On general multiplicatioh of infinite series

By L. G. PAL in Budapest

1

The most general definition of the product of two infinite series can be obtained
as follows:

_ Definition 1. Let usdenote by N the set of all pairs (k, /) of positive integers,
and let = be a sequence N,;, N,, ..., N,,, ... of finite, mutually disjoint subsets

of N such that N:= |J N,,. Given two infinite séries 1)

m=1
(1.1) A=3a and B= 3
k=1 I=1
we call the series _ .
(1.2) C=Zc =2>( 2 ab)
. . m= m=1 (k,DEN

the product of the series (1.1) obtained by the method corresponding to the sequence m,
or simply by the method (n), and we denote it by = (Za,, Z b)) or shortly by
n(4, B). ‘ .

Def inition 2. The method () will be called perfect if for any two convergent
series (1. 1), the product series m(4, B) also converges and its sum is equal to the
product of the sums of the factor series. :

Definition 3. The method (n) will be said to have property M, (resp. M,)
if for any series A and B the convergence of 4 (resp. B) and the absolute convergence
of B (resp. A) implies the convergence of n(4, B), its sum bemg equal to the product
of the sums of the factor series.

Definition 4. If a method (n) has both. propertles M, and M, we will say
that it has the Mertens property.

_ 1) In the sequel the series Xa,, b, X¢,,, ... will be denoted by the corresponding capital letters
A, B, C, ... independently of their convergence or divergence. :
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Definition 5. The method () will be said to have the Abel property, if for
any convergent series 4 and B the convergence of n(A4, B) implies that the sum
of n(4, B) is equal to the product of the sums of 4 and B.

R. RaDpo [1] has given necessary and sufficient conditions for a method ()
to be perfect. RADO considers merely methods with sets N,, consisting of one element,
For the general case of definition | the perfectness and the Mertens property were
characterized by A. ALEXIEwICZ [2] in necessary and sufficient form.

Although the theorems of ALEXIEWICZ solve the convergence problem of a
method (n) — apart from the Abel property — in the classical sense, there arises the
following question:

If we pass over the classical view of convergence, i.e. if we agree that the
“convergence” of a series Xc, means that the series. ¥ +¢, is convergent with
the probability 1 taking at random the signs of its terms, then how can we modify
" the theorems of ALEXIEWICZ, and how we stand with the problem of the Abel property?

We can formulate our problem — due to RADEMACHER (3], KOLMOGOROFF
and KHINTCHINE [4] — analytically in the following manner:

If {r,,(t)},,_1 denotes the system of the Rademacher functions i.e. it

(1.3) r(t) =sign (sin 2"nt) (n=1,2,3,..)
in the interval 0=¢=1, then for a given method (7) what can we say about the
convergence of the series

(1.4 n(4(x), B(y)) = 2 ( Z akbzrk(X)r,(y))

ml

at the points (x, y) of the unit square Q = {(x,y); 0=x=1,0=y=1}, assuming
" that the factor series

(1.5) A(x)=2"akrk<x) and  B() = 3 byn(s)

are convergent almost everywhere in [0, 1], i.e. assuming that the conditions
Zat <o and Zb} << are fulfilled?
In section 2 we shall prove that every method (7) possesses the Mertens property
in the above sense. A » v "
In section 3 we shall show that every method (n) becomes perfect if we put
the terms of the product series into brackets in suitable form, and at the same time
we mention a conjecture in the theory of Walsh series, which is essentially equivalent
. to the perfectness of every method (n).
Finally in section 4 we prove that every method (n) has the Abel property.
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2
Theorem- 1. If the conditions
2.1 2l < and Fbi<e
k=1 =1

hold, then the product series (1. 4) of the series (1. 5) — generated 'by an arbitrary
given method (n) — converges almost everywhere on the unit square Q.

Proof. First of all we cite a lemma — discovered by ZYGMUND and MAR-
CINKIEWICZ [5] — which will be used in the sequel.

Lemma 1. If the functions of an orthonormal system {@ (x)};=, in L*(0, 1)
are stochastically independent) with the integral mean 0, then for any finite coefficient
system {c}i-, the following inequality is true:

2.2) / [ Max

lsmsn

m

ch(ﬂk(f\)] x<8/[2’ck¢k(x)] /\—‘8267(

In order to prove the convergence of the series (1. 4) 1t is enough to show that
under the conditions (2.1) the series .

