On general multiplication of infinite series

By L. G. PÁL in Budapest

1
The most general definition of the product of two infinite series can be obtained as follows:

Definition 1. Let us denote by N the set of all pairs (k, l) of positive integers, and let π be a sequence $N_{1}, N_{2}, \ldots, N_{m}, \ldots$ of finite, mutually disjoint subsets of N such that $N:=\bigcup_{m=1}^{\infty} N_{m}$. Given two infinite series ${ }^{1}$)

$$
\begin{equation*}
A=\sum_{k=1}^{\infty} a_{k} \quad \text { and } \quad B=\sum_{l=1}^{\infty} b_{l} \tag{1.1}
\end{equation*}
$$

we call the series

$$
\begin{equation*}
C=\sum_{m=1}^{\infty} c_{m}=\sum_{m=1}^{\infty}\left(\sum_{(k, i) \in N_{m}} a_{k} b_{l}\right) \tag{1.2}
\end{equation*}
$$

the product of the series (1.1) obtained by the method corresponding to the sequence π, or simply by the method (π), and we denote it by $\pi\left(\Sigma a_{k}, \Sigma b_{l}\right)$ or shortly by $\pi(A, B)$.

Definition 2. The method (π) will be called perfect if for any two convergent series (1. 1), the product series $\pi(A, B)$ also converges and its sum is equal to the product of the sums of the factor series.

Definition 3. The method (π) will be said to have property M_{1} (resp. M_{2}) if for any series A and B the convergence of A (resp. B) and the absolute convergence of B (resp. A) implies the convergence of $\pi(A, B)$, its sum being equal to the product of the sums of the factor series.

Definition 4. If a method (π) has both properties M_{1} and M_{2} we will say that it has the Mertens property.

[^0]Definition 5. The method (π) will be said to have the Abel property, if for any convergent series A and B the convergence of $\pi(A, B)$ implies that the sum of $\pi(A, B)$ is equal to the product of the sums of A and B.
R. Rado [1] has given necessary and sufficient conditions for a method (π) to be perfect. Rado considers merely methods with sets N_{m} consisting of one element. For the general case of definition 1 the perfectness and the Mertens property were characterized by A. Alexiewicz [2] in necessary and sufficient form.

Although the theorems of Alexiewicz solve the convergence problem of a method (π) - apart from the Abel property - in the classical sense, there arises the following question:

If we pass over the classical view of convergence, i. e. if we agree that the "convergence" of a series Σc_{n} means that the series $\Sigma \pm c_{n}$ is convergent with the probability 1 taking at random the signs of its terms, then how can we modify the theorems of Alexiewicz, and how we stand with the problem of the Abel property?

We can formulate our problem - due to Rademacher [3], Kolmogoroff and Khintchine [4] - analytically in the following manner:

If $\left\{r_{n}(t)\right\}_{n=1}^{\infty}$ denotes the system of the Rademacher functions i.e. if

$$
\begin{equation*}
r_{n}(t)=\operatorname{sign}\left(\sin 2^{n} \pi t\right) \quad(n=1,2,3, \ldots) \tag{1.3}
\end{equation*}
$$

in the interval $0 \leqq t \leqq 1$, then for a given method (π) what can we say about the convergence of the series

$$
\begin{equation*}
\pi(A(x), B(y))=\sum_{m=1}^{\infty}\left(\sum_{(k, l) \in N_{m}} a_{k} b_{l} r_{k}(x) r_{l}(y)\right) \tag{1.4}
\end{equation*}
$$

at the points (x, y) of the unit square $Q=\{(x, y) ; 0 \leqq x \leqq 1,0 \leqq y \leqq 1\}$, assuming that the factor series

$$
\begin{equation*}
A(x)=\sum_{k=1}^{\infty} a_{k} r_{k}(x) \quad \text { and } \quad B(y)=\sum_{l=1}^{\infty} b_{l} r_{l}(y) \tag{1.5}
\end{equation*}
$$

are convergent almost everywhere in [0, 1], i.e. assuming that the conditions $\Sigma a_{k}^{2}<\infty$ and $\Sigma b_{l}^{2}<\infty$ are fulfilled?

In section 2 we shall prove that every method (π) possesses the Mertens property in the above sense.

In section 3 we shall show that every method (π) becomes perfect if we put the terms of the product series into brackets in suitable form, and at the same time we mention a conjecture in the theory of Walsh series, which is essentially equivalent to the perfectness of every method (π).

Finally in section 4 we prove that every method (π) has the Abel property.

2

Theorem 1. If the conditions

$$
\begin{equation*}
\sum_{k=1}^{\infty}\left|a_{k}\right|<\infty \quad \text { and } \quad \sum_{l=1}^{\infty} b_{l}^{2}<\infty \tag{2.1}
\end{equation*}
$$

hold, then the product series (1.4) of the series (1.5) - generated by an arbitrary given method (π) - converges almost everywhere on the unit square Q.

Proof. First of all we cite a lemma - discovered by Zygmund and MarCINKIEWICZ [5] - which will be used in the sequel.

