On oscillatibn of the number of primes in an arithmetical progression

By I. KATAI in Budapest

1. J. E. LirtLEWoOD [1] proved — in the contrary to an assertion of RIEMANN —

that, for a suitable sequence x] < x5 < ... of ‘integers, the inequality

n(x;) = lix,
holds. SKEWES [2] has obtained an upper bound for the first x for which the difference
n(x)—1li x is positive, namely exp exp exp exp (7,705). Later S. KNAPOWSKI [3]
— using the ideas of P. TURAN — gave another proof of this fact. In the last year,
S. LEHMAN [4] gave a better upper bound, namely 1,65-10'1¢,

Recently S. KNAPOWSKI and P. TURAN gave an explicit, localized Q. estimation
for the difference n(x, 4, 1) — 1 li x, where, in general, n(x, k, /) denotes the number
of primes in the arithmetical progression =/(mod k) not exceeding x.

The investigation of the oscillation behavior of =n(x, 4,3)—41i x is a simpler
case. However, for this we need another method.

In the following, ¢, ¢y, ¢y, ..., 0 Will denote explicitly calculable numerical
constants (e.c.n.c.), not the same in every place. e,(x) means e* and e,(x)=
=e,(e,,(x)), further log; x=logx and log, x=1log (log,—; x). Throughout the
paper the letter p is preserved for primes.

We shall prove the following

Theorem 1. For every T=c, we have

n(x,4,3)— —11x _ n(x.4,3)— —llx

max — >§, min — - =35
T=x=T* ]/x/logx T=x=T* ]/x/log X ?

where 6 and c, are e. c. n. positive constants and %—-(2—{- V_)2

In their papers [5], [6] KNAPOWSKI and TURAN dealt with the oscillation behawor
of the functions

a@)= 3 logp-e ™~ 3 logp-e 7,

p=lIy(mod 8) p=1l2(mod8)

bx)= 2 eF— 3 e,
p=l;(mod 8) p=lz(mod 8)
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In [5] they proved that if 0<d<c,, then for /;#/, 1 (mod 8) we have

L
max —
sxx=a13 a(x) g V5 [

22108(1/5) -logs(1/3))
log, (1/6) ’

where ¢, is an ¢. ¢. n. c. In [6] they proved that for /,, 12 =3,5,7 (I, #1],) we have

max lb(x)l
d=x=813 V

1 [ 53 10g(1/9)- 1083(1/5)]
log,(/%) |’
The authors remarked: “To the more difficult problem of one-sided theorems
(for b(x)) we hope to return.” This problem seems still to be open.
From our Theorem 5 it follows that, for 0<y<cand forall /; 2/, #1 (mod 8),
the inequality -
max b(x) Vx log(l/x) > 6
y¥=x=
holds, where »=(2+ V3)2
We formulate now some theorems the proofs of whlch are similar to the proof
of Theorem 1.
Let N,(!) denote the number of solutions of the congruence x%=/(mod k).
For the moduli £ in
A 3,4,56,7,8,9,10,11, 12, 19, 24,

—

the position of the zeros of L(s, ) for all y (mod k) is known in the neighbourhood
of the real line. Especially, it was proved by HASELGROVE, that the L(s, ¥) are non-
vanishing on the real line in the critical strip.

Theorem 2. For k in (A) and for all of those pairs 1,1, for which N(l,))= "
=N(l,), I, 21, (mod k), we have

nlx, k, 1) —n(x, k, lz) min alx, k,1)—n(x, k,1,) B

T_S_vsr* Vx/log x T=xsT*" ]/)?/logx

._5,

if T>c, where x=(2+l/§)2, ¢ and & are e. c. n. positive constants.

Theorem 3. For all k in (A) and for all 1 for which Nk(l) 0, we have the in-
equalmes

7r(x k,)— lix n(x,k,1)— lix
o) - (k)
_ max —————————>6, min . < —90,
Tsxs=T* Vx/logx T=xsT* Vx/logx

whenever T=>c, where & and ¢ are e. c. positive numerical constants.
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Let

—-nfx

ox,k, )= 2 e P, S(X) 2

p=l(modk) n=2 logn
The following assertions hold.

Theorem 4. For every k in (A) and for all I for which N(I)=0, we have

G(x’ k: l)_S((;Cc)) . G(X, k9 l)_ S(()IC())
max — id >0, min —_—(p <=0
T=xsT*  Jx/logx Tsxs* Jx[log x

if T>c, where » =(2 +V3)?, further ¢ and & are e. c. positive numerical constants.