@3 - A, BO) = 3 &b () n0),

arising from (1. 4) by omitting brackets 2) converges almost everywhere on @, too.
Let us consider for each index » the subseries

(24) ) Sn(xs y) = _?’:1 anbv(n, m) rn(x) rv(n, m)(y)

1) A system {fi(x)}i-« of measurable functions defined on the interval [0, 1] will be called
stochastically independent if for an arbitrary given system of intervals I, = (&,f8) (k=1, ..., n) the
equality

m(ﬁ E{fkeIk})= II mEtfee 1
k=1 k=1

is valid, where E{f,.€ I} means the set of all x¢[0, 1] for which the inequalities o< fi(x)< B hold
and m(H) denotes the Lebesgue measure of the set H. '

A sequence of functions {f,(x)}~=1(x€[0, 1]) is stochastically independent, if any finite subse-
quence of it is stochastically independerit in the above sense. '

From these definitions follows that any rearrangement { f,,k},‘:°= 1 of .a stochastically independent
system {f,(x)}s=1 remains stochastically independent. »

2) N* means the sequence of all elements of N={(k, )} generated by the decomposition | J N,,,=

m=1

=N of the method (n).
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which contains — in unaltered order — all the terms of (2. 3) having the factor
o n(%)-

Since the sequence {by( m}m=1 iS a permutation of the original sequence
{b}i=: (generated by the method (r)), therefore we get from the second condition
of (2.1) that A :

Za bv(n my = (1 va(n my = ﬁzblz<
m=1 =1
is valid for each index n. '
This inequality guarantees for each » the existence of such a sequence

@.5) l<=mP<mP <..<mPP<m?, <.,

for which the ‘inequalities
Z 1 , |
gn)b\zv(n,m) <ZE'E ‘ (.]= 192,)

are true, and therefore, using for each n the notation mg m=1 we get from (2.1)
the following estimate:

m(") -1

Q = Z Z ar?b\%(n,m) = Ql +QZ =
n=1j=0 m= m}") .
P
=

’ oo oo my') -1
+ Z Z[ Zn alsza(n,m)

n=1j=1 \m=m§

. ’ o ml(")—l
(26) : = 2[ Z arzlbs(n,m)

Mo % oo

=Z {Z B n,my +Z|a|2,,2—27§VB'n=21|an|+1/A'1/c'<°°,

where A, B’ and C’ mean the sums of the convergent series Xag, Zb,2, and ¥ 4"',

respectively 3). ‘
Secondly we construct from the series (2. 4) by the help of the sequences (2.5)

the following series

oo m_,},l 1 oo
S:(x’ y) = Z[ 2 anbv(n,m)rn(x)rv(n, m)(y). = Z)F}")(x: y):
j=

J=0 \m=m;"

and let us denote for each pair (j, n) of indices a general segment of F{"(x, y) by

i© B .
{FJ('")(xs y)}g = F_; anbv (n, m)rn(x)rv(n,m)(y) (mf'") =V=E H = my?—l - 1)

3) (2. 6) shows that the condition Xla,|<< was only used for the estimate Q, <, and that
the weaker condition Xa?< e is enough to ensure the vahdlty of 2,<oce!
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Taking into account that for each n and for each x¢[0, 1] the inequalities
[rx)}=1 hold, we get for each quartet (j, n, v, #) of indices and for each point
(x, »)€Q the following inequality:

HF G, ) = [l

m=y

u .
Zanbv(n,m)rv(n, m)(y)l =
@.7 '

= 2Max

2
(m(")SgSm(") _ 1)

4 S .
2 anbv(n,m) rv(n, m)(y)] = 251(n)(y)

m= "1‘(,")

Since the Rademacher functions {ry, w)(¥)}m=1 evidently satisfy the conditions
of Lemma 1, so the functions §{)(y) satisfy, according to (2.2), the following
integral inequalities:

./+1"1

1 m
2.8) /| B ()P dy =8 P 252 0 my-
0

Introducing the non-negative functions’

A4 (x,y) = 2677 (y)

defined for each pair (j, #) of indices in the unit square 0, we can deduce from (2. 7
and (2. 8) the following two properties:
(2.9a) I{F{™ (x, y)}| = 4 (x, y) for each pair (J, n) of indices,
) m§D, -1
(2.9b) f (149G )2 dxdy = 4 f BPOF =2 S @B

mm

Using the Schwarz inequality and the rearrangement theorem of series with
positive terms [6] we get from (2. 6) and (2. 9b) that

,2[ f/"(")(x » dxdy] = S’ [ Zl[ff{d,‘-”’(x,y)}zdxdyr] =
jtnea 2=1+n=aly

n

oo oo 'ZL oo oo m('.:,)(—l
=>> [f/[4§”)(x,J’)]2dxdy] =V 3 2[ > b, m)] V32 <o,
=1j=01"g" ~° g

and so, in consequence of the Beppo Levi theorem, the series

(2.10) S 3 A9(x,y)

A=1 j+n=2

converges almost everywhere on Q.

