\ On the power-bounded operators of Sz.-Nagy and Foias

By JOHN A. R. HOLBROOK .in San Diego (California, U.S.A.) *)

1. In [6] Sz.-NAGY and Foiag considered, for each ¢ =0, the class C, of operators '
T on a given complex Hilbert space § having the following property: for some
Hilbert space & containing $ as a subspace and some unitary operator U on 8,
T"=oPyU" (n=1,2,3, ...), where Pg denotes the orthogonal projection of
K onto 9. It had been shown previously that C, ={T: |T|| =1} (see Sz.-Nacy [5])
and that C,={T: w(T)=1} (see BERGER [1]), where w(T) denotes the “numerical
radius” of T, namely sup {|(Th, #)|: h€$ and ||k =1}. It seemed natural to us
to introduce the functions w, defined on the space Z($) of operators on $ in such
a way that (a) w, is homogeneous (w(zT) =[z|w(T)), and (b) w(T)=1=T€C,.
In this way we obtain a family of ““operator radii’’ which includes the familiar norms
I-Il(=w(+)) and w(-)(=w,(-)) and which has a number of interesting properties.
Recently we received from J. P. WILLIAMS a preprint of [8] where he, too, introduces
the functions w,, stressing properties different from those which concern us here.

One can, of course, show that w,(T")=(w(T))" for all ¢=>0 and all n=1
(recall the “power inequality” w(7™) =(w(T))" of BERGER); here however we shall
deal with somewhat different kinds of multiplicative behavior in the operator radii .
w,(-) (see §4and § 6 below). A basic result of this nature is the inequality w,,(T'S) =
=w,(T)w,(S), holding whenever T and S double commute. _

We shall also show that another well-known “operator radius”, namely the
spectral radius v(-) may be adjoined in a natural way to our family {w,(:)},>0;
in fact, if we let \‘v,,,,(T)=eli_>n(} w(T), we find that w_ (T)=v(T). This result,

and others concerning the relationship between (') and wy(T) are discussed in § 5.
These techniques may be_ applied to yield information about the classes C,
themselves. We shall see, for example, that although Sz.-NaGy and Foias have

shown that |J C, does not contain every “power-bounded” operator (see [6], §4),
0>0

nevertheless |J C, is dense in the class of all power-bounded operators.
>0 ’

*) Research partially supported by grant No. AF-AFOSR 1_322—-—67.
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2. We shall use the following two characterizations of the classes C, Both
of these theorems are immediate consequences of the Theorem of [6] (or of its proof)
For T¢ £(9) and ¢ =0 define T,(n) as follows:

To(n) = —(l)—T"ifn =1,2,...; T,0=1I;, T,(n)= —;-(T*)‘"ifﬂ =—1,-2,....

Theorem 2.1. Given ¢=0 and TE€L(H) we have T<C, if, and only if,

eo

> rinleine T (n)EO Sfor every 0 and r such that 0=r<1. It is understood that the

n._.—co

Series converges absolutely, i. e., Z’ r| T ()l < oo, whenever 0=r<]1.

n= = o0

Theorem 2.2. Given 9=>0 and T¢L(D), we have T¢ CL, if, and only fif,
WT) =1, and for each h€$ and each complex z such that |z] <1,

(%) | Re((I—zT)‘/z,h) = [1 —gl I(I—zT) k2.

If 0=2, the condition on the spectral radius is redundant ).

As Sz.-NaGy and Foiag point out in [6], it is a simple matter to use Theorem 2. 2
to derive the earlier results of Sz.-NaGy and BeRGeR that C, ={T: |T| =1} and
C,={T:w(T)=1}.

3. For each p =0, we define the function w, on Z(9) as follows:
- 1
wo(T) = mf{u: u=0, - Te Ce} .
Theorem 3.1. wy(-) has the following properties:
1) w(T)<oo;

(2) w(T)=0 un/ess T=0; in fact, wQ(T)>—||T||,
(3) wzT)=lzjw(T);
@ w(M=leTed,

Proof. To prove (1) we need only show that, for some v=0, vT€ C,. However,
if 0=r<1 and z=re",

2 riem@T)(n) = 1—— Re y (zoT)" = [1 - > (UIITII) I=

n=-—o0 Y n=1

provided o||T| is sufficiently small. For such o, then, by Theorem 2.1, vT€C,.