Theorem 5. For every k in (A) and'al-l'll, 1, for which N(1)=N,(,), I, #Z1,
(mod k), we have _ '
max U(x5 k, ll_)"'o-(x3‘k: 12) -5
T=x=T* Vx/logx ’

if T>c, where x=(2+V3)? further ¢ and ] are positive e. c. n. c.

The method of the p‘roofs of our Theorems is the same as was elaborated for
the omega-estimation of M(x)= 2 u(n) in my dissertation [7] and in the paper [8]

n=x .

However we use here an idea of RODOSSKY in a deeper form [91.

2. Some lemmas.

Lemma 1 If

F(W) = £

is absolutely convergent. for ¢ =g, then

@.1) 3 aye, [—j°gz"’] ifu / F(w)el(wzu)dw
. n=1 4ll . V -

For the proof see [9].

Lemma 2. [9] For 0<a=1 and u— o,

2.2) —21—/ “log x- el[

2 _ '
lo ffux]dx = 2Vmu e, (@ u) + O(1).
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Lemma 3. [9] Let u=1 and y, z be defined by

@324  logy="u [1 —V;] logz = 2u [1 + V3]

y - ' .
' v - ' -1/2 log? x
2.5 5 /x log x el[ T dx < ce,
1 .
(2.6) . —~/ “121og x- el[ l4 ]dx<ce1[ ]
Lemma 4. Let

2.7 Rw) = f—Q /log [w—l] e (Wru)dw.
: Yn ( 2

2)

The following inequalities hold:

A|:

-z:-l:

Then .
|R(w)| > ch:e1<u/4), if u>c,.

Proof. Using the well-known formula

oo

logs = /e.—-;e——dv (Res = 0)
0
due to EULER, we obtain that

R(w) = ﬁ // el(—u)me,v(-—(w-%)u) dve,(W*u)dw =

)o

= ﬁf[—e v+ —32—4-2 Ll
N ! “Ua T2 o
0
1. . 3 ’
T v v : dv dv
/[el [—E-{_f] —e,(—-v)]—v— <c¢ and /el(—v)7<c,
0 , : 1

the inequality

Since

oo

Rl(u)‘li_f/e, [—Z—Z—l——;—]% =.R(u)+0(1)

‘1
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holds. Substituting e,;(v) =x we obtain
_ log?x) x~ 2% .
R _/el [— 4u ] log x ax,

log? x

thus .

R,(u) = 2u(logz)~? —/ [ ]logx-x‘”zdx?_
= cu (logz)‘2 Vi ey (ujd) = ce, (u/d)-u=112, c#O.

(See Lemmas 2, 3 and (2l. 4).) Hence the assertion follows.
From Lemma 4 one can deduce the following

Lemma 5. Let

(2.9) Ju) = Vu /log (w— DIrw)e, (w?u)dw.

n

2)
Then '
(@) = ce,(u/du=1?, ¢=0.

Proof. Let L denote the broken line with vertices.1 —ico, 1 —i-2, 1/4—i-2,
Y4+i-2,1+i-2, 1 +i-e. Let I'w)=I(3)+ ¢(w). So the inequalities
2.9 lo(w)|=clw—1/2],  [log (w—He(w)|<clw—F>*

hold on the line L. Let now

log(W—1)e, (Wru)dw + iVLE/(p(W) e (W2 u)log(w—1) dw.
o .
1)) L

From (2.9) it follows that the absolute value of second integral is majorized by
ce,(uldu=!. For the first integral we use Lemma 4, and we obtain the assertlon
stated in Lemma 5.

3. Let us now introduce the following notations:

(3.1-(3.2) &)= 3 p ogs) = ! 5 logn)‘
p=3(mod 4) n=2
(3.3) F(s) = f(s)—g(s) = =ZwZ—

whére the coefficients a, of 'F(s) are defined by

1—%(ogn)~', if n=p=—-1(mod4), p prime
3.4 = 2% ’ ’ P s
G- a,, {——%(log n)~'  otherwise.
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Let {(s) be the Riemann zeta-function and let

L(S,X): S—i

w=o Qn+1)"
We have evidently that
C (5)
(3.5) £5) = 3108 £+ o)

where A(s) is_a function represented by an absolutely convergent Dirichlet series
in the halfplane Res>1/3 and hence regular. ’

Further we have d§—§)= —{( apd 0 %(g(s)+log (s=1) = =) +S—_I—T .
Since the right hand side is an integral function, so is g(s)-+log (s—1) regular
on the whole plane. Hence it follows that F(s) is regular at the point s=1. Further
it 'is known that in the domain O<o<1,0=¢=10, 24 the function L(s, y) has

a unique simple zero, namely at the point

(3.6) e=%+i6,02...=%+i-y.
In this domain {(s) is hpn-vanishing.
Let now
(3.7) I(r) = l—‘/i /.F(w+1‘r) e (wru)dw,

7
(2)
where t is a real number.

