On oscillation of the number of primes in an arithmetical progression

By I. KÁTAI in Budapest

1. J. E. Littlewood [1] proved - in the contrary to an assertion of Riemann that, for a suitable sequence $x_{1}^{\prime}<x_{2}^{\prime}<\ldots$ of integers, the inequality

$$
\pi\left(x_{v}^{\prime}\right)>\operatorname{li} x_{v}^{\prime}
$$

holds. Skewes [2] has obtained an upper bound for the first x for which the difference $\pi(x)-\operatorname{li} x$ is positive, namely $\exp \exp \exp \exp (7,705)$. Later S. Knapowski [3] - using the ideas of P. Turán - gave another proof of this fact. In the last year, S. Lehman [4] gave a better upper bound, namely $1,65 \cdot 10^{1165}$.

Recently S. Knapowski and P. Turán gáve an explicit, localized $\Omega_{ \pm}$estimation for the difference $\pi(x, 4,1)-\frac{1}{2}$ li x, where, in general, $\pi(x, k, l)$ denotes the number of primes in the arithmetical progression $\equiv l(\bmod k)$ not exceeding x.

The investigation of the oscillation behavior of $\pi(x, 4,3)-\frac{1}{2}$ li x is a simpler case. However, for this we need another method.

In the following, $c, c_{0}, c_{1}, \ldots, \delta$ will denote explicitly calculable numerical constants (e.c.n.c.), not the same in every place. $e_{1}(x)$ means e^{x} and $e_{v}(x)=$ $=e_{1}\left(e_{v-1}(x)\right)$, further $\log _{1} x=\log x$ and $\log _{v} x=\log \left(\log _{v-1} x\right)$. Throughout the paper the letter p is preserved for primes.

We shall prove the following
Theorem 1. For every $T>c_{0}$ we have

$$
\max _{T \leqq x \leqq T^{*}} \frac{\pi(x, 4,3)-\frac{1}{2} \operatorname{li} x}{\sqrt{x} / \log x}>\delta, \min _{T \leqq x \leqq T^{*}} \frac{\pi(x, 4,3)-\frac{1}{2} \operatorname{li} x}{\sqrt{x} / \log x}<-\delta,
$$

where δ and c_{0} are e.c.n. positive constants and $x=(2+\sqrt{3})^{2}$.
In their papers [5], [6] Knapowski and Turán dealt with the oscillation behavior of the functions

$$
\begin{gathered}
a(x)=\sum_{p \equiv l_{1}(\bmod 8)} \log p \cdot e^{-p x}-\sum_{p \equiv l_{2}(\bmod 8)} \log p \cdot e^{-p x}, \\
b(x)=\sum_{p \equiv l_{1}(\bmod 8)} e^{-p x}-\sum_{p \equiv l_{2}(\bmod 8)} e^{-p x}
\end{gathered}
$$

In [5] they proved that if $0<\delta<c_{1}$, then for $l_{i} \not \equiv l_{2} \not \equiv 1(\bmod 8)$ we have

$$
\max _{\delta \leqq x \leqq \delta^{1 / 3}} a(x)>\frac{1}{\sqrt{\delta}} e_{1}\left(-22 \frac{\log (1 / \delta) \cdot \log _{3}(1 / \delta)}{\log _{2}(1 / \delta)}\right),
$$

where c_{1} is an e.c.n.c. In [6] they proved that for $l_{1}, l_{2}=3,5,7\left(l_{1} \neq l_{2}\right)$ we have

$$
\max _{\delta \leqq x \leqq \delta^{1 / 3}}|b(x)| \geqq \frac{1}{\sqrt{\delta}} e_{1}\left(-23 \frac{\log (1 / \delta) \cdot \log _{3}(1 / \delta)}{\log _{2}(1 / \delta)}\right) .
$$

The authors remarked: "To the more difficult problem of one-sided theorems (for $b(x)$) we hope to return." This problem seems still to be open.

From our Theorem 5 it follows that, for $0<y<c$ and for all $l_{1} \not \equiv l_{2} \neq 1(\bmod 8)$, the inequality

$$
\max _{y^{x} \leq x \leq y} b(x) \sqrt{x} \log (1 / x)>\delta
$$

holds, where $x=(2+\sqrt{3})^{2}$.
We formulate now some theorems the proofs of which are similar to the proof of Theorem 1 .