) By a recent result, it is actually redundant for amy g; ¢f. Cu. DAvis, The shell of a
Hilbert-space operator, Acta Sci. Math., 29 (1968), 69—86 (Prop. 8. 3).
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(2) follows once we observe that, if O<u< %]l T||, we have

1
” TH > g so that

1. .
we cannot have 2 T=¢gPgU for any unitary operator U.

For the proofs of (3) and (4) we shall need the following result: T¢ C, and
[z| =1=2zT€C,. Tosee thisnote if that T'€ C, we have a unitary operator U on 8 O H
such that T"= P U" (n=1,2,3, ...); thus (zT)"=gPy(zU)". But, if |z|=1, then
IzU|| =1 so that zU¢ C, for the new space R; letting ¥ be a unitary operator on
K, D8 such that U)*=PgV", we see that (w1th the obvious interpretation)
(zT )"—QP,:,V”, so that, indeed, zT €C,.

. Recalling Theorem 2.1, it is clear that O €C, for every ¢=0, and it follows
easily that w,(0)=0. Thus (3) certainly holds when |z|=0. Turning to the case
where |z| =0, write z=re!® and observe that, by the result of the last paragraph,
we can assert that, for every S€2(9),e?Se€C,=S¢C, We may thus perform
“the following calculation:

J2| o (T) = [inf{u:u =0, ;1; Te cg}] =
. 1 . 1 e
=infyruiu=>0,—rTeCy = infyruiu=>0,—re®TcC,p =
: ru u

= inf{u:u =0, %ZTG CQ} = w,(zT).

The implication: («<=) in (4) is immediate from the definition of w,. To prove

(=) assume that wQ(T) #0 and observe that we always have u, >0 such that -LT €C,

n

and u,\w,(T); it follows easily, using Theorem 2. 2, that (llmul] TcC,, ie., that -

C,. I w(T)(=wT))=1, we conclude that T= wQ(T)( €C,.

(T) € (T))
Finally, if w,(T')=0, then T=0 by (2), and, as noted earlier, we always have
0¢cC, Qed.

For ¢=1 and ¢=2, of course, w,(+) is actually a norm; more generally we
have the following result.

Theorem 3.2. The function w, is a norm on Z(9) whenever 0 <o =2.

Proof. Equivalently, we must show that C, is a convex body in .£($) whenever
¢=2. Suppose, then, that T, S€C,; by Theorem 2.2 we have, for every hé€H
and complex z such that |z]<T,

Re((I—2T)h, h) = [1 —§] I( —zT) h)?
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and an analogous inequality for S. It follows that, if A, u=0and A4 =1, we have
Re (I —z(AT+ puS)H, h)y= (1 - %] [ = zD)hl1? + | (1 — 2 S)AI|?].

For any x, y€$ we have A|x]|?+ ully)? =] Ax + uy|?, as the following calculation
shows: Al|x||1? + ullyll®* = 1Ax 4+ up* = (2 = )x > + (= p)lyI? —24u Re (x, y) =
= A1 = Dlx)? + 4= ul y1* =24 pllx] -y} =Ap (| x| =1 ¥I)*=0. Since ¢=2, we

have (1 - 2—] =0; thus

Re ((I—z(AT+pS) h, i) = [1 - g] AU~ 2T) h+ p(I — zS) k) =

— [1 _g] I(I—=z(AT + uS)) 1.

Using Theorem 2. 2 again, we conclude that AT+ uS€C,. Q.e.d.
As a by-product of the results of § 6, we shall see that w,(+) fails to be a norm
whenever ¢ =2.

4. In this section we discusss some of the basic inequalities governing the operator
radii w,(+).

The following theorem comes as no surprise; it is simply a generalization of
‘BERGER s proof of the “power inequality” w(T" ")S(w(T))" (a conjecture of HALMOS).

‘Theorem 4.1. For each ¢=0 and TeZL(H) we have wy(TH)=(w(T))
(k=1,2,3,..).

Proof. By Theorem 3.1, w,(-) is homogeneous so that we need only show
that wy(T) = | =w,(T*)=1, or equivalently that T¢ C,=T*€ C,. Butif U is a unitary
operator on R D such that 7" =P U", then (T*)"=gP4(U*)" and U* is unitary.
Q.ed.