21 A
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Finally writing consecutive indices in the series (2. 3) we get that each segment

.(x,y)

@.11) >

t=p

- of the series '
@1y Zen= 2 abn)nb) =46, 80)

is a sum of finitely many {F"(x, y)}:, because we preserved the order of the terms
of (2. 12) when forming the series (2. 4). Choosing therefore the lower index p-in
(2. 11) so large that among the terms of the sum '

p—1
2 9%, 9)
=1

every term abyr (x)r(y) of the finite sum

M
2 2 F(x)
A

A=1j+n=

occurs, then we get by (2. 9a) from the convergence of the series (2. 10):

= 3 [ > A§">(x,y>].»o
CA=M+1 ,

j+n=4

=2qp @.(x, y)

when p and g—oo, which proves the convergence of the series (2. 12), q.e.d.

3.

Let be given two sequences {a};=; and {b};=, satisfying the conditions
G.D : Sal<e and b} <o,
k=1 I=1

respectively, and let us consider a given method () defined in Definition 1.
Since the product series '

7:( Sat, Sh) =3 { 2 a,%‘bf] = (S at)(>b?)

m=1 \(k,]}€Nm

converges [6], there exists an increasing sequence {m,};~, of indices, such that

co (mvyy— *
(3:2) 2[ $ s a,%bf] <o (mg=1).
v=0 = .

m=my k,)ENm
holds.
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In the light of this fact let us put into brackets the terms of the product series

« m(A(x), B(y) = Z“ll [(k I%N abyri(x) rz(y)]

m=

of the dlmQSt everywhere convergent Rademacher series X a7 (x) and X byr(y)
by the help of the sequence {m,};~o, i.e. we consider the series

w50 =387 = anneno)|= 3o

=0Lm=my (K 1ENm

We assert that last series converges absolutely almost everywhere on the unit
square Q. For our purpose it is enough to observe that the functions

(3.3) R, »=rxr(y) (k=1,2,...;1=12,..)

" are orthonormal on Q and so by Schwarz inequality we get from (3. 2) that

2)ffl¢v(x,y)ldxdyé f;[ffﬁ(x{y)dxdy]: 4,
V0% 7o Uy

~which proves our assertion and the following

"Theorem 2. If the conditions (3.1) are fulﬁlled, then for every method (r)
we can choose an increasing sequence of indices such that the associated product series

(S ta, Stb) =3 |13 3 (xa)(xh)|.

v=0Lm=my Kk DEN,

converges absolutely for almost all signings of the factor series.

Note. If the functions (3.3) had been stochastically independent on Q, then
applying the two-dimensional form of Lemma 1 we should have proved from (3. 2)
the perfectness of every method (=) in the strict sense. .

In the sequel we indicate a rather interesting problem in the theory of Walsh
series, which is essentially equivalent to the problem of the perfectness of general |
methods (). ' .

‘To this end we introduce a convenient form of a famous transformation due to
F. Riesz {7, 8] o o

Before all we co-ordinate the unit interval /=1,={¢; 0=¢=1} with the unit
square Q=0,={(x, y); 0=x=1,0=y=1}, in sign:
0°) Iy~ Q. ,

In the first step we decompose the interval I, by the points %, 4,3 to four
closed intervals 1, {, 1, 5,1, 3,1, ,, and similarly we divide the square Q, by the
help of the straight lines x=% and y=1 into four congruent closed subsquares

Ql,l: Q1,2a Q1,33 Q1,4-
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In the case of the intervals {7, ,}&, the increasing order of the second index
k corresponds to the increasing direction of the variable €17, and in the case of
the subsquares {Q, ,}¢- the increasing order of the second index-is indicated by
the scheme in figure 1, i.e. the subsquares {Q, ,}¢-, are represented by figure 2,
and we order,the elements of the systems {I, ,}i-; and {Q, c}{=: mutually to

each other, in sign
1°)

I 0« (k=1,2,3,4):

N~
L

I

|
X

|

I.

|

1

X
Figure 1
, yex :
{ 7 10 7 6
P&, | &,
, ’3>< 12 9 |12 |5 |6
Fil
Ry | Ry | 3| 2|5 | B
X
0 3 N A A s B )
i X
:111:112’113'114: ) ¢ 1234567890112 B %G5,
0 : I 0 ! )
Figure 2 Figure 3