Let $N_{k}(l)$ denote the number of solutions of the congruence $x^{2} \equiv l(\bmod k)$. For the moduli k in

$$
\begin{equation*}
3,4,5,6,7,8,9,10,11,12,19,24 \tag{A}
\end{equation*}
$$

the position of the zeros of $L(s, \chi)$ for all $\chi(\bmod k)$ is known in the neighbourhood of the real line. Especially, it was proved by Haselgrove, that the $L(s, \chi)$ are nonvanishing on the real line in the critical strip.

Theorem 2. For k in (A) and for all of those pairs l_{1}, l_{2} for which $N_{k}\left(l_{1}\right)=$ $=N_{k}\left(l_{2}\right), l_{1} \not \equiv l_{2}(\bmod k)$, we have

$$
\max _{T \leqq x \leqq T^{x}} \frac{\pi\left(x, k, l_{1}\right)-\pi\left(x, k, l_{2}\right)}{\sqrt{x} / \log x}>\delta, \quad \min _{T \leqq x \leqq T^{*}} \frac{\pi\left(x, k, l_{1}\right)-\pi\left(x, k, l_{2}\right)}{\sqrt{x} / \log x}<-\delta
$$

if $T>c$, where $\chi=(2+\sqrt{3})^{2}, c$ and δ are e.c.n. positive constants.
Theorem 3. For all k in (A) and for all 1 for which $N_{k}(l)=0$, we have the inequalities

$$
\max _{T \leqq x \leqq T^{*}} \frac{\pi(x, k, l)-\frac{\operatorname{li} x}{\varphi(k)}}{\sqrt{x} / \log x}>\delta, \min _{T \leqq x \leqq T^{*}} \frac{\pi(x, k, l)-\frac{\operatorname{li} x}{\varphi(k)}}{\sqrt{x} / \log x}<-\delta
$$

whenever $T>c$, where δ and c are e.c. positive numerical constants.

Let

$$
\sigma(x, k, l)=\sum_{p \equiv l(\bmod k)} e^{-p / x}, \quad s(x)=\sum_{n=2}^{\infty} \frac{1}{\log n} e^{-n / x}
$$

The following assertions hold.
Theorem 4. For every k in (A) and for all l for which $N_{k}(l)=0$, we have

$$
\max _{T \leqq x \leqq T^{*}} \frac{\sigma(x, k, l)-\frac{s(x)}{\varphi(k)}}{\sqrt{x} / \log x}>\delta, \quad \min _{T \leqq x \leqq T^{*}} \frac{\sigma(x, k, l)-\frac{s(x)}{\varphi(k)}}{\sqrt{x} / \log x}<-\delta
$$

if. $T>c$, where $\varkappa=(2+\sqrt{3})^{2}$, further c and δ are e. c. positive numerical constants.
Theorem 5. For every k in (A) and all l_{1}, l_{2} for which $N_{k}\left(l_{1}\right)=N_{k}\left(l_{2}\right), l_{1} \neq l_{2}$ $(\bmod k)$, we have

$$
\max _{T \leq x \leq T^{*}} \frac{\sigma\left(x, k, l_{1}\right)-\sigma\left(x, k, l_{2}\right)}{\sqrt{x} / \log x}>\delta
$$

if $T>c$, where $\chi=(2+\sqrt{3})^{2}$, further c and δ are positive e.c. $n . c$.
The method of the proofs of our Theorems is the same as was elaborated for the omega-estimation of $M(x)=\sum_{n \leqq x} \mu(n)$ in my dissertation [7] and in the paper [8]. However, we use here an idea of Rodossky in a deeper form [9].

2. Some lemmas.

Lemma 1. If

$$
F(w)=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{w}}
$$

is absolutely convergent. for $\sigma \geqq \sigma_{0}$, then

$$
\begin{equation*}
\sum_{n=1}^{\infty} a_{n} e_{1}\left(-\frac{\log ^{2} n}{4 u}\right)=\frac{i \sqrt{u}}{\sqrt{\pi}} \int_{\left(\sigma_{0}\right)} F(w) e_{1}\left(w^{2} u\right) d w \tag{2.1}
\end{equation*}
$$