In the next theorem we derive a different sort of inequality concermng the
behav101 of the w, with respect to operator multiplication.

Theorem 4.2. If ¢, 6>0 and T, SEL (D), we have w,(TS)=w,(T) w,(S)
provided T and S double commute (i.e., TS=ST and TS*=S*T).

Proof. Again it is clear, using Theorem 3.1 ((3) and (4)), that we need only
show that 7S¢ C,, whenever T¢C, and S€C, and T, S double commute.

oo
(=]

By Theorem 2.1 we have rifleT (m) =0 and 2 rinleint S (1) =0 in

n= —oo n= —oo

the sense described in that theorem. Now it is not hard to prove (see [4], Theorem 3. 3)

that if, in the appropriate sense, 7 rinleint 4 =0 and Z'r'"le“'”B =0, then we

— o0
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also have riei™®4, B =0, provided A4,B, = B,A, for all choices of n and m.

m
— o0

Since T and S double commute we may apply this result to conclude that
| er"'e"""Tg(n)S,(n) =0.

Finally, we note that, forevery n, T,(n)S,(1) =(TS),,(n) so that, using Theorem
2.1 once more, we indeed have TS€C,,. Q.e.d.

In connection with the essential fact of the last theorem — namely that T€C,,
SeC, and T, S double commute imply 7S¢ C,, — we wish to.mention another
proof of this resuit, sent to us recently by Professor SZ.-NAGY, see[5*]. In that proof the
“unitary go-dilation” for TS is given explicitly in the form UV where U and V" are
commuting unitary g-and o¢-dilations of T and S respectively, constructed simuitane-
ously on a space KDO9. '

If 9=2, c=1 in the theorem just proved we obtain the inequality w(T'S)=
=w(T)-| S]] (if T, S double commute). This result occurs in [4], where a number
of proofs of the inequality are discussed.

At this point it is important to determine the value of wy(I) for each ¢=0.

Theorem 4.3. For o=1, w,(I)=1; for 0<g=<]1, wg(1)=§ —1.

‘ . _y 1 .
Proof. We must determine for which values u=0 we have ;IECQ. Using

Theorem 2. 2 we see-that it is necessary and sufficient that

o sl

whenever [z|<1 and that v (% 1) =1. The last condition implies that, in any case,

‘u=l.

-1
Rewriting (*) in the form (1 - %) =Re (1 — -2) , we see that we must consider

the values of Re w=! where w lies inside the circle ¢, of | radius % centefed at 1.
Since %él it is clear that, inverting ¢, in the unit circle, we obtain a circle (or k
half-plane) ¢, having (1+%)—1 as its most westerly pgint. Thus, the additional
condition imposed on u by (*) is (1—%)§(1+%)—1; this' holds automatically

if (1 ———g—) =0 and otherwise reduces to ué%f 1.
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Thus % I¢C,u=max (l,z— —1) so that, indeed, w,(1) =max(l, %— 1). Q.ed.

It should be pointed out that the theorem above is included in a result of Durszt
(see [3, Theorem 1]) which,-upon introducing the functions w,(-), amounts to the
evaluation of w,(T) for any normal 7. In § 5, on the other hand, we shall see that
Theorem 4. 3 combined with some general inequalities yields the theorem of DurszT
~ in a someéwhat extended form.

We can now prove some preliminary results concerning the behavior of wy(T)
for fixed T as ¢ varies.

Theorem4.4. Suppose T€ZL(9) and 0<g<g'. Then wT)=w(T) and

’

s ‘ h
wy(T) é(?g - 1) wo(T). Thus wy(T) is continuous and non-increasing as ¢ increases.

Proof. Simply combine Theorems 4.2 and 4.3 as follows:

wy(T) = W(g) LT = wel) wo(T) = 1-wi(T);

e Q

)= (), (D) = o 0)- () = [2_;’_ 1] o (T). Qed.

