
On oscillation of the number of primes in an arithmetical progression 

By I. KÂTAI in Budapest 

1 . J . E . LITTLEW'OOD [1] proved — in the contrary to an assertion of R I E M A N N — 

that, for a suitable sequence x\ < x'2 < ... of integers, the inequality 

holds. SKEWES [2] has obtained an upper bound for the first x for which the difference 
TI(X) — li x is positive, namely exp exp exp exp ( 7 , 7 0 5 ) . Later S . K N A P O W S K I [3] 

— using the ideas of P. T U R A N — gave another proof of this fact. In the last year, 
S . L E H M A N [4] gave a better upper bound, namely 1 , 6 5 - 1 0 1 1 6 5 . 

Recently S . K N A P O W S K I and P . T U R A N gave an explicit, localized Q ± estimation 
for the difference n(x, 4, 1) — \ li x, where, in general, n(x, k, I) denotes the number 
of primes in the arithmetical progression = / (mod k) not exceeding x. 

The investigation of the oscillation behavior of n(x, 4,3) — £ li x is a simpler 
case. However, for this we need another method. 

In the following, c, c0, c 1 ; ..., <5 will denote explicitly calculable numerical 
constants (e. c. n. c.), not the same in every place, e^x) means ex and ev(x) = 
= e1(ev_1(x)), further l o g 1 x = l o g x and Iogv x = log (logv_j x). Throughout the 
paper the letter p is preserved for primes. 

We shall prove the following 

T h e o r e m 1. For every T > c 0 we have 

n(x, 4, 3) — y l ix n(x, 4, 3) — y l i x 
max — > 5 , min -= 

T^xmT* y x / l o g x t ^ x s t " y x / l o g x ' 

where <5 and e0 are e. e. n. positive constants and x = (2 + i^S)2. 

In their papers [5] , [6] K N A P O W S K I and T U R A N dealt with the oscillation behavior 
of the functions 

a(x) — 2 log p-e-px- % log p-e~px, 
pHii(mod8) p = ¡2 (mod 8) 

b(x)= 2 e-px- 2 e~px' 
p = h (mod 8) P = h (mod 8) 
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In [5] they proved that if 0 <<><<:!, then for (mod 8) we have 

max a ( x ) > - F = e 1 - 2 2 — w . fa 1 ( log 2 ( l /<5) J ' 

where cx is an e. c. n. c. In [6] they proved that for 12 = 3, 5, 7 ( / r ^ /2) we have 

max 
i d [ l o g 2 ( l / 5 ) 

The authors remarked: "To the more difficult problem of one-sided theorems 
(for b(x)) we hope to return." This problem seems still to be open. 

F r o m our Theorem 5 it follows that, for and for all ^ 1 (mod 8), 
the inequality 

max 

holds, where x = (2 + / J ) 2 . 
W e formulate now some theorems the proofs of which are similar to the proof 

of Theorem 1. 
Let Nk(l) denote the number of solutions of the congruence x2 = / (mod k). 

For the moduli k in 
( A ) 3 , 4 , 5 , 6 , 7 , 8 , 9 , 1 0 , 1 1 , 1 2 , 1 9 , 2 4 , 

the position of the zeros of L(s, y) for all % (mod k) is known in the neighbourhood 
of the real line. Especially, it was proved by HASELGROVE, that the L(s, y) are non-
vanishing on the real line in the critical strip. 

T h e o r e m 2. For k in (A) and for all of those pairs l t , l2 for which Nk(lt) = 
= Nk(l2), 11 (mod k), we have 

TZ(X, k, l { ) - n ( x , k,l2) n(x, k,h)-N(x, k,l2) max — o, min — — < — o, 
T&XTST» yxj l ogx rsxssr« yxj l ogx 

if T>c, where x = (2-f-/3)2, c and 5 are e. c. n. positive constants. 

T h e o r e m 3. For all k in (A) and for all I for which Nk(l) = 0, we have the in-
equalities 

n(x, k, I) — n (x, k , l ) - ^ X 

m f l Y i „,,-„ <PW r * max — > o, min : -c—o, 
rsigp yx/logx TmxST" Yxj l ogx 

whenever T>c, where 5 and c are e. c. positive numerical constants. 
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Let 

a(x,k,l) = 2 -e-"*, s(x)= 
p = l(modk) n = 2 lOgn 

The following assertions hold. 

T h e o r e m 4. For every k in (A) and for all I for which Nk(l)=0, we have 

/• I A S<X> • ( 1 A 

max — x 5 , min — — < — o 
TSXST" yx / l ogx T^XST" yx / logx 

ifT> c, where x = (2 + i?>)2, further c and 5 are e. c. positive numerical constants. 

