On a problem of summability of orthogonal series

By FERENC MORICZ and KAROLY TANDORI in Szeged

Introduction

" Let {@u(x)} (k=0,1, ...) be an orthonormal system on the finite interval (a, b).
We shall denote by s5,(x) the n-th partial sum of the orthogonal series

DR | 3 o).

Let T=(xy) (i, k=0, 1, ...) be a double infinite matrix. of numbers. The sum
H(x) = kz;diksk(x) (i=0,1,..:)

is called the i-th T-mean of the series (1), proilided that the series on the fight-hand
side converges. We say that the series (1) is T-summable to the sum s at the point
xo( €(a, b)) if ti(x,) exists for all i (perhaps 'except finitely many of "them), and
lim ¢,(x,) =s. A T-summation process is said to be permanent if lim s,=s implies
i— oo n—»co B
Jlim t; =5. The necessary and sufficient conditions for the permanence of a.summation '

process are known. (See ALEXITS [1], p. 65.)
For any given orthonormal system {g.(x)} and for any summation matrix
T we shall consider the following functions

L(T;{ou}; %) =

b
2 a,k[ @(%) <m(z)] 2; [kfil e i) qok(t)] dt

provided they exist. The function Li(T; {ou}; x) is called the i-th Lebesgue function
of the orthonormal system. {¢,(x)} concerning the 7-summation process. The
order of magnitude of the Lebesgue functlons may, in many cases, be de0151ve
for the convergence problems.

In particular, taking

Ay =

o7 ®=0L..D w=0 (k=i+tli+2.) (=01L..),
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we obtain the classical (C 1)—summation process. NoW, we have

dt.

L((C 1); {eu}; %) /’ [ l+1]<pk(x)¢k(t)

In this case KaczmaRz [3] has proved the following theorem:

Let {@(x)} be an arbitrary orthonormal Sys_tem in (a, b). If {w} is a positive,
non-decreasing number sequence for which the relation . '

b

) - sup / L€ Dilodi®) 4 .,

v(x) Hy(x)

holds, where the sup is taken over all the. measurable functzons v(x) assumzng only
integer values, then

oo

Z ag <o .

implies the (C, 1)-summability of the ort/zogonal series (1) almost everywhere

It is obv1ous that the COIldlthn (2) is equivalent to the following one:

sub Li((C, li,; tod: ) € L(a, b).

i ' i

Kaczmarz formulated this theorem under the condition requiring somewhat
more than (2) namely .

L((C, s {3 ¥) = O(u) (aéxéb),
however, the above sharper assertion can also be obtained from his proof.

KaczmaRz [3] has generalized the above theorem also for the (C, f>0)-
summation. (In this case, we have:

AfD

T k=010, =00k =i+1,i+2..) (=0,1,..),

Ui =

where A = (H;B]] (See also TANDORI [81)

SUNOUCHI [7] and LeiNnpLER [4] have transferred these results to the Riesz
summation of orthogonal series. (In-this case

_ =

Ay = — k=0,1,...,0), o;=0 (k=i+1,i+2,..)(=0,1,...),
A : .
i+1 .
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where {4;} is a positive, strictly increasing sequence of numbers with 1, =0 and
hy o)

To our knowledge, no analogous theorem for other summation processes
is yet proved. The following problem can be quite naturally raised: if for any
T-summatlon process the condition

b

sup/ v(x)(T {(pk} x) dx < oo

v(x) J Hy (x)

or the stronger one
3 L(T; {<Pk}; X) = O(w) (a=x=bh)
is fulfilled, is then the orthogonal series (1) under the condition 2 au, < oo with
the concerning process summable almost everywhere" '

ErmMov [2] has essentially showed that, under the condition 3), Zo'oa,f,uk<oo
with , < does not imply the almost everywhere 7-summability of thé‘ =o(;thogonal
series kzo'; a,¢(x) for every permanent 7-summation prbcéss. In his proof, however,

the condition y, — <o is very important one.

In 'this paper we give a construction in which the condition u, oo is not
essential. We are going to deal only with the important special case y, =1 (k =0, 1, ...).
Our theorem reads as follows: )

Theorem. There exist an orthonormal system {@(x)} in (0, 1), a coefficient
sequence {c.}, and a permanent T-summation process such that 2 ct-<os and the

k=0
relation

: . b .
@ _ sup S Lo (T3 {0 ) dtx <o

holds, where the sup is taken over all the measurable functions v(x) assuming only
integer values, but the orthogonal series

) | S ()
k=0

is not- T-summable almost everywhere in (0, 1).

