
On a classification of primes 
By I. KATAI in Budapest ' 

1. Let 1, D be coprime natural numbers. The letters p,pi, •••,q,qi, ••• denote 
prime numbers. Let s$D , denote the set of those p for which q\p +1 , if q = I (mod D). 
Let N(x, D,l) be the number of the elements of which are smaller than. x. 
It seems to be interesting to know whether N(x, D, /) — °° for x — or not. Using 
the variance-method due to Yu. V. LINNIK [1], or the method of C. HOOLEY [2] 
combined with BOMBIERI'S large sieve theorem (see [3]), we deduce the inequality 

( 1 . 1 ) J V ( x , 4 , 3 ) » * (log x)4 ' 

Sharpening the method of HOOLEY we are also able to prove that 

x 
(1-2) N(x,D,[)>> (log x)4 

provided that there exists some Dirichlet character x (mod D) such that / ( / ) = — 1. 
For the remaining cases we are unable to prove that N(x, D, — for x->-°°. 

Furthermore, by SELBERG'S sieve method we obtain 

(1.3) N(x,B,l)«x/(logxy-1^D\ 

It seems probable that this is the exact order of N(x, D, I). 
We shall give a detailed proof of the inequalities (1.1)—(1.2) in another 

paper. Here we investigate only the special case l=D — 1, D prime, and one of 
its applications. 

Let <p{n) denote the Euler function, and a{n) the sum of the positive divisors 
of n. Let cp(n) = cp^n), a(n) = a^n), <pk{n) = (p{(pk_l(n)), ok(n) = a{ak.l(n)) for an 

2. 
Let D be a fixed odd prime. We say, that the prime number q belongs 

to the rth class, if <pr(<¡r) = 0 (mod D) but cpk(q) ^ 0 (mod D), whenever k < r . Let 
/ (D, r, x) denote the number of the primes in the rth class smaller than x. Using 
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the prime-number theorem for arithmetical progressions and the eratosthenian 
sieve, ERDÔS [4] proved that 

But he has left open the problem whether f(D, 3, 'x)—<*> as x — » , 
We formulate now analogous questions for <j(n) instead of <p(n). 
We say, that the prime number q belongs to the rth class, if or(q) = 0 (mod D) 

but ok(q)^0 (mod D) whenèver k<.r. Let g(D, r, x) denote the number of the 
primes in the rth class smaller than x. Using the same method as ERDÔS, it is easy 
to see that 

g(D, l,x) = ( 1 + 0 ( 1 ) ) ^ ^ - ; g ( A 2 , x ) = ( l + c d ) ) ! ^ ^ - . 

In this paper we shall prove, that g(D, 3, x ) » x (log x)~4 if x — «>. The method 
cannot be applied to the lower estimation of / ( D , 3, x). 

Theorem. We have g{D, 3, x)s> (log x)4 ' 

R e m a r k . Sharpening the method we are able to improve this inequality (see [5]). 

2. For the proof we need some lemmas. 

L e m m a ; ! , (E. BOMBIERI [3]) 

li z 2 __ max max 
DSY I (mod D) z S x 

( 1 , D ) = 1 
where 

n(z,D,l)- <p(D) (log x)^ 

Y = x1/2(logx)"B, B ^ 4A + 40, 

A being an arbitrary constant. 

Let y(ri) denote a character mod D such that y(— 1) = — 1. Let further 

r(n) = Zl(d)= U{\+y(p)+...+x(p°)}. 
d\n p*. n 

Let 
K(x)= 2 r(q + \)\n(q+l)\. 

( S I 
« ^ - l ( m o d £ > ) 

Using the method of C. HOOLEY [2] combined with the theorem of BOMBIERI 
(Lemma 1), we can prove the following 

Le mma 2. K(x) = AD li x + 0(l ix-( log logx) where a > 0 , AD^0 are 
suitable constants. 
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We shall give,a detailed proof of this assertion in another paper. 

L e m m a 3. Let N(k,.x) denote the number of the couples of primes satisfying 
the conditions p + 1 = kq, pSx. Then 

N(k, x) <s 
cp(k) l o g 2 -

k 

For the proof see PRACHAR [6] p. 51, Theorem 4. 6. 
Let 

M(x,y) = Z'Hn) |, 

where the dash means that we sum over those n all prime divisors of which are 
smaller than y. 

L e m m a 4. We.have 

M(x, y) c x exp ^ log x + c log2 y + O Í ^ 
log y U o g 3 j 

/ - ( l Y /2 
when 1 < J > ( X ) < X ; X X ) - " - ^ as x-+c=\2 II — ——-J . 

The proof is similar to the proof of RANKIN'S theorem (PRACHAR [6], p. 158) 
and so we omit it. 

Let f(ri) be a totally additive arithmetical function defined as follows: 

{1 when y < p < x1 / 3 and p = — 1 (mod D), 
0 otherwise. 