For the proof see [9].
Lemma 2. [9] For $0<\alpha \leqq 1$ and $u \rightarrow \infty$,

$$
\begin{equation*}
\frac{1}{2 u} \int_{1}^{\infty} x^{x-1} \log x \cdot e_{1}\left(-\frac{\log ^{2} x}{4 u}\right) d x=2 \sqrt{\pi u} e_{1}\left(\alpha^{2} u\right)+O(1) \tag{2.2}
\end{equation*}
$$

Lemma 3. [9] Let $u \geqq 1$ and y, z be defined by

$$
\begin{equation*}
\log y=2 u\left(1-\frac{\sqrt{3}}{2}\right), \quad \log z=2 u\left(1+\frac{\sqrt{3}}{2}\right) \tag{2.3}
\end{equation*}
$$

The following inequalities hold:

$$
\begin{align*}
& \frac{1}{2 u} \int_{1}^{y} x^{-1 / 2} \log x \cdot e_{1}\left(-\frac{\log ^{2} x}{4 u}\right) d x<c e_{1}\left(\frac{u}{4}\right) \tag{2.5}\\
& \frac{1}{2 u} \int_{z}^{\infty} x^{-1 / 2} \log x \cdot e_{1}\left(-\frac{\log ^{2} x}{4 u}\right) d x<c e_{1}\left(\frac{u}{4}\right)
\end{align*}
$$

Lemma 4. Let

$$
\begin{equation*}
R(u)=\frac{i \sqrt{u}}{\sqrt{\pi}} \int_{(2)} \log \left(w-\frac{1}{2}\right) e_{1}\left(w^{2} u\right) d w . \tag{2.7}
\end{equation*}
$$

Then

$$
|R(u)|>\frac{c}{\sqrt{u}} e_{1}(u / 4), \quad \text { if } u>c_{1}
$$

Proof. Using the well-known formula

$$
\log s=\int_{0}^{\infty} \frac{e^{-v}-e^{-s v}}{v} d v \quad(\operatorname{Re} s>0)
$$

due to Euler, we obtain that

$$
\begin{gathered}
R(u)=\frac{i \sqrt{u}}{\sqrt{\pi}} \int_{(2)} \int_{0}^{\infty} \frac{e_{1}(-v)-e_{1}\left(-\left(w-\frac{1}{2}\right) v\right)}{v} d v e_{1}\left(w^{2} u\right) d w= \\
=\pi \int_{0}^{\infty}\left[-e_{1}(-v)+e_{1}\left(-\frac{v^{2}}{4 u}+\frac{v}{2}\right)\right] \frac{d v}{v}
\end{gathered}
$$

Since

$$
\left|\int_{0}^{1}\left[e_{1}\left(-\frac{v}{4 u}+\frac{v}{2}\right)-e_{1}(-v)\right] \frac{d v}{v}\right|<c \quad \text { and } \quad \int_{1}^{\infty} e_{1}(-v) \frac{d v}{v}<c
$$

the inequality

$$
R_{1}(u) \stackrel{\text { def }}{=} \int_{1}^{\infty} e_{1}\left(-\frac{v^{2}}{4 u}+\frac{v}{2}\right) \frac{d v}{v}=R(u)+O(1)
$$

holds. Substituting $e_{1}(v)=x$ we obtain

$$
R_{1}(u)=\int_{e}^{\infty} e_{1}\left(-\frac{\log ^{2} x}{4 u}\right) \frac{x^{-1 / 2}}{\log x} d x
$$

thus

$$
\begin{aligned}
& R_{1}(u) \geqq 2 u(\log z)^{-2} \frac{1}{2 u} \int_{y}^{z} e_{1}\left(-\frac{\log ^{2} x}{4 u}\right) \log x \cdot x^{-1 / 2} d x \geqq \\
& \quad \geqq c u(\log z)^{-2} \sqrt{u} e_{1}(u / 4) \geqq c e_{1}(u / 4) \cdot u^{-1 / 2}, \quad c>0 .
\end{aligned}
$$

(See Lemmas 2, 3 and (2.4).) Hence the assertion follows.
From Lemma 4 one can deduce the following
Lemma 5. Let

$$
\begin{equation*}
J(u)=\frac{i \sqrt{u}}{\sqrt{\pi}} \int_{(2)} \log \left(w-\frac{1}{2}\right) \Gamma(w) e_{1}\left(w^{2} u\right) d w . \tag{2.8}
\end{equation*}
$$