Lemma 1. If the functions of an orthonormal system $\left\{\varphi_{n}(x)\right\}_{n=1}^{\infty}$ in $L^{2}(0,1)$ are stochastically independent ${ }^{1}$) with the integral mean 0 , then for any finite coefficient system $\left\{c_{k}\right\}_{k=1}^{n}$ the following inequality is true:

$$
\begin{equation*}
\int_{0}^{1}\left[\underset{\substack{m \\(1 \leqq m \leqq n)}}{\operatorname{Max}}\left|\sum_{k=1}^{m} c_{k} \varphi_{k}(x)\right|\right]^{2} d x \leqq 8 \int_{0}^{1}\left[\sum_{k=1}^{n} c_{k} \varphi_{k}(x)\right]^{2} d x=8 \sum_{k=1}^{n} c_{k}^{2} \tag{2.2}
\end{equation*}
$$

In order to prove the convergence of the series (1.4) it is enough to show that under the conditions (2.1) the series

$$
\begin{equation*}
\pi^{*}(A(x), B(y))=\sum_{(k, l) \in N^{*}} a_{k} \dot{b}_{l} r_{k}(x) r_{l}(y), \tag{2.3}
\end{equation*}
$$

arising from (1.4) by omitting brackets ${ }^{2}$), converges almost everywhere on Q, too.
Let us consider for each index n the subseries

$$
\begin{equation*}
S_{n}(x, y)=\sum_{m=1}^{\infty} a_{n} b_{v(n, m)} r_{n}(x) r_{v(n, m)}(y) \tag{2.4}
\end{equation*}
$$

[^1]which contains - in unaltered order - all the terms of (2.3) having the factor $a_{n} r_{n}(x)$.

Since the sequence $\left\{b_{v(n, m)}\right\}_{m=1}^{\infty}$ is a permutation of the original sequence $\left\{b_{l}\right\}_{l=1}^{\infty}$ (generated by the method (π)), therefore we get from the second condition of (2.1) that

$$
\sum_{m=1}^{\infty} a_{n}^{2} b_{v(n, m)}^{2}=a_{n}^{2} \sum_{m=1}^{\infty} b_{v(n, m)}^{2}=a_{n}^{2} \sum_{l=1}^{\infty} b_{l}^{2}<\infty
$$

is valid for each index n.
This inequality guarantees for each n the existence of such a sequence

$$
\begin{equation*}
1<m_{1}^{(n)}<m_{2}^{(n)}<\ldots<m_{j}^{(n)}<m_{j+1}^{(n)}<\ldots \tag{2.5}
\end{equation*}
$$

for which the inequalities

$$
\sum_{m=m_{j}^{(n)}}^{\infty} b_{v(n, m)}^{2}<\frac{1}{4^{n}} \cdot \frac{1}{4^{j}} \quad(j=1,2, \ldots)
$$

are true, and therefore, using for each n the notation $m_{0}^{(n)}=1$ we get from (2.1) the following estimate:

$$
\begin{gathered}
\Omega=\sum_{n=1}^{\infty} \sum_{j=0}^{\infty} \sqrt{\sum_{m=m_{j}^{(n)}}^{m_{j+1}^{(n)}-1} a_{n}^{2} b_{v(n, m)}^{2}} \equiv \Omega_{1}+\Omega_{2} \equiv \\
\equiv \sum_{n=1}^{\infty}\left(\sum_{m=1}^{m_{1}^{(n)}-1} a_{n}^{2} b_{v(n, m)}^{2}\right)^{\frac{1}{2}}+\sum_{n=1}^{\infty} \sum_{j=1}^{\infty}\left(\sum_{m=m_{j}^{(n)}}^{m_{j}^{(n)}-1} a_{n}^{2} b_{v(n, m)}^{2}\right)^{\frac{1}{2}} \leqq \\
\leqq \sum_{n=1}^{\infty}\left|a_{n}\right|\left(\sum_{m=1}^{m_{1}^{(n)}-1} b_{v(n, m)}^{2}\right)^{\frac{1}{2}}+\sum_{n=1}^{\infty}\left|a_{n}\right| \frac{1}{2^{n}} \sum_{j=1}^{\infty} \frac{1}{2^{j}} \leqq \sqrt{B^{\prime}} \sum_{n=1}^{\infty}\left|a_{n}\right|+\sqrt{A^{\prime}} \sqrt{C^{\prime}}<\infty,
\end{gathered}
$$

where A^{\prime}, B^{\prime} and C^{\prime} mean the sums of the convergent series $\Sigma a_{k}^{2}, \Sigma b_{l}^{2}$, and $\Sigma 4^{-n}$, respectively ${ }^{3}$).