Next we decompose each interval I, ;, resp. each quarter Q, ,, into four con-
gruent and closed subintervals, resp. subsquares, and we denote the so created systems

by
(3.4

LoDy, yi6; Q2109220009216
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In (3. 4) the increasing order of the second indices of the intervals {I,,}+&,
corresponds to the increasing direction of the variable ¢, and the second indices
of the squares {Q, ,}+¢, are given so, that the one-to-one mapping -

20) IZ,kﬁQZ,k (k= 1,2,...,16)

has the following two properties:

o) if I, 1, then Q,,CQ, s, '

B) if the squares @, ,, Os n, 05, 0., are subsquares of a square Q, .,
then the increasing order of the second indices is as indicated by the direction scheme
in Figure 1.

The mapping 2°) is illustrated by figure 3, where only the second indices are
written out in the corresponding subintervals and subsquares.

Iterating the .steps 0°), 1°), 2°) periodically we get a sequence £ of intervals

G5 R S5 S0 S0 S00 AUEIU A0 A0 AP

and a sequence 2 of squares

(3.6) i °@={Q0;Q1,1:Q1,2a Q1,31 Q1,4;-'-,Qn,1:Qn,25“'3Qn,4";"‘} .
for which the one-to-one mapping of the elements

3.7 Iy O n=0,1,2,..., k=1,2,...,4"

has the following three properties:
4"

4’1
(D for each index n(=1,2,..), UL.=1 and U Qui = CQos
: k=1

(II) for each pair (n, k) of indices there exists such an 1ndex I, for which
(3.8) I,ycI,_,; and in this case Q, ch,, 1,4 is valid, and conversely if -
O © Qu—y,r then L, I,y s

(1  m, ) =m(Q,,), i.e. (3.7) preserves the measure. .
The mapping (3. 7) of the sequences (3. 5) and (3. 6) generates a éorrespondence
between the points of the unit interval 7 and the unit square Q in the following way:

Definition 6. To each value t€71 let correspond the point (or points)
T(t)=(x,»)€Q for which

(39) TO=E) = 0 Qv I 0= () Ly

) 1If ¢ is not dyadic rational, then the subsequence {I;, ,(n}=1 of (3. 5) is uniquely determined
by ¢, and so T(t)=(x, y)cQ is also uniquely detgrmine_d. :
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and conversely to each pomt (x,¥)EQ let correspond the point (or points)
V(x,y)=tel for which

G10) V@ =t= 1 huw @)= 0o
Considering the properties ()—(III) of the mapping (3. 7) it-is easy to see the
validity of '

Theorem 3. The transformations (3.9) and (3. 10) are inverse of one another
apart from sets of measure zero, and both of them are measure preserving.trans-
formations. '

Definition 7. The functions f(®)(tel) and g(x, y) ((x y)EQ) will be called
equlvalent in sign

@3.11) J(@) =~ g(x, ),
if for almost all pairs of corresponding points (t=V(x, ), (x, y) T(t)) the

equality f(¢t)=g(x, y) holds.
Theorem 3 has the following two corollaries:

Theorem 4. The function f(t) is measurable resp. integrable on I if and unly
if the equivalent functton g(x, ¥) is nieasurable resp. mtegrable on Q, and in the
latter case ' '

[r@yde = [[ e axay.
0 o .Q

Theorem 5. If the elements of the sequences {g(x, ¥)}iz1((x,y)€Q) and
{7i®}i=1 (t€I) are term by term equivalent in the sense of definition 7, then the

series > g{(x, y) converges almost everywhere on Q if-and only if the series 2 fi(t)
k=1 ' : k=1
is convergent almost everywhere on I.

‘ Finally cohsidering our direction scheme in figure 1, it is easy to see by induction
the following. '

Theorem 6. If {r,(t)}s=, denotes the system of the Rademacher functions,
then for the functions of two variables

(X, 1) = n(x); alx,y) =r(y) k=1,2,... 1=1,2,..)

defined on Q, the following relations: are true:
0%, 3) = 1(t) and  0i(%,¥) = rai(Ory, () (=12, 1=1,2,..)

in the sense of Definition .
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By means of Theorems 5 and 6 we can join the theory of multiplication of
infinite series with the theory of Walsh series [9].

In defining the functions of the Walsh system it is convenient to follow
PALEY’s modification [10]:

Definition 8. If {r,(t)},, denotes the system of Rademacher functions
defined in (1. 3) then the Walsh functions {w,(¢)}s=o are given in the following form:

Wo (t) = 1:
wn(t) = rv1+l(t) rv;+1(t) rvk+ 1(0
for n=2"14224-... 4 2%, where the integers v; are uniquely determined by v;{ <v;.