We shall now give an upper estimation for (3.7) in the special cases 1=0
and T=y.
" Let I' denote the broken line with vertices 1,5—i-o0; 1,5—4i; 0,4—4i;
- 0,44+4i;1,5+4i; 1,5+i-o. For the estimation of I(0) we transform the integration
line in (3.7) to I and we obtain

(3.8) [1(0)| < ce, (0,16 -u). -

Choose now t=1y. Then the function F(w+1y) has a logarnthmlc singularity at the
point w=1/2 and
. Fw+iy) = —log(w—3) + F,(w),

where F,(w) is a regular functlon on the broken line I and on the right hand side of I.
So we have

I(y) = £ F (w)e, (W u) dw }}/— /log [w— l] e, (W u) dw = P(u)— R(u).
. r T .

)
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For P(u) we have the estimation |P(u)| < ce, (0, 16u). From Lemma 4

' _ cel(u/4) i
IR_(M)I TR

follows. So we have

(3.9) T eIy

Vu
- 4. Let now , : o
(41) . . A(x) = Z ana :

where the a, are defined by (3. 4). It is evident, that
4.2) Con(x,4,3)—%lix = AX)+0(1).
From Lemma 1 it follows that the I(r) in (3. 7) can be represented as

oo lngn .
I(v) = n;’za,,el [— 4u —-nlogn].

By partial integration follows:

oo

‘ | | L )
4.3) I(t) = / A(x) x~ [l—‘;i—)‘wr] e [—IOi‘? —it logx]dx.
| J ,

Let further I(z, 1, y), I(z, y, z), I(z, z, =) denote the integral on the right hand
side extended for the intervals [1, y], [y, z], [z, <], respectively. Let the values Y,z
be choosen as in (2. 3), (2. 4). Using the trivial estimation |A(x)|<cx (log x)~*!
we have : : ‘

. ¥y ’ '
o : : 2 :
e 1)< ¢ | dog B 4| e [—‘°g "] dx

=
4u -
' 2 : 5 - logy
- 1 log? x _ | _, £2
=C(.1+|T|)/logxe1 [—_ ™ ]dx—c(l+|rl) / t el{t-E dt
2 . log2 .

and by partial integration,

, | ,
1 log?x] ,
/ e [— iu ] dx < cu‘le;(u/4).

log x

Hence ‘ : .
(4.3) - M@ Lyl < c+]thu"ei(u/4)
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follows. Using similar computations we obtain
.4 11,2, )| < e+ e u" e, (w/4).

Let now assume that for a fixed positive é one of the inequalities

. 5 x1/2
4.5 N yI::i;(z A(x)— Togx =0,
) _ A
4.6) min [A(x)+5 ] =0
: y=sx=z x

holds. Using this assumption we obtain such an inequality for I(y) and I(0) which
contradicts (3. 8), (3.9).

Indeed, we have
1/2

» A(x)j; “logx logx‘ . log? x
I(t,y,2)] = / po » +it|e, [— 5 ]dx +
v ,
+5/1c:g1/): lozgux +it »ell[—%—x—] dx.
Using the inequality .
102gx+lT <c(l+t |)logx

~and our assumption, i.e. that one of the functions

x1/2

AX)+ 5 Togx

has constant sign on the interval [y, z], we have

—1 2 2
(z, 7, 2)| = e(L+]e)T(O, y,2)+c5(1+lrl)/l ogx 1[—10§ux] dx.

For the integral on the right hand side we have

x~12 log?x cf —12 [ log? x] -
flogx e, [— 0 ]dx‘<71 x~12e, 1 dx l/_el(u/4)

by Lemma 2. Hence

Lz, y, 2)| < (1 + ) MO, 3, 2)] + c6(1 + [1]) e, (ufdu~*
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and by (4. 3), 4. 4)
@n @l =<cl+]) {11(0)1 +5

el(u/4) el(u/4)}
Vu u

Let now t=7. Taking into account the inequalities (3. 8), (3. 9) we get
ciuV2e (/) < c, ‘e1(0,16a'z) +8c,u~V2e (u/d) +csu~ " ey (u/4),

where ¢; >0. This is impossible if 8<c,/c, and u is sufficiently large. Hence it
follows that the inequalities cannot hold, i.e. we have

max ————A(.X)I_ng > 9, n *_AA(x)l_ogx <

. y=x=z Vx yEx=z Vx

-5,

if u=c.
Taking into account that

A(x) = n(x,4,3)—1lix+0(1),
and that z=y* Theorem 1 follpws.