The proof of our theorem will be accomplished by a direct construction. The
T-summation process occurring in the theorem can be chosen as it was found by
MENCHOFF [6] and applied to clarify another question.
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It is an open question to prove this theorem under the following stronger con-
dition instead of (4): '

. L(T; {o; x)=0(1) . (0=x=1).
This problem seems to be difficult. '

§1. Lemmas

We require two lemmas to prove our theorem. In the followmg C:,Cy, ...
will denote positive absolute constants.

Lemma 1. Let n be a natural number. Then there‘e}cist an orthonormal system
{w(x)} ((=0,1,...,22"—1) of step-functions in (0,1), a coefficient sequence {b;}
(!=0,1,...,22"—1), and a simple set E(S(0, 1))') with. the following properties:
the integral of each function w/(x) extended over (0, 1) vanishes,

: 2y
(6) Z‘ b2 = 1
22" , : '
M L. ({w,} ) lzzo @ o)]dt=1 0=x=1),
. _1-
(8) . ) : lEf = g,2)
and . |
) - max l Zs’b,c_o,(x) =C,Vn if x€E.
0=s=24 —-1|I=0 .

Proof. This lemma have been essentially proved in an earlier paper of TAn-
DoRt [9]. For the sake of completeness, -we give its proof in detail here also.

Let r,(x)=signsin 2"rx be the n-th Rademacher function (n=0, 1, ...). Let
be wo(x)=1 in (0,1); if k=1 and 2" 42%24 ... 4+2% (v;<v,<..=<V,) is the
dyadic representation of k, thep let us put wi(x)=r, +1()r,+1(x)...1,,+1(x).
The Walsh functions w,(x) (k=0, 1, ...) defined in this manner are step-functions,
orthogonal and obviously normed. It is known (see e.g. ALexiTs [ 1], p. 188) that
for all natural numbers N

(10) : LzN_‘l({‘Vk};x) = / k§0 wi(x)w ()| dt = 1.
. g 1

1 A set E will be said simple if it is the union of finitely many, non-overlapping intervals.
2y |E| denotes the Lebesgue measure of the set E. -
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Let a be a natural number and let us consider the functions

P e (L1 |
¢a['§E;x]= 1 I [1+rk[§+7;7]rk(x)] (1—01 ~1).

It is obvious that the functions (p,,(l/2“ x) are linear comb1nat10ns of the Walsh
functions wq(x), yvz(x), «ees Waa_5(x) and that the following equalities are true:

o gt
11 1 I+1 11 I+1 1
2"’ 5+§‘x<7+7’ T TR
elsewhere; '
and
: L _
! 1
f‘/’a [2,;’ ]dx Ja=1°
o o . :
- Now let us consider the following functions:
. ,(0; X)—(Pz(O x);
D,(1;x) = r; (x)(Pz(O;X), D,(1;%) = —r3(x)r1(x)q02(0 x);
D,(2;%) = ra(¥) 93(0;x),  D2(2;%) = —ri(¥) 2,(2;x),
o ) . ‘
S D3(2;%) = rs(x) 03 [7; x], P4(2;) = —ri(x) P3(25x);
generally, ' . '
¢21+1(k x) =, k- 1+J(X)Z(P2+2k 2+m2](xzsx) (]—0 1, 1—1) %)

where the points x; denote the left-hand side endpomts of the subintervals of
(0,3), in which the function ®;,,(k—1; x) is positive, and finally

. ¢2j(k;x) = —ry (x) ¢2j-1(k§x) (= _1, 2,..., 2,

It is clear that for an arbitrary natural number n(=2) the functions ®.(k; x)
(k=0,1, —1;r=1,2,...,2% possess the following properties: these functlons
are also hnear combmatlons of the Walsh functions, namely

(11) ¢.r(k, x) - Zbi(r: k) Wn(i,r,k) (x) (n(lr r, k) =< n(2, r, k) < '--);

3) [«] denotes the integer part of «.
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the different functions @&,(k;x) have no common Walsh function in their
representation (11); in this representation of the function @,(k; x) (k=0,1, ...,n—1;

r=1,2,...,2% only some of the Walsh functions wy(x), w,(x), ..., wa2"~1,227-2+1_(x)
-occur; furthermore, the inequality

1

2%
a2y > Pk x)dx =1 (k=0,1,...,n=1) .
. r=1

is satisfied. ‘
Now, let us consider the following sum:

_2k1

Sn(J.‘). 2,(0;x)+ 2 2 (‘p2;+1(k x)+2¢2(j+1)(k x)) =

22:.« l+22n-2+1_ 1

= > b,(n) w(x).