' (3.12)

Definition 9. Let {w,(f)}iz; be such a subsequence. of the sequence
{wi(t)}ilo of the Walsh functions, whose elements have at most three factors
_in'_the Paley representation (3.12), i.e. whose elements can be written in the
form '
Wni(t) = "v1+1(t)"vz+1(t) rv;+1(t)'

Conjecture. If. D¢t < then the lacunary Walsh series

G13) . | _Z”ciwn,(t)<

converges unconditionally %) almost ewerywhere.

‘Theorem 7. Let the sequences {ay}i=, and {b}iz, satisfy the conditions’
(3. 1) and let us consider an arbitrary method (n) defined in Definition 1. If the above
conjecture is true then the product series

oo

'(3- 14) ﬂ(zak ry (%), th "t(J’)) = Z [(k zé

m=1

aybry(x) "t(J’)]

m

converges almost everywhere on the unit square Q.
Proof. From the conditions (3. 1) it follows that the sum
3 2 a)
m=1 \(k,DEN,

converges, and according to the theorems 5 and 6 the series (3. 14) is equiconvergent
-with the Walsh series :

2 > akvbl"zk(t)"zt(_t)_"21-1(’)],

m=1 [(k,l)ENm

which is a rearranged and associated series of type (3. 13).

3) i. e. the series (3.13) converges by any reairrangement of its terms apart from a set of.
measure zero (which set may depend of course on the rearrangement in question).
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Note. The conjecture is true in that special case, when in (3. 13) the indices
n; are in an increasing order; more generally the following theorem is true [11]:

Theorem 8. If {w,(x)}=] denotes such a subsequence of the sequence
{w(xX)}=0 whose elements have at most N factors in Paley’s representation (3. 12),
where N is an arbitrary but fixed natural number, then the convergence of the series
Zc? involves the convergence almost everywhere of the lacunary Walsh series

(3.15) Z’ciwm (x).

Proof. In order to prove the theorem it is endugh to show that the following
assertion 1s true: :

If for a given Walsh series Z ¢ w,,(x) the coefficients satisfy the condition
n=0

> ¢t <o and if the elements of the monotonically increasing sequence nm, have a
dyadic expression of the form

3.16) nk =24 42V

! being limited by an arbitrary chosen but fixed natural number N, then the
partial sums -

‘ snk(x) = Aéklo ¢, WA(")

converge almost evérywhere.
We can get the proof of the last assertion from a lemma of L. LEINDLER [12]
applying it to the Walsh system whose Lebesgue constants are known [13].

Lemma 2. If {n,} is a positive non-decreasing sequence of indices and {@,(xX)};=0
is such an orthonormal system on the interval [a, b] whose Lebesgue functions

L, ()= / |z’ 030 @1 ) | s

are uniformly bounded on a set ECla, b], then the condition Z’c < oo implies that
the subsequence

i
snk(x) = Z(; Ci (Pi(x)
Py
of the partial sums of the orthogonal series 2 c;p(x) is almost everywhere convergent’
on the set E.

If the orthonormal system {@,(x)} is the Walsh system {w,(x)};o, then
we can apply the above lemma in a very convenient form to the case of the index
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sequence (3.16). In fact, N. J. FINE [13] showed that the Lebesgue functions
of the Walsh system do not depend on x and have the following explicit form

Lx)s=L,=1— 2 20--v)
1=sp<rs=sl
if n=2"142"24 .. 42" Consequently, for the 1nd1ces (3. 16) we have L, =I=N
and therefore our theorem is proved.

Theorem 9. If the conditions
Dat<oco and Jbl<eo

hold, and if the general product series

oo

@.1) ‘ n (A.(x), B(y)) = mé; [(k I)ZEN abir, k(x) r t(J’)]

of the almost everywhere convergent series -

o
oo

@.2) AF = Zan@ ad BG)= Z6n()
converges almost euerywhere on the unit square Q to the sum S (x, y) then
S(x, y)= A(x)B(y) almost everywhere on Q.

Proof. Since the rectangular product

> ( S anbira()r(y) +2a Bur(X) <y>]

" of the series (4.2) converges almost everywhere on Q to the sum A(x)B(y), and’
since the product series (4. 1) is, according to (3. 3), such an orthogonal series on Q"
for which the square sum of its coefficients is ﬁmte so the theorem is an 1mmed1ate
consequence of the R1esz—F1scher theorem. : :
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