Using BOMBIERI'S theorem, we obtain: 

Lemma 5. We have 

2 { / ( ? + 1) ~ A y } 2 « li * • AX.y > 
q^x 

where Ax y = Z ~ • 
y<P<Xi/3 P 

p = - l ( m o d D ) 

j o g X 

Coro l l a ry . If ^ num^er °f ^ose q for which f(q+1)==0 

is at most o(li x). 
L e m m a 6. 2 l r2(# +1)1 ^ xlog2 x. 

1SX 

The proof is simple and can be omitted: 

14 A 
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3. Proof of the Theorem 

The letters q, Q,pi,p2, •••, ?2> Si> 62. •"» denote prime numbers. 
Let 21, denote the set of those q which belong to the rth class. It is evident 

that those q in the sum K(x), for which 

r{q + I) ti(q+1)^0, 

are not belonging to the classes 9Ii ,9l2 . Indeed, if r(q +1) p(q+1)^ 0, 
q - 1 (mod D) then 

(3.1) 9 + 1 = ?i92—9r. and x(S.) ^ 

i.e. 9 i + M 0 ( m o d D ) . 
If for a q, represented in the form (3. 1), there exists a Q, such that 

Q = — I (mod D) and a{q+ 1)= (ft + l ) - ( i r + 1) = 0 (mod Q), b u t [ < r ( 9 + l ) ^ 
^ 0 (mod Q then <7 € 2l3. 

Let 
(3.2) z0 = (log x)5, Z l = z'o082 x, z2 = x 1 / l o g 2 V 

Let St denote the set of those q which are represented in the form (3.1), and 
•for which there exists a prime number Q, Q>z0, Q = — 1 (mod D) such that 

. a(q.+ 1) = 0 (mod Q2). 

Let S2 denote the set of those q for which 

a(q + 1)^0,(mod Q), 

if Q>z0 and Q = — 1 (modD). 
Let 

(3.3) •sl(x)= 2 Kq + mKq+V\ •0' = -l,2), 
q^x 
4 €S( 

D+q+1 

and let A3(x) = 2 H<? +1)| !/*(<? +1)|. 
qSx 

qii 13 

Obviously 
( 3 . 4 ) A3(x) S | ^ ( x ) | - | S i ( x ) | - | S 2 ( x ) | . 

Lemma 7. We have 
(3.5) 51(x) = o(lix), 

(3. 6) S2(x) = o(li x). 
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Pr oof. Since \r(rn)\=d(jn), where d(m) denotes the number of divisors of 
m, so we have S ^ x ) « : 2 i + 2 2 with 

2i= 2 2 d(qlq2m), 2 2= 2 2 d(qm). 
zo <Qsx qi=qz = - l ( m o d Q) zo < Q S x 4 = - l ( m o d Q 2 ) 

Q = — l ( m o d D) Q = — 1 (mod D) g a x 

We obtain evidently, that 

X7 1 -v -v 1 x(logx)3 x 
¿J 1 XlogX 2J 2J —5—. 

z 0 <esi i i E f t = - l ( 0 ? l 9 2 zo iogzx 
91, qiSx 

Similarly, we have 

2 2^ 2 
zo<QSx 

X log3 X X 
<3C 

Q2 ~ log2 x 
and so (3. 5) is proved. 

In order to prove (3. 6), let 

S2(x) = S3(x) + S4(x), 

where in S3(x) we sum over those q +1 the greatest prime divisor of which is 
smaller than z2, and in S4(x) over the others. 

Using Lemma 4, we easily deduce that 

x S3(x) S M(x, z2) « log2 X ' 

We consider now S4(x). For the q occurring in the sum S4(x) let q+ \ 
= A(q)B(q), "where 

A(q)= II P, B{q)= IJ P• 
P |«+i p\Q+I 
P S2, P>ZL 

Let p* denote the maximal prime divisor of #+1 , and write 

B*(q)-p* = B(q), A(q)B*(q) = k. 

Since, for a fixed k, by Lemma 3 it follows that 

2 r(q+l)«\r(k)\N(k,x)« 

so we have 

A(.q)H'(q)=k ' <p{k) jog2^ 

fcS— ki— 
Z 2 

2 
<<: x(log2 x) 

log2 X 
PI9-



212 I. Katai: On a classification of primes 

Неге У denotes the set of those p for which p+ 1 ^ 0 (mod Q), if Q = — 1 (mod D) 
and Q > z 0 . 

Obviously 

П { i + ~ l } « o ° g « 0og2 

Furthermore, applying Lemma 5 and the Corollary to y = z0, we have 

log П + 2 ^elog2X, 
ZKPSX I P~L ) * 2VZ1<PS2V+'Z1 P 

p£3- • 2 ~Ti РЫ 

whence it follows 
П { l + ^ f } « ( l 0 8 ^ . 

zi<p<x I P 1 J 

So (3. 6) holds. 
Taking into account the inequality (3.4), from Lemma 2 and Lemma 7 it follows 

that 
Л 3 ( х ) » Н x . 

Using the Cauchy—Schwartz inequality and Lemma 6, we obtain 

« A3(x) « ¡ 2 1 }1/2 { 2 Ir2(q + 1)|}1/2 « g(D, 3 , . x ) ^ • x^ l o g ' 

1«€91з J 

Hence the assertion of the Theorem evidently follows. 
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