=0
‘On account of (12) we get

1

, 2277127341y
(13) /Sf(x) dx = 2 bi(n) = 5n.
J <

Finally, set us arrange the terms &,(k; x) of the sum S,(x) by recurrence with
respect to k:

5,(8p; x) = sb;(o; X) + ®(1; x)+285(1; %),
55(8y; %) = €,(0; )+ D, (1; )+ (2; x) +28,(2; x)+
+20,(1; %)+ B3(2; X) + 28,2} %),

and so on. In general, from s5,(5,; x) we obtain s,,,(S,; x) in such a manner that
for every term @,;.,(u; x) and Dy+ s %) (j=0,1,...,2¢=1—1) we look for
the place where they occur in 5,(S,; x), and then immediately after them we insert
the sums @25, (U +1;%) + 2Dz, ,(u+1;x)and Dya;, 5(u+1;x) 42Dz, 4(1+1;x),.
respectively. Now, let us choose the set E that is the set of the points of the interval
(0, %) at which w(x)=0 (I=0,1, ..., 22" 422" 2+1_]) (i.e. apart from a finite
number of the dyadically rational points). It is clear that this E is a simple set and
|[E|=%. From the definition of @,(k; x) we get that the maximum of the partial
sums of the prescribed rearrangement of the sum S,(x) will equal » in the points
of E.

If we substitute the representations (11) in the above rearrangement of S,(x)
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and label the occurring Walsh functions, in this order, by the subscrlpt n(i=0,1,
., 2277142272+ 1 1) then we have

220~ l_‘.,22"'24-1_ 1

Sa(x) = 2 by, (1) ¥, (%).
Then the above assertion may be written as follows:
(19) max Z’ b, (m)w (x) (x€E).
- 1ss=22"" 14227721 |2

Now we put v .
: @i(x) = w, (%) (i=0,1,..,2277" 423" 2+1 ),

i) = wi(x) (= 221422l 22 ],
by(n) ,
Vo ¢
_bi=0 (i= 22""+22"‘2+1 ey 22— )
This is possible as 22”71 2277741 ] = 22", Fmally, we set

b = =0,1,...,28"7 1 4227721 ),

| @2x) . if xé[O,j,l)_-],

wi(X?= —@,2x—1) if xe[%,I],

0 elsewhere,

(i=0, 1, ...,22"—1). Furthermore, let E be the set arising from E as the result
of the linear transformation of the interval (0, 1) into the subinterval (0, &

It is obvious that F is a simple set and the assertion (8) is satisfied. We can
easily see that the function system {@,(x)} (=0, 1, ..., 22"—1) is a rearrangement
of the Walsh functions {w(x)} (i=0, 1, ...,22"—1). From (10) we have

1
Hence, by a simple calculation we get that assertion (7) is also satisfied. Further-

more, by virtue of (13) and (14), the inequalities (6) and (9) hold. Finally, taking
into account the construction of w,(x) it is obvious that

2271 S 3 '
2 ax)a(t)|de =1 - (O=x=1).

1
fomdx=0 (@=0,1,..,22"~1).
-0 ’ .

The proof is thus completed.

22 A
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- Lemma 2. Let n be a natural number, A real number such that 0'<A <1,
Surthermore, let 1., 1I,, I, be arbitrary, mutually disjoint subintervals of the interval
(0, 1) for which |I,|=|1,| and |I3| = |I,| are satisfied. Then there exist an orthonormal
system {y(x)} (k=1,2, ...,2.22") of step-functions in (0, 1), a coefficient sequence
{d} k=1,2,...,2.22"), and a simple set F(SI,) having the following properties:
the integral of each function W,(x) extended over (0, 1) vanishes,

. 2.22|l R . .
(15) Sds1 (=0 if k=211,..,227),
. k=1 ) ‘ ..
| _ 4
an max_| 3 du(®)| = C,AVn if x€F;
1=5<22" k=1 .

~ for the Lebesgue functions of this system the following upper estimates hold:

C,yi (x€ly),

- 22" : CVL| (x€l),
18 Lon({Wds %) = : dt = T (el
19 Los((ha;») f Zmew]ar= | oL
0 - elsewhere;
Cé’l »(xEIl)>
e Vi) 1),
19 L0 = U gilﬁ
. 0 elsewhere,

JSurthermore, for the function

2.22";

&®=ftﬁmmwm+'2 UCWO|dr (1 =i <22
. y k=1 ’ ©ok=22"41

we have also the following upper estimate:

Cod+ L VILIVIL]  (x€l)),

@ R(x) = | CoL/VITl (x€l),
. CIOL;;/V|I3| (X€I3),

0 elsewhere
with

L,= max L({w};x);
0=i=22"-1,
O=sx=1
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the functions w/(x) occurring here are defined by Lemma 1. (As the functions w(x)
are uniformly bounded, L, is a finite number for every n.)

