi(k) \log ^{2} \frac{x}{k}} .
$$

For the proof see Prachar [6] p. 51, Theorem 4.6.
Let

$$
M(x, y)=\sum_{n \leqq x}^{\prime}|r(n)|
$$

where the dash means that we sum over those n all prime divisors of which are smaller than y.

Lemma 4. We have

$$
M(x, y)<x \exp \left(-\frac{\log _{3} y}{\log y} \log x+c \log _{2} y+O\left(\frac{\log _{2} \dot{y}}{\log _{3} y}\right)\right),
$$

when $1<y(x)<x ; y(x) \rightarrow \infty$ as $x \rightarrow \infty ; c=\sqrt{2}\left(1-\frac{1}{D-1}\right)^{1 / 2}$.
The proof is similar to the proof of Rankin's theorem (Prachar [6], p. 158) and so we omit it.

Let $f(n)$ be a totally additive arithmetical function defined as follows:

$$
f(p)=\left\{\begin{array}{ll}
1 & \text { when } y<p<x^{1 / 3} \\
0 & \text { otherwise }
\end{array} \text { and } p \equiv-1(\bmod D)\right.
$$

Using Bombiert's theorem, we obtain:
Lemma 5. We have
where

$$
\begin{gathered}
\sum_{q \Xi x}\left\{f(\dot{q}+1)-A_{x, y}\right\}^{2} \ll \operatorname{li} x \cdot A_{x, y} \\
A_{x, y}=\sum_{\substack{y<p<x^{1 / 3} D \\
p \equiv-1(\bmod D)}} \frac{1}{p}
\end{gathered}
$$

Corollary. If $\frac{\log x}{\log y} \rightarrow \infty$, then the number of those q for which $f(q+1)=0$ is at most $o(\operatorname{li} x)$.

Lemma 6. $\quad \sum_{q \leqq x}\left|r^{2}(q+1)\right| \ll x \log ^{2} x$.
The proof is simple and can be omitted:

3. Proof of the Theorem

The letters ${ }_{j}, q, Q, p_{1}, p_{2}, \cdots, q_{1}, q_{2}, \cdots, Q_{1}, Q_{2}, \cdots$, denote prime numbers.
Let \mathfrak{Q}_{r} denote the set of those q which belong to the r th class. It is evident that those q in the sum $K(x)$, for which

$$
r(q+1) \mu(q+1) \neq 0
$$

are not belonging to the classes $\mathfrak{N}_{1}, \mathfrak{H}_{2}$. Indeed, if $r(q+1) \mu(q+1) \neq 0$, $q \not \equiv-1(\bmod D)$ then

$$
\begin{equation*}
q+1=q_{1} q_{2} \cdots q_{r},\left(q_{1}<\cdots<q_{r}\right) \quad \text { and } \quad \chi\left(q_{i}\right) \neq-1 \tag{3.1}
\end{equation*}
$$

i.e. $q_{i}+1 \neq 0(\bmod D)$.

If for a q, represented in the form (3.1), there exists a Q, such that $Q \equiv-1(\bmod D) \quad$ and $\quad \sigma(q+1)=\left(q_{1}+1\right) \cdots\left(q_{r}+1\right) \equiv 0(\bmod Q)$, but $\{\sigma(q+1) \not \equiv$ $\not \equiv 0\left(\bmod Q\right.$ then $q \in \mathfrak{N}_{3}$.

Let

$$
\begin{equation*}
z_{0}=(\log x)^{5}, z_{1}=z_{0}^{\log _{2} x}, z_{2}=x^{1 / \log _{2} x} . \tag{3.2}
\end{equation*}
$$

Let S_{1} denote the set of those q which are represented in the form (3.1), and for which there exists a prime number $Q, Q>z_{0}, Q \equiv-1(\bmod D)$ such that

$$
\sigma(q+1) \equiv 0\left(\bmod Q^{2}\right)
$$

Let S_{2} denote the set of those q for which

$$
\sigma(q+1) \not \equiv 0(\bmod Q)
$$

if $Q>z_{0}$ and $Q \equiv-1(\bmod D)$.
Let

$$
\begin{equation*}
S_{i}(x)=\sum_{\substack{q \leq x \\ q \in S_{i} \\ D+q+1}}|r(q+1)||\mu(q+1)| \quad(i=1,2) \tag{3.3}
\end{equation*}
$$

and let

$$
A_{3}(x)=\sum_{\substack{q \leq x \\ q \in Q_{3}}}|r(q+1)||\mu(q+1)|
$$

Obviously

$$
\begin{equation*}
A_{3}(x) \geqq|K(x)|-\left|S_{1}(x)\right|-\left|S_{2}(x)\right| . \tag{3.4}
\end{equation*}
$$

Lemma 7. We have

$$
\begin{equation*}
S_{1}(x)=o(\operatorname{li} x) \tag{3.5}
\end{equation*}
$$

$$
\begin{equation*}
S_{2}(x)=o(\operatorname{li} x) \tag{3.6}
\end{equation*}
$$

Proof. Since $|r(m)| \leqq d(m)$, where $d(m)$ denotes the number of divisors of m, so we have $S_{1}(x) \ll \sum_{1}+\sum_{2}$ with