e 4

In view of Theorem 3.1, the fact that w,(7) is non-increasing as ¢ increases
‘implies that C, ©C, whenever ¢’ =¢. In [6] (§ 3) Sz-NAGY and Foias discuss the
-problem of determining when these inclusions are strict. In essence, they consider

the operator 4 defined by the matrix [g (1)] (relative to an orthonormal basis)

on a 2-dimensional subspace of $ (and vanishing on the orthogonal complement)
and show that 04€C,,;\C,_, whenever &=>0 and ¢=1, and that
TQLQA €C,\Cs ¢ ) whenever ¢>0 and ¢ <1. Actually, as DuRrszTt was the first
to point out (see [3, Theorem 2]), we can show that A€ C,\ C,_, for every 9=>0
and ¢>0, so that the classes C,form a strictly increasing scale (as ¢ increases). By
Theorem- 3.1, it is sufficient to show that w,(¢4)=1 and w,_,(04)>1; but it is

clear that wy(A)= % , for every ¢ =0, by means of the following observation, which
we shall have occasion to use several times again.
Theorem 4. 5. Suppose T¢ L(9H),|TI=1, and T?=0. Then, for every g =0,
1 .
W(,(T) = 'é .

Proof. As w(T)=|T| =1 we have T€C,,ie., for some unitary operator
Uon 8D9 we have T"=P U"(n=1,2,3,...). Since T*=0, (¢T)'=0T" (n=1, 2,



. B= -0
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3,...), so that we have (oT)'=0oPgU" (n=1,2,3,..), ie, oT€C,. Thus
wy(eT)=1 and wy(T) §%. But, by Theorem 3.1 (2), wa(T)zénT” =%. Q.e.d.

As we have noted above, we have as an immediate consequence the following
fact.

Corollary 4.6 (DURSzT). Provided $ is at least 2-dimensional, we have
C, DC, strictly whenever ¢ =g (=>0).

5. In this section we discuss the relatlonshlp between the spectral radlus w(T)
and the operator radii w(T). :

Since w,(T) decreases with increasing ¢ and 'is always non-negative, we may
define, for each T€2(9), w(T) =01Lr2 wl(T).

- Theorem 5.1. For' every T 2(9), wT)=wT). _
: - T
Proof. We have ——¢€C, so that, by Theorem 2. 2 v(—~) =1; thus
- (T) g SATC) A
WT)=wy(T) for every o..

On the other hand, suppose that W(T) < 1. For some s>1 we also have v(sT) <1
. . l N
~and since, by the spectral radius formula, [[(s7)"|" —v(sT), we see that for some

B<oo we have s"[T"| =B (n=1,2,3, ...). Thus, if |z|<1, || 3 Ty ||=
a=1

= B
=2 &

b E

n

=M(< o). Tt follows that if 0=r<1 we have, setting z=re',

]I% [I—EJW]IE 0
Y
as soon as Q>2M

Using Theorem 2.1, it is clear that, whenever w(T) <1, there is some ¢ such

S pmem T () = 14> Re[ jv(z'r)"] 5[1—— j(z:r)"

. ’F
that 7¢C,, ie., w(T)=1. Now if w(7T)=0, and. ¢>0 we have v( )

(T +ev(T)
=1—j-_—8-<1 SO th.at, for some g, w ((l +Z;V(T)] 1,ie., (1+£)\'(T)>we(T)(>v(T)) .

Clearly, then, w.(T)=v(T) in this case. If wW(7T) =0, then for any n vinT)=0<1
so that for some g w(nT)=1, ie., wQ(T)é—’l;. Thus w (T)=0 (=\:(T)). Q.ed.

An operator T in any one of the operator classes C, is “power bounded”,
i.e., the sequence {[|7"|}7 is bounded; in fact, || 7" =[¢PsU"| =¢. Sz.-NaGy and
Foiag show, however, by constructing an example (see [6], §4), that there are power-
bounded operators not lying in any of the classes C,. Nevertheless, we have the
following resuit. :

20 A
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Theorem 5.2. The fam{ly of power-bounded operators |J C, is dense (with .

>0
respect to the ordinary operator norm) in the class of all power-bounded operators.

1
Proof. If T is power-bounded the w(T)=lim ||[T"|" =1. Thus, for any r
such that 0=r<1, we have v(rT)<1 and hence, by Theorem 5.1, there is some
¢ such that w(rT)=1, i.e.,, rT€C,, hence the assertion follows.
If Te#(9) and w(T)=| T|, then we actually have wW(T)=w(T)=|T|, ie..
w(T)=w,(T)=v(T)=w,(T). We may even replace 1 and 2 in the above statement
by any distinct values of ¢. Indeed, we have the following:

"Theorem 5. 3. If Te L(9) is such that wgo(Tj>v(T),‘ then w(T) is strictly
decreasing at @q, i.e., 0=>0o=W,(T)<w,(T).