Proof. Let f(x) be an arbitrary function defined in the interval (0, 1), further-
more, let I=(a, b) be an arbitrary subinterval of (0, 1) and H an arbitrary subset
of (0, 1). Now, we proceed from the interval (0, 1) to the interval I by means of the
linear tarnsformation y=(x—a)/{(b—a) (a=x=b,0=y=1), and put

f["""] (@=x=b),

b—a
0 elsewhere;

SU;x) =

let H(I) be the set into which H is carried over by this linear transformation.
Let {o(x)} (=0,1,..,22"—1), {b} (!=0,1,...,22"—1) and E denote the
corresponding orthonormal system, the coefﬁcnent sequence, and the snmple set
occurring in Lemma 1, respectively.
Let us put

) - b_, for 1=[=2?",
M=o for 2 +1=1=222"

furthermore, F=E(I,). It then follows from (6) and (8) that (15) and (16) are fulﬁlled
The functions lpk(x) are defined as follows: for k=1, 2 . 22" let ‘us set

V1-22

he = Vlzl

wk—1(122x)+

A —=— 0 1(1, X))+ w—1(I33 X),

L
V2153

and for k = 22" 41, ..., 222"

Y1=-22 1
X))+ —— w i X)———w, on (I3;X%).
Vzlm @222 13 Vzm LT “2"‘(3_ )

Yi(x) =

By a simple calculation we get from these definitions that the functions y(x)
form an orthonormal system.in (0, 1). If x € F then there exists y € E such that '

l//k( ) wk l(y) (k = 17 2’ ceey 22")9

V2| il

thus the correctness of (17) follows from (9). On account of Lemma 1, it is clear that

1 ,
[o@dx=0 (k=1,2,..,22)
4]

It remains to be proved that the inequalities (18), (19) and (20) are also satisfied.
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First of all, we remark that the functlons Y(x) vanish outside the set 7, U1, U I5.
According to the definition of the functions w,,(x) by calculating the mtegrals on
the rlght-hand side, we obtain for x¢I;

22"({%} x) = V2|11l[f / /J ywk 1L )Y (2)| dt =
e
S O S Ty G ] 5 o0 4
| Vm[‘/mllll-l_ Vm 12l+]/m -/‘,=2(; ml(J)wl(,) t )
for x€l,
L22"({¢k} ‘ V2| N [/ / /] Zwk 1(12:x)‘//k(f)
(22)

_1/1—/12[ A yisiE 13| ]f -
=V Vm"‘”vm i En) ) & @0

and for x€1,

Earii ) = ,,MU f f]

RN yi=72 I8 ]/
BAA [Vz_rn i V2l(z| Sk J

By paying attention to (7), from (21), (22) and (23) we obtain the estimate (18)
Now we treat the Lebesgue function L, 2» ({nﬁk} x). We also distinguish three
subcases as above If xcI,, we get .

L, (Ui} %) = [ f f / ] 22nwk(x>wk(r)

A [ 24 /1= 22
- vm[vm""* v '2']f

dt; -

22!1

A Wy - 1(13:x)'//k(f) dt =

(23) .
22"

’.=ZO o, (¥") (1) dt.

dt =

29

S o) dr;

4) Let y, ' and y” denote the image points into which the points x¢I,, xelyand xel; are
carried over by the corresponding linear transformations transferring the intervals I, /; and I,
into the interval (0, 1), respectively.
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7 Y)Y ()

dt =
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if x€l, then
- (25
2"

ot [+ /]

. Vi—a2( 24 2]/A1 2
= Ve [Vz—un"‘” ValE “‘_]Of &

dr;.

L wl(y/) w, (1)

and if x€1, then

L, ({lP;} x) = [f f f]( Z th(xwk(t)

2 wl(y )wl(t)

dr =
(26)

dt.

