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1 

The most general definition of the product of two infinite series can be obtained 
as follows: 

D e f i n i t i o n 1, Let us denote by N t h e set of all pairs (k, I) of positive integers, 
and let K be a sequence Nl, Nz, • ••, Nm, ... of finite, mutually disjoint subsets 

CO 

of N such that N— (J Nm. Given two infinite series 
m = 1 

(1.1) A = 2ak and- B=2bi 
ji= I ¡=i 

we call the series 

(1.2) C=2cm = 2{ 2 ckb,) . 
m= 1 m= 1 (MKiVm 

the product of the series (1.1) obtained by the method corresponding to the sequence n, 
or simply by the method (n), and we denote it by E bx) or shortly by 
n(A, B). 

D e f i n i t i o n 2. The method (7t) will be called perfect if for any two convergent 
series (1. 1),- the product series n(A, B) also converges and its sum is equal to the 
product of the sums of the factor series. 

D e f i n i t i o n 3. The method (re) will be said to have property (resp. M2) 
if for any series A and B the convergence oF.A (resp. B) and the absolute convergence 
of B (resp. A) implies the convergence of n(A, B), its sum being equal to the product 
of the sums of the factor series. 

D e f i n i t i o n 4. If a method (n) has both properties Ml and M2 we will say 
that it has the Mertens property. 

') In the sequel the series £ak, Sb„ £cm, ... will be denoted by the corresponding capital letters 
A, B, C, ... independently of their convergence or divergence. 
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D e f i n i t i o n 5. The method (n) will be said to have the Abel property, if for 
any convergent series A and B the convergence of n(A, B) implies that the sum 
of n(A, B) is equal to the product of the sums of A and B. 

R . R A D O [1] has given necessary and sufficient conditions for a method (n) 
to be perfect. R A D O considers merely methods with sets N M consisting of one element. 
For the general case of definition 1 the perfectness and the Mertens property were 
characterized by A . A L E X I E W I C Z [2] in necessary and sufficient form. 

Although the theorems of A L E X I E W I C Z solve the convergence problem of a 
method (n) — apart from the Abel property — in the classical sense, there arises the 
following question: 

If we pass over the classical view of convergence, i. e. if we agree that the 
"convergence" of a series Icn means that the series I ± cn is convergent with 
the probability 1 taking at random the signs of its terms, then how can we modify 
the theorems of A L E X I E W I C Z , and how we stand with the problem of the Abel property? 

We can formulate our problem — due to RADEMACHER [3] , KOLMOGOROFF 

and K H I N T C H I N E [4] — analytically in the following manner: 
If {rn(i)}"=1 denotes the system of the Rademacher functions i.e. if 

(1.3) r„(t) = sign (sin 2"nt) (n = 1 , 2 , 3 , . . . ) 

in the interval 0 S t s 1, then for a given method (n) what can we say about the 
convergence of the series 

(1.4) n(A{x),B(y))^ 2 ( 2 ^ V f c W o O O ) 
m=i (t,/)6ivm 

at the points (x,y) of the unit square Q = {(x, y); O S x S 1, O S y S 1}, assuming 
that the factor series 

(1.5) A(x) = 2 akrk(x) and B(y) = £ b,r,(y) 
k=1 ¡=1 

are convergent almost everywhere in [0, 1], i.e. assuming that the conditions 
and Ibf < °o are fulfilled? 

In section 2 we shall prove that every method (n) possesses the Mertens property 
in the above sense. 

In section 3 we shall show that every method (7:) becomes perfect if we put 
the terms of the product series into brackets in suitable form, and at the same time 
we mention a conjecture in the theory of Walsh series, which is essentially equivalent 
to the perfectness of every method (71). 

Finally in section 4 we prove that every method (n) has the Abel property. 
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T h e o r e m 1. If the conditions 

(2.1) 2 k 
k=l 

and 2 b i < 0 ° 
i=i 

hold, then the product series (1. 4) of the series (1.5) — generated by an arbitrary 
given method (n) — converges almost everywhere on the unit square Q. 

P r o o f . First of all we cite a lemma — discovered by Z Y G M U N D and M A R -

CINKIEWICZ [5] — which will be used in the sequel. 