Proof. We may assume that w,(T)=1 and w(T)<l, and prove that, if
0>00, w(T)<1. By Theorems 3.1 and 2.2 we have T€C,, and hence, for each
he$ and complex z such that {z| <1,

() Re((I—zT)h, h) = (1 —-923) | (I—zT) hll2.

Now a=inf (|(/—zDh||?: |z| <1, h€H, [|h] =1)=>0, since we would otherwise
have h,€$ and complex z, such that |, =1, |z,|<1, and |(I—z,T)h,| —0; by
passing to a subsequence we could assume that z, —~z,, and it is easy to see that
|(I—zoTHh,|l -0 in this case: thus we would have 1/z, in the spectrum of T, contra-
dicting the assumption that wW(7)<1. _

If we choose =1 such that, whenever |z| <1 and k| =1, we have

|Re ((I —2bT) h, h)—Re (I —zT) h, h)| <-9‘29° -

and

Q 2 Q 2| .@—Qp &
’[1—5] |~ zbT) —[1—-2—] I~ 2T) A l< 0.2,

it is easy to see that () implies
Re((I—zbT)h,h) = [1 —-%] (I —zbT) h|?
for all such z and A. But this inequality is -independent of the value- of |||, so that,
by Theorem 2.2, we have bT€C, provided we have chosen b(=1) small enough
S [
so that, in addition, vw(bT)=1. In this case w(bT)=1, i.e., we(T)éz <1. Q.etd.
“The following theorem finds its natural place in this section.

Theorem 5.4. For any T€L(H) and =0 we have w(T) =z wI)W(T).
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This result follows upon recalling Theorem 2 2 and the fact that 7 has an
approximate eigenvalue A such that |A|=v(T).

By Theorem 4.2 we have ‘w (T)=w, (I)wl(T) and this combined with the last
theorem and our evaluation of w,(/)(i.e., Theorem 4. 3) yields the following extension
of a theorem of DURSZT (see [3, Theorem 1]). The extension is implicit in DURSZT’s
work, and has also been pointed out by BERGER and STAMPFLI (see [2, Theorem 6]).

Theorem 5.5. For any T€Z(9) such that W(T)=|T| (such T have been
called “normaloid” operators, and include, of course, the normal operators) we have

nTu[%—l], if 0<g<1,
Il if e=1.

w(T) = I Tl wo (1) =

6. Upon considering the “power inequality” of Theorem 4.1 one naturally
asks to what extent the operatorradii w,(-) are multiplicative, i.e., under what conditions
do we have an inequality of the following type: wy(T'S)=w,(T)-w,(S). Although
it does not seem possible, except in very special cases, to derive the power inequality
from a more general inequality involving a pair of operators we shall describe
here some results along these lines.

Let us first observe that in the case where T and S may be quite unrelated,
and in the case where they are assumed to double commute, the problem may be
settled in a fairly satisfactory way. '

Theorem 6.1. Forany T, S€L(H) and g =1 we hdve w(T'S) = *wy(T)-w(S); ._
this result is best possible, prouided 9 is at least 2-dimensional.

"Proof. Using Theorems 4. 4 and 3.1 (2) we have at once w(T'S) <w1(TS)—
=w (T)w(S) = (QWQ(T))(QW (S))
On the other hand, if dim ($)=2 we may define operators 4.and B on some

2-dimensional subspace by the matrices (relative to an orthonormal basis) [8 (1)]
0 0 . . :

and [l 0] respectively, and require that 4 and B vanish on the orthogonal

complement. By Theorem 4. 5, wQ(A)=wQ(B)=—:). Now AB corresponds to the

.1 o0 ‘
matrix [0 0] so that w,(4B)=v(4B)=1, and hence wy(4B)=1 whenever ¢=1.

This example shows that the inequality of the theorem cannot be improved. Q.e.d.

Theorem6.2. If T, Sc¢#(9) and T and S double commute, then w(TS)=
= ow(T)w,(S) for all ¢ =0. This result is best possible, at least if dim (§)z=4.
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Proof. Using Theorems 4 2 and 3.1 (2) we have wTS)=w (T)w,(S)=

=(ew(T)w,(S).
On the other hand, if dim (S'))>4 we may define operators C and D on some

4-dimensional subspace by the matrices (relative to an orthonormal basis)

01 0 0 0 01 0

0 0 00 0 0 01 . L .