2|1

By virtue of (7), (24), (25) and (26) we have also the estimate (19).
The validity of (20) follows in a similar way as before According to the definition
of the functlon Ri(x), we have for x¢1,

R(\) [/ / /] 2 '//k(x)lpk(t)‘*‘ 5’ ‘//k(x) Wi ®
k=22"+1
22"

. . 1
@7 1/21111l {[V2l|111 Hil+ l/1/12|12| g ]]Of 150

dt

2 a(y) &)1(1) dt+

dt} ;

3!_/‘ Z w, (Y wt) - Z_—lwl(y)wz(t)

1/2]13| =t
for x¢l,
i 222"
Ri(x) = [/ / /] :5] x)l//k(t)+ 2 U i() dt =

k=22"+1

221 _

e = ‘/V%{[ o ”1'+V1/121121 1) f 3 00N 00
‘ dt};

3[/’ sz(J’)wl(t) Z a @ (¥) o,(t)

SI=i

dt+

V2 IIal
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and finally for x€I,

Rix) = [ f + f + / ] (2 ACIRCEND TG

k=22"41

dt =

dr +

1 A iz } / P
@9 B {[V2[111, o+ V2112| !zl / 2 (") (1) _Z’ () .)w:(f}
dl}

1
I
N f
18]
Taking into consideration that |[,|<1, |5|<1 and L,=1, from (27), (28) and
(29) we obtain the estimate (20). This completes the proof of Lemma 2.

22"y

Z (") w, (1)

§ 2. Proof of the theorem
Let {v,} and {N,} (n=2,‘3, ...) be the following sequences of natural numbers:
Yy = 22"f n=2,3,...),
N,=0, N, = S22y (n=3,4,.).
Define the matrix T'={o;} (i, k=0, 1,2, ...)~oc6urring in our the.,orem' as follows:
oo =1, 0o =0 k=1,2,..),

and in general, for an arbitrary natural number #(=2) we distinguish three subcases:
if N,<i<N,+ v, then we put

o =%, o Npt1—(i=Nn) = 1, a;, =0  otherwise;
if i = N,+v, then -
% Nprvn =1, o =0 otherwise;
-and finally if N,+v,<i= N,,, then
O Ny = 1, 0 =0 otherw1se

From the definition of the matnx T it immediately follows that the conditions

0, =0 (,k=0,1,2,...); hmozk-—O (k 0,1,2,...);

.Zaik=1 (i=091523"‘)
k=0

are satisfied. Therefore, on account of a theorem (see e.g. ALEXITS [1], p. 65) we
infer the permanence of the T-summation process. :
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To define the orthonormal system {@(®)} (k=0,1,2,...) and the coefficient
sequence {c¢,} (k=0,1,2,...) occurring in our theorem we apply induction. The
construction is similar to that of TanDoRI [10].

Let 4,=1/n (n=2,3, ...) be. First of all, let us consider three sequences of
subintervals {I,(n)}, {[,(n)} and {I;(n)} of the interval (0, 1) so that the conditions

(30) CLEMNL =0 (%) n=2,3,..);
" LML) =0  (=2,3; w=a’; won’ =23,.);
( L,YNLEY=0 (,n" =2,3,...);

Jom+1 _ m+1 __ C o
G L) [2 — ,2,,."“] @ <n=2" m=0,1,2,..);
(33) ZZL,.G(VII;:'(")I +VIL(n)

where L, is defined in Lemma 2, and

LoVib® _ 5 a3y
Vi) T

should be satisfied. It is obvious that both intervals I,(n) and I,(n). can be chosen
in accordance with these requirements,

From (31) we can easily see that every point x of (0, 1) belongs to at most one of all
the subintérvals I,(n) and I5(n). Furthermore, by (32) it follows that every point x € (0, 1)
lies in I,(n) for infinitely many values of n, and for every non-negative integer m
there exists a uniquely determined natural number #,,(x) for which 2" <n, (x) =2m*1!
and x¢€1,(n,(x)). By the definition of {4,} we get immediately that

G4

(35) AP YD
. m=0 m=0 : )

Now we are going to construct a system {p,(x)} (k =0, 1, 2, ...) of orthonormal
step-functions in (0, 1), a coefficient sequence {c¢} (k=0,1,2,...), and a sequence
of simple subsets G,(=1,(n)) (1=2,3,...) in (0, 1) so that the following relations
should be satisfied:

Nn+vn
(36) k—NZ'-flc,%é# and ¢, =0 for k=N, +v,+1,...., N,py (1=2,3,..);
@7 o 6,/ = D,
(38) y <r_12vx+y k_'NZ'Hck(pk(x) =C,n if x€G, n=23.);
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furthermore L ,
C3 ln (x 611 (n))’
C.ViL®m)|  (xelL(), (=2,3,..);
39 / \ Hdt={¢
(39) 2 ) o.1) CVIE®] (eersim)
10 : elsewhere;
1 C6 ’I'n 2 (x EII (I’I)), |
Nper _ G VL) (xel,(m), (1=2,3,..);
(40) /'k:zvz,:+ 1<pk(x) ou(D)| dt = 1 ' (x€I3(n)),
0 0 . elsewhere;

k= Nn+Vn+

@ S = f f 2 @O+ S a@a di=

Codot+ L VILWIVIL )] (xed 1(n)),

Co Lnﬂ/l/llz(”)l ' (xEIZ (")),
CIOLn“/v [15(n)] (xEI3(n)),
0 o elsewhere

WN,<i<N,+v;; n=2,3,..).