T h e o r e m 5. For every k in (A) and all /,, l2 for which N^f ) = Nk(l2), 
(mod k), we have 

ff(x, / : , / , ) - f f ( x , k,l2) m a x — : $ 
TSXST" y x / l o g x 

ifT>c, where x = (2 + /3)2, further c and 5 are positive e. c. n. c. 

The method of the proofs of our Theorems is the same as was elaborated for 
the omega-estimation of M(x)= 2 Kn) in my dissertation [7] and in the paper [8]. 

However, we use here an idea of RODOSSKY in a deeper form [9]. 

2. Some lemmas. 

L e m m a 1. If 

«=1 n 

is absolutely convergent for a0, then 

(TO) 

For the proof see [9]. 

L e m m a 2. [9] For 0 < « S l and 

( 2 . 2 ) - i - J x « - 1 l o g x . e 1 | - ^ ^ J r f * = 2^7RUE1(A2u) + 0 ( l ) . 

18 A 
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L e m m a 3. [9] Let « S i and y, z be defined by 

(2.3)-(2.4) 

The following inequalities hold: 

\ogy = 2 u \ l - ^ ] , logz = 2 w i l + ^ - j . 

(2.5) 

y 

¿ / * - 1 / 2 logx-e, 

(2.6) 

oo 

j x - ^ l o g x . e ^ - ^ d x ^ c e ^ . 

L e m m a 4. Let 

(2.7) R(u) 

Then 

l 
e^iv2u)dw. • 

|i?(w)| > — e ^ w / 4 ) , if 
\u 

P r o o f . Using the well-known formula 

log 5 

oo 

-du (Re j > 0) 

d u e t o EULER, w e o b t a i n t h a t 

CO 

= ilh. f f h 
in J J 

(2) 0 

dv ei(w2 u) dw = 

dv_ 
v 

Since 

dv 
c and 

the inequality 

v2 D I dv 
RMM I e l \ - — + - \ — = R(u) + 0(l) 
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holds. Substituting e1(v) = x we obtain 

thus . 
2 

R^u) S 2u(log2)~2 J e i ( - ^ f ^ ) logx-x-^dx 

y 

S CM(1 o g z ) _ 2 /M e!(u/4) s «^(M/4) • w~1/2, C > 0 . 

(See Lemmas 2, 3 and (2. 4).) Hence the assertion follows. 
F r o m Lemma 4 one can deduce the following 

L e m m a 5. Let 

(2.8) J(u) = ^ / log (iv - i ) T(w) (w2«) </m>. 
Vtt J 

(2) 

|/(w)| > ce2(ul4)u~1/2, c > 0. 

P r o o f . Let L denote the broken line with vertices• 1 — 1 — i -2 , 1/4 — z-2, 
1 /4 + i- 2, l + i-2,l+i- °o. Let r(co) = T ® + (p(co). So the inequalities 

(2 .9) \(p(co)\^c\w— 1/2|, |log (w —i)(p(w)|<c|vv —-j|3/4 

hold on the line L. Let now 

J(u) = ' ^ z ) / jog _ ^ ^ (,v2 ^ ^ + [ e i (lv
2
 M) log(w - L) i/vv. 

\n J \n J 
(2) L 

From (2. 9) it follows that the absolute value of second integral is majorized by 
c e ^ u f t j u ' F o r the first integral we use Lemma 4, and we obtain the assertion 
stated in Lemma 5. 

3. Let us now introduce the following notat ions: 

(3.1M3.2) / ( i ) = 2 P~'l g(s)= \ f ^ g f " 1 ; 
p = 3 (mod 4) ^ n = 2 1 

(3.3) T i ) = / ( * ) - * ( * ) = 2— 
n= 2 n 

where the coefficients a„ of \F(.j) are defined by 

( 3 4 ) a = i 1 - K l o g n ) " 1 , if n = / ? = - 1 (mod 4), p prime, 
" I — "j(log n)~ 1 otherwise. 
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Let C(J) be the Riemann zeta-function and let 

( - 1 ) " 
L{s,y) = Z 

n =o (2« + l ) s . 
We have evidently that 

(3.5) m = * - l o g W L + h i s ) , 

where h(s) is a function represented by an absolutely convergent Dirichlet series 
in the halfplane Re s > 1 / 3 and hence regular. 

Further we have - C ( f ) and so ^ ( g ( j ) + l o g ( * - l ) ) = . 

Since the right hand side is an integral function, so is g(s) + log (sr— 1) regular 
on the whole plane. Hence it follows that F(s) is regular at the point s = 1. Further 
it is known that in the domain 0 < < 7 < 1, O^t S 10, 24 the function L(s, x) has 
a unique simple zero, namely at the point 

(3.6) 6 = } + i-6,02... = i + i-y. 