L e m m a 1. If the functions of an orthonormal system {ip„(x)}„°l, in L2(0, 1) 
are stochastically independent') with the integral mean 0, then for any finite coefficient 
system {ct}E = 1 the following inequality is true: 

(2.2) 

1 

/ Max 2 CkVk(x) 
0 (1 S«iS<) 

k= 1 
d x ^ 8 

1 

/ 
2 ck<Pk(x) dx = 8 

k= 1 

In order to prove the convergence of the series (1. 4) it is enough to show that 
under the conditions (2.1) the series 

(2.3) n*(A(x),B(yj)= 2 akbirk(x)r,(y), 
ft, l ) £ N * 

arising f rom (1. 4) by omitting brackets 2), converges almost everywhere on Q, too. 
Let us consider for each index n the subseries 

(2.4) sn(x, y) = 2 a„b. 
m= 1 v ( n , m ) r«<XK( B ,m)0) 

') A system {/k(.r)}j = i of measurable functions defined on the interval [0,1] will be called 
stochastically independent if for an arbitrary given system of intervals fk=(a.k,/}k) ( f c= l , . . . , « ) the 
equality 

î i H E{fk S 7k}l = ¡J m (E{fk £ /,}) 
U=1 / k= 1 

is valid, where E{fkzlk} means the set of all xe [0,1] for which the inequalities a k ^ P k hold 
and m(H\ denotes thé Lebesgue measure of the set H. 

A sequence of functions {/„W}n" i(x€[0,1]) is stochastically independent, if any finite subse-
quence of it is stochastically independent in the above sense. 

From these definitions follows that any rearrangement {/„ }r= i of a stochastically independent 
k 

system {/„(*)}„"=! remains stochastically independent. 
2) N* means the sequence of all elements of N= {(k, /)} generated by the decomposition (J N,„ = 

m= 1 
=N of the method (n). 
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which contains — in unaltered order — all the terms of (2. 3) having the factor 

Since the sequence {¿>v(„ m)}~= 1 is a permutation of the original sequence 
{ft,}," i (generated by the method (n)), therefore we get f rom the second condition 
of (2.1) that 

OO CO CO 

2 alt>l(n<m) = al 2 6v(n,m) = a\ 2 bf<°° 
m— l m=1 (=1 

is valid for each index n. 
This inequality guarantees for each n the existence of such a sequence 

<2.5) 1 < m\n) < m(
2
n) <... < m\n) < mflt < ..., 

for which the inequalities 

are true, and therefore, using for each n the notation = 1 we get f rom (2.1) 
the following estimate: 

CO 1 / 111. 

a = 2 2V 2 anbHn,m) = Qi+O2 = n=lj=0< m=m< 

<2.6) - 2 
n=l 

2 an bl (",I") + 22 n = 1 j= 1 

" i v . - l Ï 
2 an bl(n, m) J 

/ (") 1 \-i-oo Wlj —1 T o o i oo j eo 

^ 2 k l 2 ' ¿v2(„,m) + ' 2 k l ™ 2 ^ № 2 k l + f * Y c -
n=l m =1 n= 1 j= 1 ^ 11=1 

where A', B' and C" mean the sums of the convergent series la2, lb}, and 14~", 
respectively 3). 

Secondly we construct f rom the series (2. 4) by the help of the sequences (2. 5) 
the following series 

CO "'j'Vl — 1 oo 

y ) = 2 2 , an K in, m) r„{x) rv (n_ , „ ) ( } ' ) = 2 f j " } (*• y)> 
J = 0 0 

and let us denote for each pair (/, n) of indices a general segment of F$"\x, y) by 

= J a„bH,Km)rn{x)rv{n<m){y) ( m j ^ v S f . S m W , - ! ) . ' 

3) (2. 6) shows that the condition Z'\a„\~ was only used for the estimate i 2 i < ~ , and that 
the weaker condition oo is enough to ensure the validity of 
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Taking into account that for each n and for each x£ [0 , 1] the inequalities 
| r „ ( x ) | ^ l hold, we get for each quartet ( j , n, v, /f) of indices and for each point 
(x, y)£Q the following inequality: 

(2.7) 

>i 
2 anbv(n, m)'~v(n 
m = v 

,m)(y) 

^ 2Max 

(m'/^JmiVt-l) 
2 anbV(n, 

•nf 
m) («, m) (y) = 25(/> (y). 