We notice that, on account of (34) and (41), the estimate

. Ciidy o (xel (), A.
. , CoLu/VIL ()]  (x€L(n),
42 Sin;x) =1°
“ WD =N o LY@ (xedym),
o ‘

_elsewhere
(N, <i<N,+v,; n=2,3,..)
also follows. ' _
Let ¢o(x)=14dnd ¢, =0be. We apply Lemma 2 with n=2%,A=4, and I,=1I,2)
(i=1,2,3) (on account of (30) it is permissible). We get the orthonormal system
{V(x)} (k=1,2,...,2v,), the coefficient sequence {4} (k=1,2, ..., 2v,), and the
simple set F satisfying (15)—(20). Now we write o '

d,
0x(%) = Y (), c,,=7" (k=1,2,..,N;), and G, =F.

According to Lemma 2 the step-functions ¢,(x) (k=0, 1, ..., N;) are orthonormal,
and the relations (36)~—(41) hold for n=2. ‘

Now, ng(=2) being arbitrary, we assume [that the step-functions ¢ (x)
(k=0,1, ..., Nyyq), the coefficients ¢, (k=0,1, ..., N, .,), and the simple sets
G,(E1,(n) (n=2,3,...,n,) are already determined such that these functions
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are orthogonal and normed in (0, 1) and that the requirements (36)—(41) are satisfied
for each integer n=n,. We are going to construct the functions; coefficients, and
simple set corresponding to ny+ 1 so that these also satisfy (36)—(41).

We can divide the intervals I,(n,+ 1), I,(n, + 1) and I;(ny + 1) into a finite = -
number of mutually disjoint subintervals ‘

Lo+ 1) = DI, Lo+ = U@, s+ = [ 7.0)

on which every function @ (x) (k=0,1, ..., N, +,) remains constant, and every
set G,NI(ng+1) (n=2,3, ..., ny) can be represented as the union of some inter-
vals Jy(1).

. We begin with applying Lemma 1 with n= (no—i—l)6 We get the functions
wx) (=0, 1, ..., 22" °_ 1), Next applying Lemma 2 with n= (1, + 1)6, 1= Ao 1
and I;=1I(n, + 1) (i=1,2,3), we obtain the functions ¥, (x) (k=1, 2, e 2V 1)s
the coefficients d, (k=1,2, ..., 2v,,0+1), and the simple set F, ;. Let us put '

' g -2, & '
2 1+ —_ i -——,‘__*——9-— - J,' 2 X))+
Py + (x) = V2|11(”o+1)|;1 . 1( (1); x ) Vzllz( 0+1)|Z 1 1( ) h)
1 q3 )

+Vé———-———mi=21'2w171(-li(3)§x) (_l= 1,2, ..., vno+l)f

q1

v A '
. X) = ——tl __ Do, (i x +
(pN('o+1+ no+l+l( ) 2111(”04'1)] 1;1' no+ 1 l( ( ) )
q2 i 1 g3

V1201
——_'—'__—_0__ V -1 J —_—— v —1 J 3
1/2]12(110 1)] Z no+ 17~ ( ( ) ) V"———‘—‘—zlls( o+])l 2 no+ 1= ( ( ) x)

(l— l 2 ',vno+l)' -

It is clear that the functions q)k(x) (k=N,y41+1, ..., Ny ) are also step-functions.
By virtue of Lemma 1 and the definition, we can easily prove that the functions
oi(x) (k=0,1,..:, N, ;,) are orthonormal in (0, 1).

Let-us put
' d,

ano+1+k=m k= 152,...,2vn0+1).

From (16) it follows that (36) is satisfied for n=nqy + 1. Finally, we set

Guur1 = U E(L(D).

It is obvious that G, ., is a simple set, and on account of Lemma 1, (37) holds for
n=ny+1.
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If x€G, 4, then there exists a point y€F, ., such that
‘¢N,,o+1+k(x) = ¥i(») k=12,..