Then

$$
|J(u)|>c e_{2}(u / 4) u^{-1 / 2}, \quad c>0 .
$$

Proof. Let L denote the broken line with vertices. $1-i \infty, 1-i \cdot 2,1 / 4-i \cdot 2$, $1 / 4+i \cdot 2,1+i \cdot 2,1+i \cdot \infty$. Let $\Gamma(\omega)=\Gamma\left(\frac{1}{2}\right)+\varphi(\omega)$. So the inequalities

$$
\begin{equation*}
|\varphi(\omega)| \leqq c|w-1 / 2|, \quad\left|\log \left(w-\frac{1}{2}\right) \varphi(w)\right|<c\left|w-\frac{1}{2}\right|^{3 / 4} \tag{2.9}
\end{equation*}
$$

hold on the line L. Let now

$$
J(u)=\frac{i \sqrt{u} \Gamma\left(\frac{1}{2}\right)}{\sqrt{\pi}} \int_{(2)} \log \left(w-\frac{1}{2}\right) e_{1}\left(w^{2} u\right) d w+\frac{i \sqrt{u}}{\sqrt{\pi}} \int_{L} \varphi(w) e_{1}\left(w^{2} u\right) \log \left(w-\frac{1}{2}\right) d w .
$$

From (2.9) it follows that the absolute value of second integral is majorized by $c e_{1}(u \mid 4) u^{-1}$. For the first integral we use Lemma 4, and we obtain the assertion stated in Lemma 5.
3. Let us now introduce the following notations:

$$
\begin{gather*}
f(s)=\sum_{p \equiv 3(\bmod 4)} p^{-s} ; \quad g(s)=\frac{1}{2} \sum_{n=2}^{\infty} \frac{(\log n)^{-1}}{n^{s}} \tag{3.1}\\
F(s)=f(s)-g(s)=\sum_{n=2}^{\infty} \frac{a_{n}}{n^{s}} \tag{3.3}
\end{gather*}
$$

where the coefficients a_{n} of $F(s)$ are defined by

$$
a_{n}=\left\{\begin{array}{l}
1-\frac{1}{2}(\log n)^{-1}, \quad \text { if } \quad n=p \equiv-1(\bmod 4), \quad p \quad \text { prime }, \tag{3.4}\\
-\frac{1}{2}(\log n)^{-1} \quad \text { otherwise. }
\end{array}\right.
$$

Let $\zeta(s)$ be the Riemann zeta-function and let

$$
L(s, \chi)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)^{s}}
$$

We have evidently that

$$
\begin{equation*}
f(s)=\frac{1}{2} \log \frac{\zeta(s)}{L(s, \chi)}+h(s) \tag{3.5}
\end{equation*}
$$

where $h(s)$ is a function represented by an absolutely convergent Dirichlet series in the halfplane $\operatorname{Re} s>1 / 3$ and hence regular.

Further we have $\frac{d g(s)}{d s}=-\zeta(s)$ and so $\frac{d}{d s}(g(s)+\log (s-1))=-\zeta(s)+\frac{1}{s-1}$. Since the right hand side is an integral function, so is $g(s)+\log (s-1)$ regular on the whole plane. Hence it follows that $F(s)$ is regular at the point $s=1$. Further it is known that in the domain $0<\sigma<1,0 \leqq t \leqq 10,24$ the function $L(s, \chi)$ has a unique simple zero, namely at the point

$$
\begin{equation*}
\varrho=\frac{1}{2}+i \cdot 6,02 \ldots=\frac{1}{2}+i \cdot \gamma \tag{3.6}
\end{equation*}
$$

In this domain $\zeta(s)$ is nọn-vanishing.
Let now

$$
\begin{equation*}
I(\tau)=\frac{i \sqrt{u}}{\sqrt{\pi}} \int_{(2)} \Gamma(w+i \tau) e_{1}\left(w^{2} u\right) d w \tag{3.7}
\end{equation*}
$$

where τ is a real number.
We shall now give an upper estimation for (3.7) in the special cases $\tau=0$ and $\tau=\gamma$.