Since the Rademacher functions {/-v((l> m)(y)}„=x evidently satisfy the conditions 
of Lemma 1, so the functions S^Hy) satisfy, according to (2.2), the following 
integral inequalities: 

(2.8) 
r , i - 1 

J[d (j">(y)] 2dym 8 2 <tlbl(nimy 

Introducing the non-negative functions 

Af(x,y) = 2S<j">(y) 

defined for each pair ( j , n) of indices in the unit square Q, we can deduce f rom (2. 7 
and (2. 8) the following two properties: 

(2.9a) \{F)"> (x, y)}»\ s A'j n> (x, y) for each pair (j, n) of indices, 

•JV.-i P (* P mJ + t"" 1 

(2.9 b) J J [A<"> (x, y)} 2 dx dy = 4 J [<5 j"> (y)] 2 dy ^ 32 2 ««b2  

n n 
(n, m)-

Using the Schwarz inequality and the rearrangement theorem of series with 
positive terms [6] we get f rom (2. 6) and (2. 9b) that 

2 2 fjAy>(x,y)dxdy\ s 2 2 ff{A'/Hx,y)} 2dxdv 

oo CO ( n n "̂2" oo CO ~~ 1 
= 2 2\J [Ar(x,y)Ydxdy\ == / 3 2 2 2 2 «2 *?<„,„> = Y32Q< co, 

and so, in consequence of the Beppo Levi theorem, the series 

(2.10) 

converges almost everywhere on Q. 

2 2 A=1j+n=X 

21 A 
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Finally writing consecutive indices in the series (2.3) we get that each segment 

(2.11) 2 <Pr(x,yY 
I = p 

of the series 

(2.12) 2<P^x,y) = 2 akbi>'k(x)ri(y) = n*(d(x), B(y)) 
t=l (k,l)£N* 

is a sum of finitely many {Fj"Hx, y)}v, because we preserved the order of the terms 
of (2. 12) when forming the series (2. 4). Choosing therefore the lower index p in 
(2. 11) so large that among the terms of the sum 

p-1 
• 2 < P r ( x , y ) 
1 = 1 

every term a ^ ^ x y ^ y ) of the finite sum 

M 
2 2 F f ( x , y ) A=1j+n=A 

occurs, then we get by (2. 9a) f rom the convergence of the series (2. 10): 

2<p*(x,y) ^ 2 [ 2 ¿ j - W j U o 
A = M + 1 V j + n = A ) 

when p and q — which proves the convergence of the series (2. 12), q.e.d. 

3. 

Let be given two sequences { a j r = i and {bt}r= i satisfying the condit ions 

(3.1) and 2 b f « ~ , 
k-1 1 = 1 

respectively, and let us consider a given method (7t) defined in Definition 1. 
Since the product series 

<2aZ,2b?)=.z\ 2 rib}] = (2al){2bj) 
m=l Ufc.DEiVm ) 

converges [6], there exists an increasing sequence {wv}~_ x of indices, such tha t 

co (mv+ l — l 
(3 :2) 2 2 2 <*kbf \ = / i < o o ( m 0 = i ) 

v = 0 \m = mv (k,l)£Nm ) 
holds. 
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In the light of this fact let us put into brackets the terms of the product series 

v n{A(x),B(y)) = 2 \ 2 ^bM^niy)] 
m= 1 \(k,0£Nm J 

of the almost everywhere convergent Rademacher series I akrk(x) and I b f ^ y ) 
by the help of the sequence {mv}v°l0, i.e. we consider the series 

°o lmv+ l — 1 
n*(A(x),B(y)) = Z \ 2 Z akbii"k(x)rl(y) 

v —0 L m = mv Ck,l)£Nm v = 0 

We assert that last series converges absolutely almost everywhere on the unit 
square Q. For our purpose it is enough to observe that the functions 

(3. 3) RkJ(x, y) = rk(x)rl(y) (k = \,2, ...; 1=1,2, ...) 

are or thonormal on Q and so by Schwarz inequality we get f rom (3. 2) that 

¿ 0 / M ( * . y) Idx dy - Z 0 [ f f ^ ( x , y ) d x dy\ = A, 

which proves our assertion and the following 

T h e o r e m 2. If the conditions (3. 1) are fulfilled, then for every method (n) 
we can choose an increasing sequence of indices such that the associated product series 

AZ±c*k,Z±bl) = 2 
v - 0 

mv+i — 1 
2 2 (±aj{±bd m = mv (k,l)£Nm 

converges absolutely for almost all signings of the factor series. 