We obtain evidently, that

$$
\sum_{1} \ll x \log x \sum_{z 0<Q \leqq x} \sum_{\substack{q_{1} \equiv q_{2} \equiv-1(Q) \\ q_{1}, q_{2} \Xi x}} \cdot \frac{1}{q_{1} q_{2}} \ll \frac{x(\log x)^{3}}{z_{0}} \ll \frac{x}{\log ^{2} x}
$$

Similarly, we have

$$
\sum_{2} \ll \sum_{z 0<Q \leqq x} \frac{x \log ^{3} x}{Q^{2}} \ll \frac{x}{\log ^{2} x}
$$

and so (3. 5) is proved.
In order to prove (3.6), let

$$
S_{2}(x)=S_{3}(x)+S_{4}(x)
$$

where in $S_{3}(x)$ we sum over those $q+1$ the greatest prime divisor of which is smaller than z_{2}, and in $S_{4}(x)$ over the others.

Using Lemma 4, we easily deduce that

$$
S_{3}(x) \leqq M\left(x, z_{2}\right) \ll \frac{x}{\log ^{2} x}
$$

We consider now $S_{4}(x)$. For the q occurring in the sum $S_{4}(x)$ let $q+1=$ $=A(q) B(q)$, where

$$
A(q)=\prod_{\substack{p \mid q+1 \\ p \leqq z_{1}}} p, \quad B(q)=\prod_{\substack{p \mid q+1 \\ p>z_{1}}} p
$$

Let p^{*} denote the maximal prime divisor of $q+1$, and write

$$
B^{*}(q) \cdot p^{*}=B(q), \quad A(q) B^{*}(q)=k
$$

Since, for a fixed k, by Lemma 3 it follows that

$$
\sum_{A(q) B^{*}(q)=k} r(q+1) \ll|r(k)| N(k, x) \ll \frac{|r(k)|}{\varphi(k)} \frac{x}{\log ^{2} \frac{x}{k}}
$$

so we have

$$
\begin{aligned}
& S_{4}(x) \ll \sum_{k \leq \frac{x}{z_{2}}}|r(k)| N(k, x) \ll \frac{x\left(\log _{2} x\right)^{2}}{\log ^{2} x} \sum_{k \leq \frac{x}{z_{2}}} \frac{|r(k)|}{\varphi(k)} \ll \\
& \ll \frac{x\left(\log _{2} x\right)^{2}}{\log ^{2} x} \prod_{p \leqq z_{1}}\left\{1+\frac{|r(p)|}{p-1}\right\} . \prod_{\substack{z_{1}<p \leq x \\
p \in \mathcal{F}}}\left\{1+\frac{|r(p)|}{p-1}\right\} .
\end{aligned}
$$

Here \mathscr{T} denotes the set of those p for which $p+1 \not \equiv 0(\bmod Q)$, if $Q \equiv-1(\bmod D)$ and $Q>z_{0}$.

Obviously

$$
\prod_{p<z_{1}}\left\{1+\frac{\mid r(p)}{p-1}\right\} \ll\left(\log z_{1}\right)^{2} \ll\left(\log _{2} x\right)^{4}
$$

Furthermore, applying Lemma 5 and the Corollary to $y=z_{0}, u \geqq z_{1}$, we have

$$
\log \prod_{\substack{z_{1}<p \leq x \\ p \in \mathscr{T}}}\left\{1+\frac{|r(p)|}{p-1}\right\}<2 \sum_{2^{v} \leqq \frac{x}{z_{1}}} \sum_{\substack{2^{v} z_{1}<p \leq 2^{v+1} \\ p \in \mathscr{T}}} \frac{1}{p}<\varepsilon \log _{2} x,
$$

whence it follows

$$
\prod_{\substack{z_{1}<p<x \\ p \in \mathscr{T}}}\left\{1+\frac{|r(p)|}{p-1}\right\} \ll(\log x)^{\varepsilon}
$$

So (3. 6) holds.
Taking into account the inequality (3.4), from Lemma 2 and Lemma 7 it follows that

$$
A_{3}(x) \gg \operatorname{li} x
$$

Using the Cauchy-Schwartz inequality and Lemma 6, we obtain

$$
\cdot \frac{x}{\log x} \ll A_{3}(x) \ll\left\{\sum_{\substack{q \leq x \\ q \in \mathscr{R}_{3}}} 1\right\}^{1 / 2}\left\{\sum_{q \leq x}\left|r^{2}(q+1)\right|\right\}^{1 / 2} \ll g(D, 3, x)^{1 / 2} \cdot x^{1 / 2} \log x .
$$

Hence the assertion of the Theorem evidently follows.

Refereces

[1] Ю. В. Линник, Дисперсионный метод в бинарных аддитивных задачах, Изд. Ленинградского Университета, 1961.
[2] C. Hooley, On the representation of numbers as the sum of two squares and a prime, Acta Math., 97 (1957), 189-210.
[3] E. Bombieri, On the large sieve, Mathematika, 12 (1965), 201-225.
[4] P. Erdős, Remarks on number theory. II, Mat. Lapok, 12 (1961), 161-169 (in Hungarian).
[5] I. KÁtal, Statistical theorems for the number of prime factors of integers, unpublished.
[6] K. Prachar, Primzahlverteilung (Berlin-Heidelberg-Göttingen, 1957).