Let Γ denote the broken line with vertices $1,5-i \cdot \infty ; 1,5-4 i ; 0,4-4 i$; $0,4+4 i ; 1,5+4 i ; 1,5+i \cdot \infty$. For the estimation of $I(0)$ we transform the integration line in (3.7) to Γ and we obtain

$$
\begin{equation*}
|I(0)|<c e_{1}(0,16 \cdot u) \tag{3.8}
\end{equation*}
$$

Choose now $\tau=\gamma$. Then the function $F(w+i \gamma)$ has a logarithmic singularity at the point $w=1 / 2$ and

$$
F(w+i \gamma)=-\log \left(w-\frac{1}{2}\right)+F_{1}(w)
$$

where $F_{1}(w)$ is a regular function on the broken line Γ and on the right hand side of Γ. So we have

$$
I(\gamma)=\frac{i \sqrt{u}}{\sqrt{\pi}} \int_{\Gamma} F_{1}(w) e_{1}\left(w^{2} u\right) d w-\frac{i \sqrt{u}}{\sqrt{\pi}} \int_{(2)} \log \left(w-\frac{1}{2}\right) e_{1}\left(w^{2} u\right) d w=P(u)-R(u)
$$

For $P(u)$ we have the estimation $|P(u)|<c e_{1}(0,16 u)$. From Lemma 4

$$
|R(u)|>\frac{c e_{1}(u / 4)}{\sqrt{u}}
$$

follows. So we have

$$
\begin{equation*}
|I(\gamma)|>\frac{c e_{1}(u \mid 4)}{\sqrt{u}} \tag{3.9}
\end{equation*}
$$

4. Let now

$$
\begin{equation*}
A(x)=\sum_{n \leqq x} a_{n}, \tag{4.1}
\end{equation*}
$$

where the a_{n} are defined by (3.4). It is evident, that

$$
\begin{equation*}
\pi(x, 4,3)-\frac{1}{2} \operatorname{li} x=A(x)+O(1) . \tag{4;2}
\end{equation*}
$$

From Lemma 1 it follows that the $I(\tau)$ in (3.7) can be represented as

$$
I(\tau)=\sum_{n=2}^{\infty} a_{n} e_{1}\left(-\frac{\log ^{2} n}{4 u}-i \tau \log n\right)
$$

By partial integration follows:

$$
\begin{equation*}
I(\tau)=\int_{1}^{\infty} A(x) x^{-1}\left(\frac{\log x}{2 u}+i \tau\right) e_{1}\left(-\frac{\log ^{2} x}{4 u}-i \tau \log x\right) d x \tag{4.3}
\end{equation*}
$$

Let further $I(\tau, 1, y), I(\tau, y, z), I(\tau, z, \infty)$ denote the integral on the right hand side extended for the intervals $[1, y],[y, z],[z, \infty]$, respectively. Let the values y, z be choosen as in (2.3), (2.4). Using the trivial estimation $|A(x)|<c x(\log x)^{-1}$ we have

$$
\begin{gathered}
|I(\tau, 1, y)|<c \int_{2}^{y}(\log x)^{-1}\left[\frac{\log x}{2 u}+|\tau|\right] e_{1}\left(-\frac{\log ^{2} x}{4 u}\right) d x \leqq \\
\leqq c(1+|\tau|) \int_{2}^{y} \frac{1}{\log x} e_{1}\left(-\frac{\log ^{2} x}{4 u}\right) d x=c(1+|\tau|) \int_{\log _{2}}^{\log y} t^{-1} e_{1}\left(t-\frac{t^{2}}{4 u}\right) d t
\end{gathered}
$$

and by partial integration,

$$
\int_{2}^{y} \frac{1}{\log x} e_{1}\left(-\frac{\log ^{2} x}{4 u}\right) d x<c u^{-1} e_{1}(u / 4) .
$$

Hence

$$
\begin{equation*}
|I(\tau, 1, y)|<c(1+|\tau|) u^{-1} e_{1}(u / 4) \tag{4.3}
\end{equation*}
$$

follows. Using similar computations we obtain

$$
\begin{equation*}
|I(\tau, z, \infty)|<c(1+|\tau|) u^{-1} e_{1}(u / 4) \tag{4.4}
\end{equation*}
$$

Let now assume that for a fixed positive δ one of the inequalities

$$
\begin{equation*}
\max _{y \leqq x \leqq z}\left(A(x)-\delta \frac{x^{1 / 2}}{\log x}\right) \leqq 0 \tag{4.5}
\end{equation*}
$$

$$
\begin{equation*}
\min _{y \leqq x \leqq z}\left(A(x)+\delta \frac{x^{1 / 2}}{\log x}\right) \geqq 0 \tag{4.6}
\end{equation*}
$$

holds. Using this assumption we obtain such an inequality for $I(\gamma)$ and $I(0)$ which contradicts (3.8), (3.9).