Secondly we construct from the series (2.4) by the help of the sequences (2.5) the following series

$$
S_{n}^{*}(x, y)=\sum_{j=0}^{\infty}\left(\sum_{m=m_{j}^{\prime n}}^{m_{j+1}^{(n)}-1} a_{n} b_{v(n, m)} r_{n}(x) r_{v(n, m)}(y)\right) \equiv \sum_{j=0}^{\infty} F_{j}^{(n)}(x: y)
$$

and let us denote for each pair (j, n) of indices a general segment of $F_{j}^{(n)}(x, y)$ by

$$
\left\{F_{j}^{(n)}(x, y)\right\}_{v}^{\mu}=\sum_{m=v}^{\mu} a_{n} b_{v(n, m)} r_{n}(x) r_{v(n, m)}(y) \quad\left(m_{j}^{(n)} \leqq v \leqq \mu \leqq m_{j+1}^{(n)}-1\right)
$$

[^2]Taking into account that for each n and for each $x \in[0,1]$ the inequalities $\left|r_{n}(x)\right| \leqq 1$ hold, we get for each quartet (j, n, v, μ) of indices and for each point $(x, y) \in Q$ the following inequality:

$$
\begin{align*}
& \mid\left\{F_{j}^{(n)}(x, y\rangle_{v}^{\mu}\left|=\left|r_{n}(x)\right|\right| \sum_{m=v}^{\mu} a_{n} b_{v(n, m)} r_{v(n, m)}(y) \mid \leqq\right. \tag{2.7}\\
\leqq & \underset{\substack{\text { (} \\
\left(m_{j}^{(n)} \leqq \varrho \leqq m m_{j+1}^{(n)}-1\right)}}{2 \operatorname{Max}^{\varrho}}\left|\sum_{m=m_{j}^{(n)}}^{o} a_{n} b_{v(n, m)} r_{v(n, m)}(y)\right|=2 \delta_{j}^{(n)}(y) .
\end{align*}
$$

Since the Rademacher functions $\left\{r_{v(n, m)}(y)\right\}_{m=1}^{\infty}$ evidently satisfy the conditions of Lemma 1, so the functions $\delta_{j}^{(n)}(y)$ satisfy, according to (2.2), the following integral inequalities:

$$
\begin{equation*}
\int_{0}^{1}\left[\delta_{j}^{(n)}(y)\right]^{2} d y \leqq 8 \sum_{m=m_{j}^{(n)}}^{m_{j+1}^{(n)}-1} a_{n}^{2} b_{v(n, m)}^{2} \tag{2.8}
\end{equation*}
$$

Introducing the non-negative functions

$$
\Delta_{j}^{(n)}(x, y)=2 \delta_{j}^{(n)}(y)
$$

defined for each pair (j, n) of indices in the unit square Q, we can deduce from (2.7 and (2.8) the following two properties:

$$
\begin{equation*}
\left|\left\{F_{j}^{(n)}(x, y)\right\}_{v}^{\mu}\right| \leqq \Delta_{j}^{(n)}(x, y) \text { for each pair }(j, n) \text { of indices, } \tag{2.9a}
\end{equation*}
$$

$$
\begin{equation*}
\iint_{Q}\left[\Delta_{j}^{(n)}(x, y)\right]^{2} d x d y=4 \int_{0}^{1}\left[\delta_{j}^{(n)}(y)\right]^{2} d y \leqq 32 \sum_{m=m_{j}^{(n)}}^{m_{j}^{(n)}-1} a_{n}^{2} b_{v(n, m)}^{2} . \tag{2.9b}
\end{equation*}
$$

Using the Schwarz inequality and the rearrangement theorem of series with positive terms [6] we get from (2.6) and (2.9b) that

$$
\begin{aligned}
& \sum_{\lambda=1}^{\infty}\left(\sum_{j+n=\lambda} \int_{Q} \int_{j} \Delta_{j}^{(n)}(x, y) d x d y\right) \leqq \sum_{\lambda=1}^{\infty}\left(\sum_{j+n=\lambda}\left[\iint_{Q}\left\{\Delta_{j}^{(n)}(x, y)\right\}^{2} d x d y\right]^{\frac{1}{2}}\right)= \\
= & \sum_{n=1}^{\infty} \sum_{j=0}^{\infty}\left(\iint_{Q}\left[\Delta_{j}^{(n)}(x, y)\right]^{2} d x d y\right)^{\frac{1}{2}} \leqq \sqrt{32} \sum_{n=1}^{\infty} \sum_{j=0}^{\infty}\left[\sum_{m=m_{j}^{(n)}}^{m_{j}^{(n)}-1} a_{n}^{2} b_{v(n, m)}^{2}\right)=\sqrt{32} \Omega<\infty
\end{aligned}
$$

and so, in consequence of the Beppo Levi theorem, the series

$$
\begin{equation*}
\sum_{\lambda=1}^{\infty} \sum_{j+n=\lambda} \Delta_{j}^{(n)}(x, y) \tag{2.10}
\end{equation*}
$$

converges almost everywhere on Q.