Taking into consideration of the definition of the coefficients ¢, and (17), we obtain
not+1<k=N,42) and

s 2vno+ 1)‘

(38) for n=ny+1.
According to the deﬁmtlon of the functions @(x) (N,
the proof of Lemma 2, if x€(0, 1) then for an appropriately chosen y we have

1
6[ .
To show this, let x€l,(ng+ 1)U L(ng+ 1D UI(n,+1) be fixed. Then by simple

integral transfo'rmations we get that the left-hand side equals
dt +

dt.

Nao+1+Vng+1

dt =

oo

(X)) @ (2)

k=Nno+l+1

Z l»01()’)601 1(J(1) 1)

Anot 1

V2|1, ("o+1)|'
+ ‘/1_)'%!0+1 %27

V21L,(no+ D] i=1 7t

dt +

b Do (12); 1)

Vz—uTlnTl_)!Z / Z W) (30| dr =
KAY i= =

A i Yo+ 1
1/2_|1'IT°;_+T Z V() o= (1) dt 2 ()] +

dt Z’ [J:(2)| +

_.2—__ '
V1= Z lﬁz(y)w: (0

V2 |15 (no + 1)|

S ) D11 ()

=1

a 2 3 =

1
V7— |13(”0+ 1| /

(Lo )

Ji(no+1) Ja(mo+1) Ji(no+

dr.

dt = 2 O

"°2 Ui (D)

Here we took into consideration that

S = 0o+ 1 2O =606+ 3@ = 00+ D)
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Similarly, we have also the following equations:

’ 1
T Nuo+2 2Vpo+1 ' o
"/ 2 ou(x)u(1)| dt =/ 2 )Y ()] at,
k=Npoz1+1 - =1
0 1]
and ,
. Npo41+i7 Npo+2—1
/ 2 a®e)+ > @u(x) @, (1) df =
Y k=Npy4q1+1 "=Nno+1+"no+1+1.
1
. i 2‘n +17 i .
/ > l/’z()’)!ﬁz(’)Jrl 2 lP:(y)l//:(f) d (=12 ..,V 1—1);
=1 —vn0+1

4]
here yEIl(n0+ 1), yelz(no-{— 1), y€Il(no+1) and yg U I(n,+1) according to -
x€l(ny+1), x612(110 +1), xeI3(ny+1) and x¢ U Ii(ng + 1) respectively. By (18),

(19) and (20) we get (39), (40) and (41) also for —n0 +1.

Thus we obtained the orthonormal system {@,(x)}, the coefficient sequence
{c.}, and the sequence of simple sets {G,} by induction, which fulfil the requirements
(36)—(41). '

Let us consider the sets

am+1

H= U G (m=12.)

n=2m41
By virtue of the definition of the intervals I,(n) and (36), we have

@) ' H,| =% Cm=1,2,..).

According to the definition of the sets G,, it can easily be seen that the sets- H,,
‘are stochastically independent. Applying the Borel—Cantelli lemma we get

|im H,|=1.

m— oo

If x¢ imH,, then the inequality (38) is satisfied for infinitely many values of m
and hence _

2 ()

k=Nnt+1

(44) ﬂa[ max

nosoo | Ny<i=Np+v,

holds almost everywhere.
As to the Lebesgue functions

dt

Ltodi9) = [| 2 o000
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‘we have

of the system {¢,(x)} with i=N, and i=N,,+bv,,,
. _ 1
' n Ny
Ly,({led;x) = 14+ 3 / 2 e 0)|dt,
) r=10 k=Np-1+1 .

as @q(x)=1. From the definition of the intervals Ji(n) (i=1,2,3;n=2,3, )
by (35) and (40), it follows '

Cp2 (xé.zgz (Iz(l)Uls(l))),
(45) LN,.({(Pk}; x) = C13/V[[2(p)| . (xEIZ(p)) . ’
\Cy, _(x€13(q)) T (n=2,3,..).

It follows exactly in the same way as before that

dt, -

% 1¢k(x) o(?)

k=Np-1+ k=Nn+

: 1
s f
0

* and taking into consideration (35) and (39),'w¢ get the estimate

Sy
n Nu+vn
L,v..+v..({(Pk}§ x) =1 +r§/ 2 ou(X)oi(t)
' T v

‘ Cis | (x@lgz(lz(l)UIs(l))):
. (46) Lywn{0dsX) S1C VLD (xeL(p)),

ClVIE@T (x€hy@) (=2,3,..).
Hence and by (45) and (46), in virtue of (33), we obtain that

1 . 1 .
‘ ] (sup Ly, ({¢u}; %)) dx <o, f (sup Ly, +v,{s}; X)) dx < co.