Indeed, we have

$$
\begin{aligned}
|I(\tau, y, z)| & \left|\int_{y}^{z} \frac{A(x) \pm \delta \frac{x^{1 / 2}}{\log x}}{x}\right| \frac{\log x}{2 u}+i \tau\left|e_{1}\left(-\frac{\log ^{2} x}{2 u}\right) d x\right|+ \\
& +\delta \int_{y}^{z} \frac{x^{-1 / 2}}{\log x}\left|\frac{\log x}{2 u}+i \tau\right| e_{1}\left(-\frac{\log ^{2} x}{4 u}\right) d x
\end{aligned}
$$

Using the inequality

$$
\left|\frac{\log x}{2 u}+i \tau\right|<c(1+|\tau|) \frac{\log x}{2 u}
$$

and our assumption, i.e. that one of the functions

$$
A(x) \pm \delta \frac{x^{1 / 2}}{\log x}
$$

has constant sign on the interval $[y, z]$, we have

$$
|I(\tau, y, z)| \leqq c(1+|\tau|) I(0, y, z)+c \delta(1+|\tau|) \int_{y}^{z} \frac{x^{-1 / 2}}{\log x} e_{1}\left(-\frac{\log ^{2} x}{4 u}\right) d x
$$

For the integral on the right hand side we have

$$
\int_{y}^{z} \frac{x^{-1 / 2}}{\log x} e_{1}\left(-\frac{\log ^{2} x}{4 u}\right) d x<\frac{c}{u} \int_{i}^{\infty} x^{-1 / 2} e_{1}\left(-\frac{\log ^{2} x}{4 u}\right) d x<\frac{c}{\sqrt{u}} e_{1}(u / 4)
$$

by Lemma 2. Hence

$$
|I(\tau, y, z)|<c(1+|\tau|)|I(0, y, z)|+c \delta(1+|\tau|) e_{1}(u / 4) u^{-1}
$$

and by (4. 3), (4. 4)

$$
\begin{equation*}
|I(\tau)|<c(1+|\tau|)\left\{|I(0)|+\delta \frac{e_{1}(u / 4)}{\sqrt{u}}+\frac{e_{1}(u / 4)}{u}\right\} \tag{4.7}
\end{equation*}
$$

Let now $\tau=\gamma$. Taking into account the inequalities (3.8), (3.9) we get

$$
c_{1} u^{-1 / 2} e_{1}(u / 4)<c_{2} e_{1}(0,16 u)+\delta c_{2} u^{-1 / 2} e_{1}(u / 4)+c_{3} u^{-1} e_{1}(u / 4),
$$

where $c_{1}>0$. This is impossible if $\delta<c_{1} / c_{2}$ and u is sufficiently large. Hence it follows that the inequalities cannot hold, i.e. we have

$$
\max _{y \leqq x \leqq z} \frac{A(x) \log x}{\sqrt{x}}>\delta, \quad \min _{y \leqq x \leqq z} \frac{A(x) \log x}{\sqrt{x}}<-\delta
$$

if $u>c$.
Taking into account that

$$
A(x)=\pi(x, 4,3)-\frac{1}{2} \operatorname{li} x+O(1)
$$

and that $z=y^{x}$ Theorem 1 follows.
5. In this section we give a sketch of Theorem 5 in the special case $k=8$ We shall use the following generalization of Lemma 1.

Lemma 6. Let

$$
\begin{equation*}
h(s)=\int_{1}^{\infty} x^{-s} d A(x) \tag{5.1}
\end{equation*}
$$

absolutely and uniformly convergent in the halfplane $\sigma>\sigma_{1}(>0)$. Then

$$
\begin{equation*}
\int_{1}^{\infty} e_{1}\left(-\frac{\log ^{2} x}{4 u}\right) d A(x)=\frac{i \sqrt{u}}{\sqrt{\pi}} \int_{(\sigma)} h(w) e_{1}\left(w^{2} u\right) d w \tag{5.2}
\end{equation*}
$$

The proof of this Lemma is very similar to that of Lemma 1 and so can be omitted.