N o t e . If the functions (3.3) had been stochastically independent on Q, then 
applying the two-dimensional form of Lemma 1 we should have proved f rom (3. 2) 
the perfectness of every method (%) in the strict sense. 

In the sequel we indicate a rather interesting problem in the theory of Walsh 
series, which is essentially equivalent to the problem of the perfectness of general 
methods ('n). 

To this end we introduce a convenient form of a famous transformation due to 
F . RIESZ [7], [8]. 

Before all we co-ordinate the unit interval I=I0={t; O ^ i S l } with the unit 
square Q = Q0 = {(*, y); O s x s 1, O ^ j S 1}, in sign: 

0°) Io-Qo-

In the first step we decompose the interval I 0 by the points i , f to four 
closed intervals IiA, 7 t 2 , 71>3 , 7 l 4 , and similarly we divide the square go by the 
help of the straight lines and y = i into four congruent closed subsquares 

Ql,2> 8l,3> Q 1,4-
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In the case of the intervals {/lj4}fc=i the increasing order of the second index 
k corresponds to the increasing direction of the variable i £ / 0 and in the case of 
the subsquares the increasing order of the second index ' i s indicated by 
the scheme in figure 1, i.e. the subsquares {ô],*}*=i are represented by figure 2, 
and we order^ the elements of the systems { / i , Jk= i and { ô i , J t = i mutually to 
each other, in sign 

1°) h U - Q i . k (A: = 1 , 2 , 3 , 4 ) . 

—X 

Figure 1 

V <y=x 

V 
'R13 

/ R12 

/ 
R11 

/ 

\ 

\ 

I K ^ - . 

J 11 I 12 / f 3 , 

/ 
Figure 2 

y " 

11 10 7 6 

9 12 5 ' a 

3 2 15 /4 

1 4 13 16 

.1 2 3 4 5 S 7 S 9 10 11 12 13 15 16. 

Figure 3 

Next we decompose each interval resp. each quar ter Ql k, into four con-
gruent and closed subintervals, resp. subsquares, and we denote the so created systems 
by 

( 3 . 4 ) / 2 > l , / 2 . 2 . - ^ 2 ,165 6 2 , 1 > 2 2 , 2 ) •••> 6 2 , 1 6 -
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In (3. 4) the increasing order of the second indices of the intervals {I2,k}k=i 
corresponds to the increasing direction of the variable t, and the second indices 
of the squares {Q2,k}ki i a r e given so, that the one-to-one mapping . 

2°) h . k - Q z . k ( * = 1 ,2 , . . . , 1 6 ) 

has the following two propert ies: 
a) if I2 i c / j t then Q2,i<zQ1 k , 
P) if the squares Q2 n, Q2 m, Q2 p, Q2 r are subsquares of a square Qlk, 

then the increasing order of the second indices is as indicated by the direction scheme 
in Figure 1. 

The mapping 2°) is illustrated by figure 3, where only the second indices are 
written out in the corresponding subintervals and subsquares. 

I terating the steps 0°), 1°), 2°) periodically we get a sequence J of intervals 

(3.5) J = { / 0 ; / i , i ,T i , 2> 7 1 3 , / 1 ) 4 ; . . . , 7 n l , / „ ; 2 • • • } 

and a sequence 2 of squares 

(3.6) 2 = {Qo\8l.l,8l, 2,81.3,81.4; -,8n. l . f in , 2, . 

for which the one-to-one mapping of the elements 

(3.7) Ink 8n,k (» = 0 , 1 , 2 , . . . , k = 1,2, . . . , 4") 

has the following three propert ies: 
4" 4 " 

(I) for each index « ( = 1 , 2 , . . . ) , \ j l „ . k = l 0 and U 0 n , * = G o > ' 
k=1 k=1 