. Furthermore, (36).implies > ¢ <oco. Denote by s;(x) the i-th partial sum -of the
k=0

series (5). On account of a theorem of LEINDLER [5] it follows that {sy (x)} and
{sn,+v,(¥)} converge almost everywhere.
The above mentioned theorem of LEINDLER reads as follows:

Let {(pk(x)} (k=0,1,..) be an arbitrary orthonormal system in (a, b). If for
a monotone increasing sequence {n,} of indices the inequality

L,({p; x)=0(1)  (a=x=b)

holds, then under the condition ) af <o the n,-th partial sums of the orthogonal
K=0 :

series (1) converge almost everywhere.
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A more detailed analysis of LEINDLER’s proof shows that the assertlon remains
valid under the weaker condition:

sup Ly, ({0}; )€ L(a, b).

“Let us denote by f,(x) the i-th T-mean of the orthogonal series (5). If N,<i<
<N, + v, then on account of the deﬁnmon of the matrix T and the sequence {ck}
we have

() = lsi(x)+%sN,,+1;i(x) = %SN,.(X)+% 2 @k(X)+ LN, v, (%)-

Hence, if we pay attentlon to (44), it follows from the convergence of {sy,(x)} and

{sn,+.,(x)} that
lim | ,(x)] = o

almost everywhere. Thus the orthogonal series (5) is not 7-summable almost every-
where in (0, 1).

To accomplish the proof of our theorem, we have to show that for the Lebesgue
" functions concerning the T-summation the relation (4) is satisfied.
I N,+v,=i=N,,, then

L(T; {ou}; ¥)=Ly,, ({o; ) and  L(T; {¢s}; X) = Ly,+..({0:}; %),
respectively, thus in virtue of (45) and (46) the following estimate

| e (v¢ § oUL),
@n - LTHedi D =yc WiLp)  (vel(n),

' Czo/Vlls(‘I)l ' ' (x613(‘]))

: (N +v,,§1—N,,+1; n=23,..)
is true.

Finally, let N<1\N +v, be ie i=N, +] (1=j<v,). Then

df

Li(T; {ou}; x) = %/l Z %(x) o (1) + ’:Z]; J‘Pk(x) (1)

A s1mp1e calculation shows

dr+

L,-(T;'{qu};x) = }/‘ Z%(x)(pk(t) dth/‘ 2 %(x)qok(f)

1

. (48) - +%/
J
0

= 4(Ly,({ou}; >‘<)+L~"+vn'({<pk};X)'jL S j(ﬁ; x))- -

Nn+j Nniyi—j

2 o) eu(r)+ 2 o) oD

=Np+1 k=Nntvat1

dt =
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By virtue of (42) we get , . .
| cn (e U (Lour ),
“9) Simsx) = Cy Lo/ VI1:(p)] (xe12(p)),
CroLeelVils@)] - (x€13(9)
(I=j<v,; n_.23 )
From the inequalities (45) (46), (48) and (49) it follows

Cay (x¢ 0 z0unw)),
GO L{THeds ) = N0, LV RG] (eL(),
Cas Lq°/V”3(q)I (xEls(q))
(N,<i<N,+v,; n=2,3..).

(Here we again took into con51demt10n that L, =1 for every n.) From (47) and (50)

we infer that

. st:pLi(T; {pi}; x)dx = Cs4 1+".i L,,s(Vllz(n)HVlIs(n)l)J

n =

holds. Hence on account of (‘33) we obtain that (4) is fulfilled.
We have thus completed the proof of our theorem.
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Berichtigung zur Arbeit :
,,Uber die starke Summation von Fourlerrelhen” *)

Von KAROLY TANDORI in Szeged

Der Beweis des Satzes I dieser Arbeit ist falsch. Mit der dort ‘angewandten
Methode kann man nur die folgende, ziemlich komplizierte Behauptung beweisen:

Ist f(¢t) nach 1 periodisch und in [0, 1] Lebesgue-integrierbar, so gibt es fiir fast
alle Punkte x €[0, 1] eine positive Intervallfunknon <15x(1) mit 2 P [(2:.11 R 21"]]
derart, dafi fiir 0 <k <oo und 0<h—0 gilt:

u+k

2h .
O [ ern-r@ld [ 19— fGldo = ol B((h 26D) +0 (i),

u—k
undzwar gleichmdpig in Bezug auf k.

Ahnlicherweise, wie in der erwihnten Arbeit, kann bewiesen werden, daB
aus (1) die H,-Summierbarkeit der Fourierreihe von f(z) in dem Punkt x folgt.

(Eingegangen am 28. Mdrz 1968)

*) Acta Sci. Math., 16 (1955), 65—73.