00 0 1 and 000 0 respectively, and require that C and D vanish

0 0 0O 0 0 0 O

on the orthogonal complement. It is easy to verify that C and D double commute
0 0 0 1 ,

. 10 0 0 O . '

and that CD corresponds to the matrix 0o 0 0 ol Applymg Theorem 4.5,

0 0 O 0

=0. It follows that our in-

=

we see that w(C)=w,(D)=w,(CD) =% , for every

equality cannot be improved. Q.e.d.

When we simply assume that 7 and S commute, the situation is much less
clear. Since w,(-)=|-|| and v (-)=v(-), we have w (TS)=w,(T) w,(S) and,
provided 7" and S commute, w (T'S)=w.(T) w.(S). The case of wz'(-)(=w(-))
is settled by the following theorem, which also shows that the constant in Theorem

6.1 can be improved if we assume. 7' and S commute, at least when ]/5< 0=2.

Theorem 6. 3. If T, S€Z(9), T and S commute, and wy(+) is a norm (and
. hence, by Theorem 3.2, whenever ¢=2), then w(TS)=2w (T)w,(S). This result
. is best. possible for ¢ =2, at least if dim () =4. ‘ '

Proof. We may assume that w(T)=w,(S)=1 and prove that w,(TS)=2.
In the following calculation we use both the assumption that 1,(+) is a norm and
the “power inequality” of Theorem 4.1: :

w(TS) = wH(T+S)} —(T— S)?)) =
§i[we((T+ 8)2) +w (T — $))] =4[(woT+ 8))* + (w(T— $))*] =
SE[(wlT) + wo(S))? +(1wT) +w(8))*] = 2. |

.To see that the inequality w,(T.S)=2w,(T)-w,(S) cannot be improved (if
dim ($) =4), recall that, by Theorem 6. 2, the inequality is best possible even under
the assumption that 7 and S double commute. Q.ed.

Corollary 6.4. For ¢=>2, w,(+) fails to be a norm on Z(9).
Proof. Compare Theorems 6.3 and 6.2. Q.e.d.
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The following theorem shows that Theorem 6.3 can be much improved if’
one of the operators is normal.

Theorem 6.5. Suppose T and S are commuting operators in L(9) and that
T is normal. Then, for all ¢=0, w(TS)=w,(T)w,(S).

Proof. Since § commutes with the normal operator 7, FUGLEDE’s theorem
* (see RoSENBLUM [7] for a slick proof) tells us that S and T double commute. Hence,
by Theorem 4. 2, w(TS)=w,(T)w,(S). But, as T is normal, W(T)=|T| (=w(T)),
so that for all ¢ =0 w (T)=wyT). Thus w(T'S)=w(T)w,(S). Q.e.d.

‘While it does not seem clear whether or not the inequalities of Theorems 6. 2
and 4.2 can be extended to the case where the operators merely commute, it is
usually possible to say somethin g more in this case than in the case where the operators
are quite arbitrary. Our final theorem is a rather curious example of a result of this
nature. Note that for arbitrary 7, S€.2(9) we have, for o=1, w(TS)=|TS| =
=| TS| =ow(T)-||S|l (we have used Theorems 4.4 and 3.1(2)); furthermore
we can actually have equality under these conditions (consider the operators 4 and.
B introduced in the proof of Theorem 6.1). Of course, if T and S double commute,
Theorem 4. 2 tells that w(TS)=w,(T)-||S|. Whether or not we can say the same
if T and S merely commute, we do have the following improvement over the case
" where T and 'S may be completely unrelated.

Theorem 6. 6. Suppose ¢=1, and T and S are commuting operators in L(9).
Then provided T# O and S# 0, w(TS)<ow,(T)-||S].

Proof. Since, as we have noted above, we have w,(TS)=|TS| S ANE
= ow,(T)-|| S|, the theorem could fail only if we had w,(T'S)=||TS||. In this case,
by Theorem 5. 3, w,(T'S)=v(T'S); but this is impossible because, since T and S
commute, we would have wg(TS)—v(TS)< w(T)- v(S)<wQ(T) IS, as well as
we(TS) ow(T)-|ISI. Q.ed. . ,
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