Finally writing consecutive indices in the series (2.3) we get that each segment

$$
\begin{equation*}
\sum_{\tau=p}^{q} \varphi_{\tau}(x, y) \tag{2.11}
\end{equation*}
$$

of the series

$$
\begin{equation*}
\sum_{\tau=1}^{\infty} \varphi_{\tau}(x, y) \equiv \sum_{(k, l) \in N^{*}} a_{k} b_{l} r_{k}(x) r_{l}(y) \equiv \pi^{*}(A(x), B(y)) \tag{2.12}
\end{equation*}
$$

is a sum of finitely many $\left\{F_{j}^{(n)}(x, y)\right\}_{v}^{\mu}$, because we preserved the order of the terms of (2.12) when forming the series (2.4). Choosing therefore the lower index p in (2.11) so large that among the terms of the sum

$$
\sum_{\tau=1}^{p-1} \varphi_{\tau}(x, y)
$$

every term $a_{k} b_{l} r_{k}(x) r_{l}(y)$ of the finite sum

$$
\sum_{i=1}^{M} \sum_{j+n=\lambda} F_{j}^{(n)}(x, y)
$$

occurs, then we get by (2.9a) from the convergence of the series (2.10):

$$
\left|\sum_{\tau=p}^{q} \varphi_{\tau}(x, y)\right| \leqq \sum_{\lambda=M+1}^{\infty}\left(\sum_{j+n=\lambda} \Delta_{j}^{(n)}(x, y)\right) \rightarrow 0
$$

when p and $q \rightarrow \infty$, which proves the convergence of the series (2.12), q.e.d.

3.

Let be given two sequences $\left\{a_{k}\right\}_{k=1}^{\infty}$ and $\left\{b_{l}\right\}_{l=1}^{\infty}$ satisfying the conditions

$$
\begin{equation*}
\sum_{k=1}^{\infty} a_{k}^{2}<\infty \quad \text { and } \quad \sum_{l=1}^{\infty} b_{l}^{2}<\infty \tag{3.1}
\end{equation*}
$$

respectively, and let us consider a given method (π) defined in Definition 1.
Since the product series

$$
\pi\left(\sum a_{k}^{2}, \sum b_{l}^{2}\right)=\sum_{m=1}^{\infty}\left(\sum_{(k, l) \in N_{m}} a_{k}^{2} b_{l}^{2}\right)=\left(\sum a_{k}^{2}\right)\left(\sum b_{l}^{2}\right)
$$

converges [6], there exists an increasing sequence $\left\{m_{v}\right\}_{v=1}^{\infty}$ of indices, such that

$$
\begin{equation*}
\sum_{\nu=0}^{\infty}\left(\sum_{m=m_{\nu}}^{m_{\nu+1}-1} \sum_{(k, l) \in N_{m}} a_{k}^{2} b_{l}^{2}\right)^{\frac{1}{2}}=\Lambda<\infty \quad\left(m_{0}=1\right) \tag{3.2}
\end{equation*}
$$

holds.

In the light of this fact let us put into brackets the terms of the product series

$$
\quad \pi(A(x), B(y))=\sum_{m=1}^{\infty}\left(\sum_{(k, l) \in N_{m}} a_{k} b_{l} r_{k}(x) r_{l}(y)\right)
$$

of the almost everywhere convergent Rademacher series $\Sigma a_{k} r_{k}(x)$ and $\Sigma b_{l} r_{l}(y)$ by the help of the sequence $\left\{m_{v}\right\}_{v=0}^{\infty}$, i.e. we consider the series

$$
\pi^{*}(A(x), B(y))=\sum_{v=0}^{\infty}\left[\sum_{m=m_{v}}^{m_{v}+1} \sum_{(k, l) \in N_{m}} a_{k} b_{l} r_{k}(x) r_{l}(y)\right] \equiv \sum_{v=0}^{\infty} \Phi_{v}(x, y)
$$

We assert that last series converges absolutely almost everywhere on the unit square Q. For our purpose it is enough to observe that the functions

$$
\begin{equation*}
R_{k, l}{ }_{l}^{\prime}(x, y)=r_{k}(x) r_{l}^{\prime}(y) \quad(k=1,2, \ldots ; l=1,2, \ldots) \tag{3.3}
\end{equation*}
$$

are orthonormal on Q and so by Schwarz inequality we get from (3.2) that

$$
\sum_{v=0}^{\infty} \iint_{Q}\left|\Phi_{v}(x, y)\right| d x d y \leqq \sum_{v=0}^{\infty}\left(\iint_{Q} \Phi_{v}^{2}(x, y) d x d y\right)^{\frac{1}{2}}=\Lambda
$$

which proves our assertion and the following
Theorem 2. If the conditions (3.1) are fulfilled, then for every method (π) we can choose an increasing sequence of indices such that the associated product series

$$
\pi^{*}\left(\sum \pm a_{k}, \sum \pm b_{l}\right)=\sum_{v=0}^{\infty}\left[\sum_{m=m_{v}}^{m_{v}+1-1} \sum_{(k, l) \in N_{m}}\left(\pm a_{k}\right)\left(\pm b_{l}\right)\right]
$$

converges absolutely for almost all signings of the factor series.
Note. If the functions (3.3) had been stochastically independent on Q, then applying the two-dimensional form of Lemma 1 we should have proved from (3.2) the perfectness of every method (π) in the strict sense.

In the sequel we indicate a rather interesting problem in the theory of Walsh series, which is essentially equivalent to the problem of the perfectness of general methods (π).

To this end we introduce a convenient form of a famous transformation due to F. Riesz [7], [8].