(II) for each pair (n, k) of indices there exists such an index /, for which' 
(3.8) l and in this case Q „ . k ^ 8 n - i , i is valid, and conversely if 
Qn.k^8n-i,i^then 7B j f cc /„_!,,; 

(I l l ) m(In k) = m(Qn k), i.e. (3 .7) preserves the measure. 
The mapping (3. 7) of the sequences (3. 5) and (3. 6) generates a correspondence 

between the points of the unit interval 7 and the unit square Q in the following way: 
D e f i n i t i o n 6. To each value t£l let correspond the point (or points) 

T{t) = (x, y) £ Q for which 

(3.9) n o =-(x,y) = n a . v ( n ) , if t= n / n , v W , 4 ) 

") If t is not dyadic rational, then the subsequence {/„, v(„>},r= 1 of (3. 5) is uniquely determined 
by t, and so T(t) = (x, y)tQ is also uniquely determined. 
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and conversely to each point (x,y)£Q let correspond the point (or points) 
f(x> У)= {€ I f ° r which 

(3.10) V(x,y) = t= П / „ . „ о , if (x,y)= f\Q„tll(n). 
n=1 n=1 

Considering the properties (I)—(III) of the mapping (3. 7) it is easy to see the 
validity of 

T h e o r e m 3. The transformations (3. 9) and (3. 10) are inverse of one another 
apart from sets of measure zero, and both of them are measure preserving trans-
formations. 

D e f i n i t i o n 7. The functions / ( / ) ( ? £ / ) and g(x, y) ((x,y)£Q) will be called 
equivalent, in sign 
(3-11) f(t)^g{x,y), 

if for almost all pairs of corresponding points (t = V(x, у), (x, y) = T(t)) the 
equality f(t)—g(x, y) holds. 

Theorem 3 has the following two corollaries: 

T h e o r e m 4. The function f ( t ) is measurable resp. integrable on I if and only 
if the equivalent function g(x, y) is measurable resp. integrable on Q, and in the 
latter case 

i 

J7(0 d t = f f six, y) dxdy. 
0 . , e 

T h e o r e m 5. If the elements of the sequences {g t(x, y)}k= i ((•*, y)£Q) and 
{fk(0}Г=1 (l £-0 are term by term equivalent in the sense of definition 1, then the 

CO oo 

series ZSkix, y) converges almost everywhere on Q if and only if the series 2fk(0 
k= 1 k=i 

is convergent almost everywhere on I. 

Finally considering our direction scheme in figure 1, it is easy to see by induction 
the following. 

T h e o r e m 6. If {г„(0}>Г= i denotes the system of the Rademacher functions, 
then for the functions of two variables 

вк(х,у) = rk(x); a,(x,y) = r¡(y) (к = 1 ,2 , . . . / = 1, 2, ...) 

defined on Q, the following relations are true: 

Qk(x, у) ^ r2k(t) and ffi(x, y) r2](t)r2l_, ( / ) (к =, 1, 2 , . . . / = 1 , 2 , . . . ) 

in the sense of Definition 7. 
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By means of Theorems 5 and 6 we can join the theory of multiplication of 
infinite series with the theory of Walsh series [9]. 

In defining the functions of the Walsh system it is convenient to follow 
PALEY'S modification [ 1 0 ] : 

D e f i n i t i o n 8. If K(i)}n°°=i denotes the system of Rademacher functions 
defined in (1. 3) then the Walsh functions {iv„(/)}r=o are given in the following fo rm: 

w0(t)=l, 
(3.12) 

w„(0 = ',v1+i(0',va+i(0-',vk+i(0 
for n = 2"' + 2"2 + ... + 2Vk, where the integers v, are uniquely determined by vi+1< v,-. 

D e f i n i t i o n 9. Let {vv„.(i)}r= i be such a subsequence, of the sequence 
{w„(0}/T=o of the Walsh functions, whose elements have, at most three factors 
in'_the Paley representation (3.12), i.e. whose elements can be written in the 
form 

= rVl + i ( 0 r V 2 + i ( 0 r » i + i ( 0 -

Conjecture. If 2cf < 0 ° then the lacunary Walsh series 

(3.13) 2 n ( 0 
¡=i 

converges unconditionally 5) almost ewerywhere. 