Let l_{1}, l_{2} be two different among the numbers $3,5,7$, further let ε_{p} be defined by the relation

$$
\varepsilon_{p}=\left\{\begin{align*}
1, & \text { if } p \equiv l_{1}(\bmod 8) \tag{5.3}\\
-1, & \text { if } p \equiv l_{2}(\bmod 8) \\
0 & \text { otherwise }
\end{align*}\right.
$$

and let
(5.4)-(5.5)

$$
g(s)=\sum_{p} \frac{\varepsilon_{p}}{p^{s}}, \quad s(x)=\sigma\left(x, 8, l_{1}\right)-\sigma\left(x, 8, l_{2}\right)=\sum_{p} \varepsilon_{p} e^{-p / x} .
$$

Using a well-known relation we have

$$
\begin{equation*}
\Gamma(s) g(s)=\int_{0}^{\infty} y^{s-1} \sum_{p} \varepsilon_{p} e^{-p y} d y=\int_{0}^{\infty} \frac{s(x)}{x^{s+1}} d x=\int_{0}^{1}+\int_{1}^{\infty}=l(s)+h(s) \tag{5.6}
\end{equation*}
$$

Here the function $l(s)$ is regular in the halfplane $\operatorname{Re} s=\sigma>0$ and $|l(s)|<c$ if $\sigma \geqq 1 / 10$, because $|s(x)|<c$ in the interval $0 \leqq x \leqq 1$. Using now Lemma 6 with

$$
\begin{equation*}
d A(x)=\frac{s(x)}{x^{1+i \tau}} d x, \quad h(s)=\int_{1}^{\infty} \frac{s(x)}{x^{s+1}} d x \tag{5.7}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
\int_{1}^{\infty} e_{1}\left(-\frac{\log ^{2} x}{4 u}-i \tau \log x\right) s(x) \frac{d x}{x}=\frac{i \sqrt{u}}{\sqrt{\pi}} \int_{(2)} h(w+i \tau) e_{1}\left(w^{2} u\right) d w \tag{5.8}
\end{equation*}
$$

Let us now introduce the following notations:

$$
\begin{align*}
I(\tau, a, b) & =\int_{a}^{b} e_{1}\left(-\frac{\log ^{2} x}{4 u}-i \tau \log x\right) s(x) \frac{d x}{x}, \tag{5.9}\\
K(\tau) & =\frac{i \sqrt{u}}{\sqrt{\pi}} \int_{(2)} h(w+i \tau) e_{1}\left(w^{2} u\right) d w .
\end{align*}
$$

In the proof an essential role is played by some numerical data due to P . C. Haselgrọ̀e (see S. Knapowski and P. Turán [5], p. 254). Let

$$
\begin{aligned}
& L\left(s, \chi_{1}\right) \stackrel{\text { def }}{=} \sum_{n=0}^{\infty}\left\{\frac{1}{(8 n+1)^{s}}+\frac{1}{(8 n+3)^{s}}-\frac{1}{(8 n+5)^{s}}-\frac{1}{(8 n+7)^{s}}\right\}, \\
& L\left(s, \chi_{2}\right) \xlongequal{\text { def }} \sum_{n=0}^{\infty}\left\{\frac{1}{(4 n+1)^{s}}-\frac{1}{(4 n+3)^{s}}\right\}, \\
& L\left(s, \chi_{3}\right) \xlongequal{\text { def }} \sum_{n=0}^{\infty}\left\{\frac{1}{(8 n+1)^{s}}-\frac{1}{(8 n+3)^{s}}-\frac{1}{(8 n+5)^{s}}+\frac{1}{(8 n+7)^{s}}\right\}
\end{aligned}
$$

Then in the domain

$$
0<\sigma<1,|t| \leqq 12
$$

the zeros of $L\left(s, \chi_{1}\right)$ are

$$
\frac{1}{2} \pm i \cdot 4,899 \ldots, \quad \frac{1}{2} \pm i \cdot 7,628 \ldots, \quad \frac{1}{2} \pm i \cdot 10,806 \ldots
$$

those of $L\left(s, \chi_{2}\right)$

$$
\frac{1}{2} \pm 2 \cdot 6,020 \ldots, \quad \frac{1}{2} \pm 2 \cdot 10,243 \ldots
$$

and those of $L\left(s, \chi_{3}\right)$

$$
\frac{1}{2} \pm i \cdot 3,576 \ldots, \quad \frac{1}{2} \pm i \cdot 7,434 \ldots, \quad \frac{1}{2} \pm i \cdot 9,503 \ldots .
$$