Before all we co-ordinate the unit interval $I=I_{0}=\{t ; 0 \leqq t \leqq 1\}$ with the unit square $Q=Q_{0}=\{(x, y) ; 0 \leqq x \leqq 1,0 \leqq y \leqq 1\}$, in sign:

$$
I_{0} \leftrightarrow Q_{0}
$$

In the first step we decompose the interval I_{0} by the points $\frac{1}{4}, \frac{1}{2}, \frac{3}{4}$ to four closed intervals $I_{1,1}, I_{1,2}, I_{1,3}, I_{1,4}$, and similarly we divide the square Q_{0} by the help of the straight lines $x=\frac{1}{2}$ and $y=\frac{1}{2}$ into four congruent closed subsquares $Q_{1,1}, Q_{1,2}, Q_{1,3}, Q_{1,4}$.

In the case of the intervals $\left\{I_{1, k}\right\}_{k=1}^{4}$ the increasing order of the second index k corresponds to the increasing direction of the variable $t \in I_{0}$ and in the case of the subsquares $\left\{Q_{1, k}\right\}_{k=1}^{4}$ the increasing order of the second index is indicated by the scheme in figure 1, i.e. the subsquares $\left\{Q_{1, k}\right\}_{k=1}^{4}$ are represented by figure 2 , and we order ${ }^{\text {a }}$ the elements of the systems $\left\{I_{1, k}\right\}_{k=1}^{4}$ and $\left\{Q_{1, k}\right\}_{k=1}^{4}$ mutually to each other, in sign

$$
I_{1, k}^{\prime} \leftrightarrow Q_{1, k} \quad(k=1,2,3,4)
$$

Figure 1

Figure 2

11	10	7	6
9	12	5	8
3	2	15	14
1	4	13	16
0			

Figure 3

Next we decompose each interval $I_{1, k}$, resp. each quarter $Q_{1, k}$, into four congruent and closed subintervals, resp. subsquares, and we denote the so created systems by

$$
\begin{equation*}
I_{2,1}, I_{2,2}, \ldots, I_{2,16} ; \quad Q_{2,1}, Q_{2,2}, \ldots, Q_{2,16} \tag{3.4}
\end{equation*}
$$

In (3.4) the increasing order of the second indices of the intervals $\left\{I_{2, k}\right\}_{k=1}^{16}$ corresponds to the increasing direction of the variable t, and the second indices of the squares $\left\{Q_{2, k}\right\}_{k=1}^{16}$ are given so, that the one-to-one mapping

$$
I_{2, k} \leftrightarrow Q_{2, k} \quad(k=1,2, \ldots, 16)
$$

has the following two properties:
$\alpha)$ if $I_{2, l} \subset I_{1, k}$ then $Q_{2, l} \subset Q_{1, k}$,
β) if the squares $Q_{2, n}, Q_{2, m}, Q_{2, p}, Q_{2, r}$ are subsquares of a square $Q_{1, k}$, then the increasing order of the second indices is as indicated by the direction scheme in Figure 1.

The mapping 2°) is illustrated by figure 3 , where only the second indices are written out in the corresponding subintervals and subsquares.

Iterating the steps 0°), 1°), 2°) periodically we get a sequence \mathscr{I} of intervals

$$
\begin{equation*}
\mathscr{I}=\left\{I_{0} ; I_{1,1}, I_{1,2}, I_{1,3}, I_{1,4} ; \ldots, I_{n, 1}, I_{n, 2}, I_{n, 4^{n}} ; \ldots\right\} \tag{3.5}
\end{equation*}
$$

and a sequence $\mathscr{2}$ of squares

$$
\begin{equation*}
\mathscr{Q}=\left\{Q_{0} ; Q_{1,1}, Q_{1,2}, Q_{1,3}, Q_{1,4} ; \ldots, Q_{n, 1}, Q_{n, 2}, \ldots, Q_{n, 4^{n}} ; \ldots\right\} \tag{3.6}
\end{equation*}
$$

for which the one-to-one mapping of the elements

$$
\begin{equation*}
I_{n, k} \leftrightarrow Q_{n, k} \quad\left(n=0,1,2, \ldots, \quad k=1,2, \ldots, 4^{n}\right) \tag{3.7}
\end{equation*}
$$

has the following three properties:
(I) for each index $n(=1,2, \ldots), \bigcup_{k=1}^{4^{n}} I_{n, k}=I_{0}$ and $\bigcup_{k=1}^{4^{n}} Q_{n, k}=Q_{0}$;
(II) for each pair (n, k) of indices there exists such an index l, for which (3.8) $I_{n, k} \subset I_{n-1, l}$ and in this case $Q_{n, k} \subset Q_{n-1, l}$ is valid, and conversely if $Q_{n, k} \subset Q_{n-1, l}$ then $I_{n k} \subset I_{n-1, l} ;$
(III) $m\left(I_{n, k}\right)=m\left(Q_{n, k}\right)$, i.e. (3.7) preserves the measure.