5. Tn this section we give a sketch of Theorem 5 in the special case . k=8
We shall use the following generalization of Lemma 1. ' :

Lemma ‘6. Lé't
.1) ()= [xdA )

absolutely and uniformly convergent in the halfplane 6 >o0(>0). Then

oo

(5.2) e, _log?x Ay = 1% Vu h(wyey (w2u) dw.
™ Va
: 1 (o) .

The proof of this Lemma is very similar to that of Lemma 1 and so can be
_omitted.

Let /;, I, be two different among the numbers 3,5,7, further let g, be defined
by the relation

1, if p=1I (mod8),

(5.3) : g, =y—1, if p=1I,(mod8s),

' 0 otherwise,
and let

G.H—-(5.5 g = %‘1 s,(x)'= o(x,8,1))—0(x,8,1,) =3 g,e”?*,

s ?
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Using a well-known relation we have

(5.6) T()g(s) = / 1 Se,emdy = f o) ax / f = 1)+ h(s).

Here the function /(s) is regular in the halfplane Re s=0>0 and |I(s)] <c if 6 =1/10,
because |s(x)| <c in the interval 0=x=1. Using now Lemma 6 with

: s(x ‘ s(x

5.7 dA(x )——l(g;dx, h(s) = /x‘(+2 X,
we obtain .

e - ‘. _ _
(5.8) /e1 [_loiux —itlog x]. s(x)fixi = ll}/u /h(w+zr) e, (w? u) dw.

I "o .

Let us now introduce the following notations:
b
. ‘ _ log?x . . dx
5.9 I(z,a, b) f/el [———4u——nlogx] S(X)T’
(5.10) K@) = i fh(»v+ir)el(w2u)d;v.
o V= Q)

In the proof an essential role is played by some numerical data due to P. C.
HASELGROVE (see S. KNAPOwsKI and P. TURAN [5], p. 254). Let '

. . R 1 1 1 1
L(S’Xl)ggo{(sw RGO @n+5y (8n+7)s} ’

ef S 1 1
L(S, xz)gng{(4n+l)s - (4n+3)s}’

< 1 -1 1 1
G ?‘3)9“6‘{";; {(8n+ ° " @nr3r  @GatsyF T (8_n+7)s}'
Then in the domain ) :
O<o<l, t|=12
the zeros of L(s, x,) are

+4+4-4,899..., ++i-7,628..., $+i-10, 806...

those of L(s, x,)
' $+2.6,020..., 1+42-10,243...,
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and those of L(s, x3) :
‘ 5 +i.3,576..., ++i-7434..., ++i-9,503....

In particular, they are simple and different from each other. -
We shall use that for the function g(s) in (5. 4)

G.11) g(s) = .11 2 (1) = 7(1) o L(s, -+ u(s),

where the functlon u(s) has an absolutely convergent Dirichlet series representation
in the halfplane ¢>3%, because 3,5,7 are quadratic ‘non-residues mod 8. So
we have

61) ) =-T2 3 (700~ 1) e Lis D+),

where u(s) is é,fegulair and bounded function in the strip 4 <o <10. Transforming
the integration line in (5.10) to the broken line I' (see (3.8)) we have
(5.13) o |K(0)| < ce,(0,16).

~ Choose 1=y where %4y is the first singularity of g(&) in the upper halfplane
(Im s=0). Using Lemma 5 instead of Lemma 4 we have

(5.14) |K()| =cu=12e,(ufd),  c¢=O.
Let now y, z be chosen as ln (2.3), 2. 4).and assume that one of the inequalities

=0

logx

(5.15)-(5.16) max [s(x) d: £ ] =0, min {

ysx=z ’C ysx=z

be satisfied with a positive 8. Using a similar argument as in the section 4, we can
deduce from this assumption the inequality

(5.17) I(z, 1, )| < (1 + [t {10, 1, eo)] -+ Su=2e,(u/4) +u~ e, (u/4)}. |

Taking into account that I(z, 1, ) = K(t) and choosing t= 1y, the inequality (5.17)
contradicts the inequalities (5.13), (5.14) for a sufficiently small positive § and
for u=c. So the mequalmes (5.15)—(5.16) for this & cannot hold -and hence the:
assertion follows
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