In particular, they are simple and different from each other.
We shall use that for the function $g(s)$ in (5.4)

$$
\begin{equation*}
g(s)=\frac{-1}{4} \sum_{x(\bmod 8)}\left(\bar{\chi}\left(l_{1}\right)-\bar{\chi}\left(l_{2}\right)\right) \log L(s, \chi)+u(s) \tag{5.11}
\end{equation*}
$$

where the function $u(s)$ has an absolutely convergent Dirichlet series representation in the halfplane $\sigma>\frac{1}{3}$, because $3,5,7$ are quadratic 'non-residues $\bmod 8$. So we have

$$
\begin{equation*}
h(s)=-\frac{\Gamma(s)}{4} \sum_{\chi(\bmod 8)}\left(\bar{\chi}\left(l_{1}\right)-\bar{\chi}\left(l_{2}\right)\right) \log L(s, \chi)+v(s), \tag{5.12}
\end{equation*}
$$

where $v(s)$ is a regular and bounded function in the strip $\frac{1}{3}<\sigma<10$. Transforming the integration line in (5.10) to the broken line Γ (see (3.8)) we have

$$
\begin{equation*}
|K(0)|<c e_{1}(0,16 u) . \tag{5:13}
\end{equation*}
$$

Choose $\tau=\gamma$ where $\frac{1}{2}+i \gamma$ is the first singularity of $g(s)$ in the upper halfplane ($\operatorname{Im} s>0$). Using Lemma 5 instead of Lemma 4 we have

$$
\begin{equation*}
|K(\gamma)|>c u^{-1 / 2} e_{1}(u / 4), \quad c>0 . \tag{5.14}
\end{equation*}
$$

Let now y, z be chosen as in (2.3), (2.4) and assume that one of the inequalities (5.15)-(5.16) $\max _{y \leqq x \leqq z}\left(s(x)-\delta \frac{\sqrt{x}}{\log x}\right) \leqq 0, \quad \min _{y \leqq x \leqq z}\left(s(x)+\delta \frac{\sqrt{x}}{\log x}\right) \geqq 0$
be satisfied with a positive δ. Using a similar argument as in the section 4 , we can deduce from this assumption the inequality

$$
\begin{equation*}
|I(\tau, 1, \infty)|<c(1+|\tau|)\left\{|I(0,1, \infty)|+\delta u^{-1 / 2} e_{1}(u / 4)+u^{-1} e_{1}(u / 4)\right\} \tag{5.17}
\end{equation*}
$$

Taking into account that $I(\tau, 1, \infty)=K(\tau)$ and choosing $\tau=\gamma$, the inequality (5.17) contradicts the inequalities (5.13), (5.14) for a sufficiently small positive δ and for $u>c$. So the inequalities (5.15)-(5.16) for this δ cannot hold and hence the: assertion follows.

References

[I] J. E. Littlewood, Sur la distribution des nombres premiers, C. R. Acad. Sci. Paris, 158 (1914), 1869-1872.
[2] S. Skewes, On the difference $\pi(x)-\mathrm{li} x$. II, Proc. London Math. Soc., (3) 5 (1955), 48-70.
[3] S. Knapowski, On sign changes in the remainder term in the prime-number formula, J. London Math. Soc., 36 (1961), 451-460.
[4] R. S. Lehman, On the difference $\pi(x)-1 i x$, Acta Arithm., 11 (1966), 397-410.
[5] S. Knapowski and P. Turán, Comparative prime-number theory. VIII. Chebyshev's problem for $k=8$, Acta Math. Acad. Sci. Hung., 14 (1963), 251-268.
[6] S. Knapowski and P. Turán, On an assertion of Čebyšev, J.Analyse Math., 14 (1965), 267-274.
[7] I. KÁtar, Investigations in the comparative prime-number theory, Thesis (Budapest, 1965, in Hungarian).
[8] I. Kátai, On comparative prime-number theory, Acta Math. Acad. Sci. Hung. (to appear, in Russian).
[9] K. A. Rodossky, On regularity of distribution of prime numbers, Uspehi Mat. Nauk, 17 (1962), 189-191 (in Russian).
[10] K. Prachar, Primzahlverteilung (Berlin, 1957).
(Received May 2, 1967)