The mapping (3.7) of the sequences (3.5) and (3.6) generates a correspondence between the points of the unit interval I and the unit square Q in the following way:

Definition 6. To each value $t \in I$ let correspond the point (or points) $T(t)=(x, y) \in Q$ for which

$$
\begin{equation*}
T(t)=^{\prime}(x, y)=\bigcap_{n=1}^{\infty} Q_{n, v(n)}, \quad \text { if } \quad t=\bigcap_{n=1}^{\infty} I_{n, v(n)},{ }^{4)} \tag{3.9}
\end{equation*}
$$

[^3]and conversely to each point $(x, y) \in Q$ let correspond the point (or points) $V(x, y)=t \in I$ for which
\[

$$
\begin{equation*}
V(x, y)=t=\bigcap_{n=1}^{\infty} I_{n, \mu(n)}, \quad \text { if } \quad(x, y)=\bigcap_{n=1}^{\infty} Q_{n, \mu(n)} . \tag{3.10}
\end{equation*}
$$

\]

Considering the properties (I)-(III) of the mapping (3.7) it is easy to see the validity of

Theorem 3. The transformations (3.9) and (3.10) are inverse of one another apart from sets of measure zero, and both of them are measure preserving transformations.

Definition 7. The functions $f(t)(t \in I)$ and $g(x, y)((x, y) \in Q)$ will be called equivalent, in sign

$$
\begin{equation*}
f(t) \simeq g(x, y) \tag{3.11}
\end{equation*}
$$

if for almost all pairs of corresponding points $(t=V(x, y),(x, y)=T(t))$ the equality $f(t)=g(x, y)$ holds.

Theorem 3 has the following two corollaries:
Theorem 4. The function $f(t)$ is measurable resp. integrable on I if and unly if the equivalent function $g(x, y)$ is measurable resp. integrable on Q, and in the latter case

$$
\int_{0}^{1} f(t) d t=\iint_{Q} g(x, y) d x d y
$$

Theorem 5. If the elements of the sequences $\left\{g_{k}(x, y)\right\}_{k=1}^{\infty}((x, y) \in Q)$ and $\left\{f_{k}(t)\right\}_{k=1}^{\infty}(t \in I)$ are term by term equivalent in the sense of definition 7 , then the series $\sum_{k=1}^{\infty} g_{k}(x, y)$ converges almost everywhere on Q if and only if the series $\sum_{k=1}^{\infty} f_{k}(t)$ is convergent almost everywhere on I.

Finally considering our direction scheme in figure 1 , it is easy to see by induction the following.

Theorem 6. If $\left\{r_{n}(t)\right\}_{n=1}^{\infty}$ denotes the system of the Rademacher functions, then for the functions of two variables

$$
\varrho_{k}(x, y) \equiv r_{k}(x) ; \quad \sigma_{l}(x, y) \equiv r_{l}(y) \quad(k=1,2, \ldots l=1,2, \ldots) .
$$

defined on Q, the following relations are true:

$$
\varrho_{k}(x, y) \simeq r_{2 k}(t) \quad \text { and } \quad \sigma_{l}(x, y) \simeq r_{2 l}(t) r_{2 l-1}(t) \quad(k=1,2, \ldots \quad l=1,2, \ldots)
$$

in the sense of Definition. 7.

By means of Theorems 5 and 6 we can join the theory of multiplication of infinite series with the theory of Walsh series [9].

In defining the functions of the Walsh system it is convenient to follow Paley's modification [10]:

Definition 8. If $\left\{r_{n}(t)\right\}_{n=1}^{\infty}$ denotes the system of Rademacher functions defined in (1.3) then the Walsh functions $\left\{w_{n}(t)\right\}_{n=0}^{\infty}$ are given in the following form:

$$
\begin{gather*}
w_{0}(t) \equiv 1 \\
w_{n}(t)=r_{v_{1}+1}(t) r_{v_{2}+1}(t) \ldots r_{v_{k}+1}(t) \tag{3.12}
\end{gather*}
$$

for $n=2^{v_{1}}+2^{v_{2}}+\ldots+2^{v_{k}}$, where the integers v_{i} are uniquely determined by $v_{i+1}<v_{i}$.
Definition 9. Let $\left\{w_{n_{i}}(t)\right\}_{i=1}^{\infty}$ be such a subsequence of the sequence $\left\{w_{n}(t)\right\}_{n=0}^{\infty}$ of the Walsh functions, whose elements have at most three factors in' the Paley representation (3.12), i.e. whose elements can be written in the form

$$
w_{n_{i}}(t)=r_{v_{1}+1}(t) r_{v_{2}+1}(t) r_{v_{3}+1}(t)
$$

Conjecture. If $\sum c_{i}^{2}<\infty$ then the lacunary Walsh series

$$
\begin{equation*}
\sum_{i=1}^{\infty} c_{i} w_{n_{i}}(t) \tag{3.13}
\end{equation*}
$$

converges unconditionally ${ }^{5}$) almost ewerywhere.
Theorem 7. Let the sequences $\left\{a_{k}\right\}_{k=1}^{\infty}$ and $\left\{b_{l}\right\}_{l=1}^{\infty}$ satisfy the conditions (3.1) and let us consider an arbitrary method (π) defined in Definition 1. If the above conjecture is true then the product series