In this domain C(s) is npn-vanishing. 
Let now 

(3.7) /(T) = - % fr(w + ix)e1(\v2u)dw, . 
\n J 

(2) 

where x is a real number. 
We shall now give an upper estimation for (3. 7) in the special cases x = 0 

and T = }>. 

Let r denote the broken line with vertices 1, 5 —/•=«; 1,5—4/; 0,4 — 4/'; 
0,4 + 4/; 1,5 + 4/; 1 ,5+ /•«>. For the estimation of 7(0) we transform the integration 
line in (3. 7) to T and we obtain 

(3.8) |/(0)| < cei(0,\6-u). 

Choose now x = y. Then the function T^iv + iy) has a logarithmic singularity at the 
point w = 1/2 and 

. F(w + iy) = - log ( w - £ ) + 7^(110, 

where F^w) is a regular function on the broken line f and on the right hand side of T. 
So we have 

I(y) = l-$-JFiei(";2 ")dw~'4=r / l o g ( M ' ~ j ) e i (M'2u)dw = P(")-*(")• 
r (2) 
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For P(u) we have the estimation |/>(M)|<CE1(0, 16M). F rom Lemma 4 

cei (w/4) 
TOI 

1/(7)1 = 

. iu 

ce, (M/4) 
follows. So we have 

(3.9) 

4. Let now 

(4.1) A(x)=Za„,. 

where the an are defined by (3. 4). It is evident, tha t 

(4.2) 7i(x,4, 3) — ¿ l i x = A(x) + 0(\) 

F r o m Lemma 1 it follows that the /(T) in (3. 7) can be represented as 

n = 2 

By partial integration follows: 

log 2 « 
Au 

— IT log n 

(4.3) /(T) = 
Jog2 x 

+ i t | ex |——— ix l o g x | i / x . 

Let fur ther / ( t , 1, y), I(x, y, z), I(x, z, denote the integral on the right h a n d 
side extended for the intervals [l,j>], [y, z], [z, respectively. Let the values y, z 
be choosen as in (2.3) , (2 .4) . Using the trivial estimation ^ ( x ^ - ^ c x ^ o g x ) " 1 

we have 
y 

= c(-l + |t |) 

| / (T ,1 ,J ) | < CY ( logx) 
2 

y 
log2 X 

l ogx 
2M + M 4M 

1 
l o g y 

= J ' - ' " { ' - i n } * 

and by partial integration, 

log 2 

1 ' 6 t [JSlÉJLldx^ cu-'e^ujA). 
l o g x 4M 

Hence 
(4.3) | / (T,1,J0 | ^ C U + I T D K - ^ G / M ) 
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follows. Using similar computations we obtain 

( 4 . 4 ) |7(R,Z, °O)| < c ( l + | T | ) M _ 1 £,(M/4). 

Let now assume that for a fixed positive <5 one of the inequalities 

r l / 2 ' 
(4.5) 

(4.6) 

max \A(x) — 8, 
iogx 

{ xi/2 

min L4(x) + <5-
^ a x s z l l o S * . 

iO, 

holds. Using this assumption we obtain such an inequality for I(y) and 7(0) which 
contradicts (3. 8), (3. 9). 

Indeed, we have 

A{x)±8 
xl'2 

l o g * 

x 
l o g * . 

2 u + 

+ 8 

Using the inequality 

/ - 1 / 2 

l o g * 
logx-

2 u 
+ h 

l og* 
2m 

: c ( l + | t | ) 
l o g x 

2M 

and our assumption, i.e. that one of the functions 

• A(x)±8^~ 
logx 

has constant sign on the interval [y, z], we have 

\I(x,y,z)\^c(l + \x\)I(0,y,z) + c8(l + \ x \ ) J ^ e l [ - l ^ } d x . 

For the integral on the right hand side we have 

i ' 

by Lemma 2. Hence 

|7(t, y, z)I < c ( l + |T|) |7(0, y, z)| + c8( 1 + | i | )e t (u /4 )u - i 
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and by (4. 3), (4. 4) 

(4.7) № \ < c ( l + M ) { | / ( 0 ) | ^ ^ + ^ } . 

Let now x — y. Taking into account the inequalities (3. 8), (3. 9) we get 

CyW1'2 e^ujA) < c2e1(0)l6u) + Sc2u-1,2ei(u/4) + c3u-i e^u/4), 

where c ^ O . This is impossible if d^cjc2 and u is sufficiently large. Hence it 
follows that the inequalities cannot hold, i.e. we have 

,4 (x) logx c . A(x) l og* . 
max • > 5, min — — o, 

\X ySxrSz \X 
if w > c . 

Taking into account that 

A{x) = n(x, 4 , 3 ) - l l i x + 0 ( l ) , 

and that z=yx Theorem 1 follows. 