T h e o r e m 7. Let the sequences {ak}0°=1 and {¿¡}r=i Satisfy the conditions 
(3. 1) and let us consider an arbitrary method (it) defined in Definition 1. If the above 
conjecture is true then the product series 

(3.14) n(Zakrk(x):2blrl(y))= J 2 akb,rk(x) rt(y)} 
m= 1 V(Ic,0€iVm ) 

converges almost everywhere on the unit square Q. 

P r o o f . F rom the conditions (3. 1) it follows that the sum 

i f 2 albl 

converges, and according to the theorems 5 and 6 the series (3. 14) is equiconvergent 
with the Walsh series 

2 2 akbi ( 0 m= 1 \(fc, l)£Nm 

which is a rearranged and associated series of type (3. 13). 

5) i. e. the series (3.13) converges by any rearrangement of its terms apart from a set of 
measure zero (which set may depend of course on the rearrangement in question). 
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N o t e . The conjecture is true in that special, case, when in (3. 13) the indices 
Hi are in an increasing order ; more generally the following theorem is true [11]: 

T h e o r e m 8. If denotes such a subsequence of the sequence 

{w>„(x)}7=o whose elements have at most N factors in Paley's representation (3. 12), 
where N is an arbitrary but fixed natural number, then the convergence of the series 
Icf involves the convergence almost everywhere of the lacunary Walsh series 

(3.15) 2 ^ \ ( x ) . 

P r o o f . In order to prove the theorem it is enough to show that the following 
assertion is t rue: 

OO 
If for a given Walsh series 2 cnwn{x) the coefficients satisfy the condition 

n = o 
2 cl < oo and if the elements of the monotonically increasing sequence nk have a 
dyadic expression of the form 

(3.16) nk = 2v' + 2^+ ...+2V>, 

I being limited by an arbi t rary chosen but fixed natural number N, then the 
partial sums 

nic 

A = 0 

converge almost everywhere. 
We can get the proof of the last assertion f rom a lemma of L. L E I N D L E R [ 1 2 ] 

applying it to the Walsh system whose Lebesgue constants are known [13]. 

L e m m a 2. If {«J is a positive non-decreasing sequence of indices and {(pjx)}™=0 

is such an orthonormal System on the interval [a, b] whose Lebesgue functions 

Lnk(x) 

D 

= i 
2<Pi(x)<Pi ( " ) 

¡=0 
du 

are uniformly bounded on a set Ec [a, b], then the condition 2cf °° implies that 
tfie subsequence 

nk 
snk(x) = 2ci9i(x) 

>•=0 

of the partial sums of the orthogonal series 2ci(Pi(x) ' s almost everywhere convergent 
on the set E. 

If the or thonormal system {(pn(x)} is the Walsh system {w„(x)}~=0, then 
we can apply the above lemma in a very convenient fo rm to the case of the index 
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sequence (3. 16). In fact, N. J. F I N E [13] showed that the Lebesgue functions 
of the Walsh system do not depend on x and have the following explicit form 

L„(x) = Ln = l - Z 2^-v) 
1 Sp<rSI 

if H = 2v>+2V2 + ... + 2v<. Consequently, for the indices (3. 16) we have L„k^l^N 
and therefore our theorem is proved. 

4 

T h e o r e m 9. If the conditions 

and 

hold, and if the general product series 

(4.1) n(A.(x),B(y)) = z I 2 ^ V f c W n O O 

of the almost everywhere convergent series 
& 

• ° ° 0 0 

(4.2) A(x)= Z w d x ) and B(y) = 2 V , 0 0 
k= 1 (=1 

converges almost everywhere on the unit square Q to the sum S(x, y), then 
S(x, y) = A(x)B(y) almost everywhere on Q. 

P r o o f . Since the rectangular product 

oo j m m— 1 
2 2 (*) ri(y) + Z akbmrk(x) r„, (y) m= I V/= 1 k=l 

of the series (4. 2) converges almost everywhere on Q to the sum A(x)B(y), and 
since the product series (4. 1) is, according to (3. 3), such an orthogonal series on Q 
for which the square sum of its coefficients is finite, so the theorem is an immediate 
consequence of the Riesz—Fischer theorem. 
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