$$
\begin{equation*}
\pi\left(\sum a_{k} r_{k}(x), \sum b_{l} r_{l}(y)\right)=\sum_{m=1}^{\infty}\left(\sum_{(k, l) \in N_{m}} a_{k} b_{l} r_{k}(x) r_{l}(y)\right) \tag{3.14}
\end{equation*}
$$

converges almost everywhere on the unit square Q.
Proof. From the conditions (3.1) it follows that the sum

$$
\sum_{m=1}^{\infty}\left(\sum_{(k, l) \in N_{m}} a_{k}^{2} b_{l}^{2}\right)
$$

converges, and according to the theorems 5 and 6 the series (3.14) is equiconvergent with the Walsh series

$$
\sum_{m=1}^{\infty}\left(\sum_{(k, l) \in N_{m}} a_{k} b_{l} r_{2 k}(t) r_{2 l}(t) r_{2 l-1}(t)\right)
$$

which is a rearranged and associated series of type (3.13).

[^4]Note. The conjecture is true in that special case, when in (3.13) the indices n_{i} are in an increasing order; more generally the following theorem is true [11]:

Theorem 8. If $\left\{w_{n_{i}}(x)\right\}_{i=1}^{\infty}$ denotes such a subsequence of the sequence $\left\{w_{n}(x)\right\}_{n=0}^{\infty}$.whose elements have at most N factors in Paley's representation (3.12), where N is an arbitrary but fixed natural number, then the convergence of the series Σc_{i}^{2} involves the convergence almost everywhere of the lacunary Walsh series

$$
\begin{equation*}
\sum c_{i} w_{n_{i}}(x) \tag{3.15}
\end{equation*}
$$

Proof. In order to prove the theorem it is enough to show that the following assertion is true:

If for a given Walsh series $\sum_{n=0}^{\infty} c_{n} w_{n}(x)$ the coefficients satisfy the condition $\sum c_{n}^{2}<\infty$ and if the elements of the monotonically increasing sequence n_{k} have a dyadic expression of the form

$$
\begin{equation*}
n_{k}=2^{v_{1}}+2^{v_{2}}+\ldots+2^{v_{1}} \tag{3.16}
\end{equation*}
$$

l being limited by an arbitrary chosen but fixed natural number N, then the partial sums

$$
s_{n_{k}}(x)=\sum_{\lambda=0}^{n_{k}} c_{\lambda} w_{\lambda}(x)
$$

converge almost everywhere.
We can get the proof of the last assertion from a lemma of L. Leindeer [12] applying it to the Walsh system whose Lebesgue constants are known [13].

Lemma 2. If $\left\{n_{k}\right\}$ is a positive non-decreasing sequence of indices and $\left\{\varphi_{n}(x)\right\}_{n=0}^{\infty}$ is such an orthonormal system on the interval $[a, b]$ whose Lebesgue functions

$$
L_{n_{k}}(x)=\int_{a}^{b}\left|\sum_{i=0}^{n_{k}} \varphi_{i}(x) \varphi_{i}(u)\right| d u
$$

are uniformly bounded on a set $E \subset[a, b]$, then the condition $\sum c_{i}^{2}<\infty$ implies that the subsequence

$$
s_{n_{k}}(x)=\sum_{i=0}^{n_{k}} c_{i} \varphi_{i}(x)
$$

of the partial sums of the orthogonal series $\sum c_{i} \varphi_{i}(x)$ is almost everywhere convergent on the set E.

If the orthonormal system $\left\{\varphi_{n}(x)\right\}$ is the Walsh system $\left\{w_{n}(x)\right\}_{n=0}^{\infty}$, then we can apply the above lemma in a very convenient form to the case of the index
sequence (3.16). In fact, N. J. Fine [13] showed that the Lebesgue functions of the Walsh system do not depend on x and have the following explicit form

$$
L_{n}(x) \equiv L_{n}=l-\sum_{1 \leqq p<r \leqq l} 2^{\left(v_{r}-v_{p}\right)}
$$

if $n=2^{v_{1}}+2^{v_{2}}+\ldots+2^{v_{1}}$. Consequently, for the indices (3.16) we have $L_{n_{k}} \leqq l \leqq N$ and therefore our theorem is proved.

4

Theorem 9. If the conditions

$$
\sum a_{k}^{2}<\infty \quad \text { and } \quad \sum b_{l}^{2}<\infty
$$

hold, and if the general product series

$$
\begin{equation*}
\pi(A .(x), B(y))=\sum_{m=1}^{\infty}\left(\sum_{(k, l) \in N_{m}} a_{k} b_{l} r_{k}(x) r_{l}(y)\right) \tag{4.1}
\end{equation*}
$$

of the almost everywhere convergent series

$$
\begin{equation*}
A(x)=\sum_{k=1}^{\infty} a_{k} r_{k}(x) \quad \text { and } \quad B(y)=\sum_{l=1}^{\infty} b_{l} r_{l}(y) \tag{4.2}
\end{equation*}
$$

converges almost everywhere on the unit square Q to the sum $S(x, y)$, then $S(x, y)=\dot{A}(x) B(y)$ almost everywhere on Q.