5. In this section we give a sketch of Theorem 5 in the special case k = 8 
We shall use the following generalization of Lemma 1. 

L e m m a 6. Let 
oo 

(5.1) h(s) = Jx~sdA(x) 
i 

absolutely and uniformly convergent in the half plane cr xr^^O). Then 

(5.2) J e , dA(x) = jh(w)ei (w2u)dw. 
i w 

The proof of this Lemma is very similar to that of Lemma 1 and so can be 
omitted. 

Let l t , l2 be two different among the numbers 3, 5, 7, further let ep be defined 
by the relation 

1, if p = 4 (mod 8), 
(5.3) ep= - 1 , if /> = /2 (mod8), 

0 otherwise, 
and let 

(5.4) —(5.5) g(s) = s(x) = a{x,%,h)-a{x,%,l2) = 2ep<rp/*. 
p P p 
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Using a well-known relation we have 

OO CO 1 OO . 

(5. 6) r(s)g(s) = J f ' 1 2ePe-»dy = j - ^ d x = J +J = l(s) + h(s). 

0 0 o x 

Here the function l(s) is regular in the halfplane Re s=o>~0 and | l (s) | < c if a s 1 /10, 
because | i ( x ) | < c in the interval O ^ x s l . Using now Lemma 6 with 

0 0 

(5.7) dA(x) = - ^ d x , h ( s ) = j ^ d x , 

1 
we obtain 

(5.8) J e , = y = r f h(W + h ) e i ( ^ u ) d W . 
1 7 1 (2) 

Let us now introduce the following notat ions: 
b 

(5.9) l(i, a,b) — J e , - « log x j s(x) 

f: 

dx 

(5.10) K(x) = - j L [h(w + h) e, (wzu) dw. 
yn J 

In the proof an essential role is played by some numerical data due to P. C . 
HASELGROVE ( s e e S . K N A P O W S K I a n d P . T U R A N [5] , p . 2 5 4 ) . L e t 

L(s, X i m J ? { (g B + i ) . + (8» + 3)s ~~ (8n + 5)s ~ (8n + 7 ) s } ' 

L(s, tifij {(4„+1)s - (4„ + 3)s}' 

L(s, X3)MZo {(gw + 1)s - (gM + 3), ~ (8m + 5y + (8„ + 7)s} • 

Then in the domain 
0 < f f < l , | * | S l 2 

the zeros of L(s, Xi) are 

i ± i - 4 , 8 9 9 . . . , i ± / - 7 , 6 2 8 . . . , ¿ ± / - 1 0 , 806... 
those of L(s, X2) 

i ± 2-6,020.. . , i ±2-10 ,243 . . . , 



On oscillation of the number of primes 281 

and those of L(s, /3) 
¿±¿ •3 ,576 . . . , i -± i -7 ,434 . . „ ± ± / . 9 , 5 0 3 . . . . 

In particular, they are simple and different f rom each other. 
We shall use that for the function g(s) in (5. 4) 

( 5 . 1 1 ) = 2 (X ( / 0 - X ( / 2 ) ) l o g L ( S , X ) + « ( * ) , 
4 X (mod 8) 

where the function u(s) has an absolutely convergent Dirichlet series representation 
in the halfplane i t > } , because 3 , 5 , 7 are quadratic 'non-residues mod 8. So 
we have 

(5.12) = Z ( z ( / i ) - z ( / 2 ) ) l o g £ ( j , *) + »(*), 
1 X (mod 8) 

where v(s) is a regular and bounded function in the strip £ < c < 10. Transforming 
the integration line in (5.10) to the broken line r (see (3.8)) we have 

(5:13) |AT(0)| -='cc,(0,16«). 

Choose x = y where \ + iy is the first singularity of g(.y) in the upper halfplane 
( l m s > 0 ) . Using Lemma 5 instead of Lemma 4 we have 

(5.14) l^(y)! =-cM-1^2e1(M/4), c > 0 . 

Let now y, z be chosen as in (2. 3), (2. 4) and assume tha t one of the inequalities 

(5.15)-(5.16) max | i - ^ H S 0, min i j (* ) + 5 ¡ - 6 - 1 is 0 
y^x7sz{ logx) ysxszi l o g * J 

be satisfied with a positive 8. Using a similar argument as in the section 4, we can 
deduce f rom this assumption the inequality 

(5.17) |/(T, 1, CO)|<c(1 + |T|){|/(0, 1, ^ l + S u - ^ e ^ u / ^ + u- 'e^u/A)}. 

Taking into account that /(T, 1, ^)=K(z) and choosing T — y, the inequality (5.17) 
contradicts the inequalities (5.13), (5.14) for a sufficiently small positive <5 and 
for w > c . So the inequalities (5.15)—(5.16) for this <5 cannot hold and hence the. 
assertion follows. 
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