Proof. Since the rectangular product

$$
\sum_{m=1}^{\infty}\left(\sum_{l=1}^{m} a_{m} b_{l} r_{m}(x) r_{l}(y)+\sum_{k=1}^{m-1} a_{k} b_{m} r_{k}(x) r_{m}(y)\right)
$$

of the series (4.2)' converges almost everywhere on Q to the sum $A(x) B(y)$, and since the product series (4.1) is, according to (3.3), such an orthogonal series on Q for which the square sum of its coefficients is finite, so the theorem is an immediate consequence of the Riesz-Fischer theorem.

References

[1] R. Rado, The distributive law for products of infinite series, Quarterly J. Math., Oxford series 11 (1940), 229-242.
[2] A. Alexiewicz, On multiplication of infinite series, Studia Math., 10 (1948), 104-112.
[3] H. Rademacher, Einige Sätze über Reihen von allgemeinen Orthogonalfunktionen, Math. Annalen, 87 (1922), 112-138.
[4] J. Khintchine-A. N. Kolmogoroff, Konvergenz der Reihen, deren Glieder durch den Zufall bestimmt werden, Mat. Sbornik, $\mathbf{3 2}_{2}^{2}(1925)$, 668-677.
[5] J. Marcinkiewicz-A. Zygmund, Sur les fonctions indépendantes, Fundamenta Math., 20 (1937), 60-90.
[6] K. Knopp, Theorie und Anwendung der unendlichen Reihen (Berlin-Heidelberg, 1947), 144.
[7] F. Riesz, Untersuchungen über Systeme integrierbarer Funktionen, Math. Annalen, 69 (1910), 449-497.
[8] F. Riesz-B. Sz.-Nagy, Legons d'analyse fonctionnelle (Budapest, 1952); 81-83.
[9] J. L. Walsh, A closed set of normal orthogonal functions, American J. Math. 54 (1923), 5-24.
[10] R. E. A. C. Paley, A remarkable series of orthogonal functions, Proc. London Math. Soc., (II) 34 (1932), 241-279.
[11] L. G. PÁL, On the multiplication of infinite series, and on the Walsh-Fourier-series, Thesis (Budapest, 1966).
[12] L. Leindler, Nicht verbesserbare Summierbarkeitsbedingungen für Orthogonalreihen, Acta Math. Acad. Sci. Hung., 13 (1962), $401-414$.
[13] N. J. Fine, On the Walsh functions, Trans. Amer. Math. Soc., 65 (1949), 372-414.
(Received September.22, 1967)

[^0]: ${ }^{1}$) In the sequel the series $\Sigma a_{k}, \Sigma b_{i}, \Sigma c_{m}, \ldots$ will be denoted by the corresponding capital letters A, B, C, \ldots independently of their convergence or divergence.

[^1]: ${ }^{1}$) A system $\left\{f_{k}(x)\right\}_{k=1}^{n}$ of measurable functions defined on the interval $[0,1]$ will be called stochastically independent if for an arbitrary given system of intervals $I_{k}=\left(\alpha_{k}, \beta_{k}\right)(k=1, \ldots, n)$ the equality

 $$
 m\left(\bigcap_{k=1}^{n} E\left\{f_{k} \in I_{k}\right\}\right)=\prod_{k=1}^{n} m\left(E\left\{f_{k} \in I_{k}\right\}\right)
 $$

 is valid, where $E\left\{f_{k} \in I_{k}\right\}$ means the set of all $x \in[0,1]$ for which the inequalities $\alpha_{k}<f_{k}(x)<\beta_{k}$ hold and $m(H)$ denotes the Lebesgue measure of the set H.

 A sequence of functions $\left\{f_{n}(x)\right\}_{n=1}^{\infty}(x \in[0,1])$ is stochastically independent, if any finite subsequence of it is stochastically independent in the above sense.

 From these definitions follows that any rearrangement $\left\{f_{n_{k}}\right\}_{k=1}^{\infty}$ of a stochastically independent system $\left\{f_{n}(x)\right\}_{n=1}^{\infty}$ remains stochastically independent.
 $\left.{ }^{2}\right) N^{*}$ means the sequence of all elements of $N=\{(k, l)\}$ generated by the decomposition $\bigcup_{m=1}^{\infty} N_{m}=$ $=N$ of the method (π).

[^2]: ${ }^{3}$) (2.6) shows that the condition $\Sigma\left|a_{n}\right|<\infty$ was only used for the estimate $\Omega_{1}<\infty$, and that the weaker condition $\Sigma a_{11}^{2}<\infty$ is enough to ensure the validity of $\Omega_{2}<\infty$.

[^3]: ${ }^{4}$) If t is not dyadic rational, then the subsequence $\left\{I_{n, v(n)}\right\}_{n=1}^{\infty}$ of (3.5) is uniquely determined by t, and so $T(t)=(x, y) \in Q$ is also uniquely determined.

[^4]: ${ }^{3}$) i. e. the series (3.13) converges by any rearrangement of its terms apart from a set of measure zero (which set may depend of course on the rearrangement in question).

