On a problem of summability of orthogonal series

By FERENC MÓRICZ and KÁROLY TANDORI in Szeged

Introduction

Let $\{\varphi_k(x)\}\ (k=0, 1, ...)$ be an orthonormal system on the finite interval (a, b). We shall denote by $s_n(x)$ the *n*-th partial sum of the orthogonal series

$$(1) \sum_{k=0}^{\infty} a_k \varphi_k(x).$$

Let $T = (\alpha_{ik})$ (i, k = 0, 1, ...) be a double infinite matrix of numbers. The sum

$$t_i(x) = \sum_{k=0}^{\infty} \alpha_{ik} s_k(x)$$
 $(i = 0, 1, ...)$

is called the *i*-th *T*-mean of the series (1), provided that the series on the right-hand side converges. We say that the series (1) is *T*-summable to the sum s at the point $x_0(\in(a,b))$ if $t_i(x_0)$ exists for all i (perhaps except finitely many of them), and $\lim_{i\to\infty} t_i(x_0) = s$. A *T*-summation process is said to be permanent if $\lim_{n\to\infty} s_n = s$ implies $\lim_{i\to\infty} t_i = s$. The necessary and sufficient conditions for the permanence of a summation process are known. (See Alexits [1], p. 65.)

For any given orthonormal system $\{\varphi_k(x)\}$ and for any summation matrix T we shall consider the following functions

$$L_i(T; \{\varphi_k\}; x) = \int_a^b \left| \sum_{k=0}^\infty \alpha_{ik} \left(\sum_{l=0}^k \varphi_l(x) \varphi_l(t) \right) \right| dt = \int_a^b \left| \sum_{l=0}^\infty \left(\sum_{k=l}^\infty \alpha_{ik} \varphi_k(x) \varphi_k(t) \right) \right| dt,$$

provided they exist. The function $L_i(T; \{\varphi_k\}; x)$ is called the *i*-th Lebesgue function of the orthonormal system $\{\varphi_k(x)\}$ concerning the T-summation process. The order of magnitude of the Lebesgue functions may, in many cases, be decisive for the convergence problems.

In particular, taking

$$\alpha_{ik} = \frac{1}{i+1}$$
 $(k = 0, 1, ..., i), \quad \alpha_{ik} = 0$ $(k = i+1, i+2, ...)$ $(i = 0, 1, ...),$

we obtain the classical (C, 1)-summation process. Now, we have

$$L_i((C,1); \{\varphi_k\}; x) = \int_a^b \left| \sum_{k=0}^i \left(1 - \frac{k}{i+1} \right) \varphi_k(x) \varphi_k(t) \right| dt.$$

In this case KACZMARZ [3] has proved the following theorem:

Let $\{\varphi_k(x)\}\$ be an arbitrary orthonormal system in (a,b). If $\{\mu_k\}$ is a positive, non-decreasing number sequence for which the relation

(2)
$$\sup_{\mathbf{v}(\mathbf{x})} \int_{a}^{b} \frac{L_{\mathbf{v}(\mathbf{x})}((C,1); \{\varphi_k\}; \mathbf{x})}{\mu_{\mathbf{v}(\mathbf{x})}} d\mathbf{x} < \infty$$

holds, where the sup is taken over all the measurable functions v(x) assuming only integer values, then

$$\sum_{k=0}^{\infty} a_k^2 \, \mu_k < \infty$$

implies the (C, 1)-summability of the orthogonal series (1) almost everywhere.

It is obvious that the condition (2) is equivalent to the following one:

$$\sup_{i} \frac{L_{i}((C,1);\{\varphi_{k}\};x)}{\mu_{i}} \in L(a,b).$$

KACZMARZ formulated this theorem under the condition requiring somewhat more than (2), namely

$$L_i((C,1); \{\varphi_k\}; x) = O(\mu_i) \qquad (a \le x \le b),$$

however, the above sharper assertion can also be obtained from his proof.

KACZMARZ [3] has generalized the above theorem also for the $(C, \beta > 0)$ -summation. (In this case, we have

$$\alpha_{ik} = \frac{A_{i-k}^{(\beta-1)}}{A_i^{(\beta)}} \quad (k = 0, 1, ..., i), \quad \alpha_{ik} = 0 \, (k = i+1, i+2, ...) \quad (i = 0, 1, ...),$$

where
$$A_i^{(\beta)} = {i+\beta \choose i}$$
. (See also Tandori [8].)

SUNOUCHI [7] and LEINDLER [4] have transferred these results to the Riesz summation of orthogonal series. (In this case

$$\alpha_{ik} = \frac{\lambda_{k+1} - \lambda_k}{\lambda_{i+1}}$$
 $(k = 0, 1, ..., i), \quad \alpha_{ik} = 0 \quad (k = i+1, i+2, ...) (i = 0, 1, ...),$

where $\{\lambda_i\}$ is a positive, strictly increasing sequence of numbers with $\lambda_0 = 0$ and $\lambda_n \to \infty$.)

To our knowledge, no analogous theorem for other summation processes is yet proved. The following problem can be quite naturally raised: if for any *T*-summation process the condition

$$\sup_{v(x)} \int_{a}^{b} \frac{L_{v(x)}(T; \{\varphi_k\}; x)}{\mu_{v(x)}} dx < \infty$$

or the stronger one

(3)
$$L_i(T; \{\varphi_k\}; x) = O(\mu_i) \qquad (a \le x \le b)$$

is fulfilled, is then the orthogonal series (1) under the condition $\sum_{k=0}^{\infty} a_k^2 \mu_k < \infty$ with the concerning process summable almost everywhere?

EFIMOV [2] has essentially showed that, under the condition (3), $\sum_{k=0}^{\infty} a_k^2 \mu_k < \infty$ with $\mu_k \to \infty$ does not imply the almost everywhere *T*-summability of the orthogonal series $\sum_{k=0}^{\infty} a_k \varphi_k(x)$ for every permanent *T*-summation process. In his proof, however, the condition $\mu_k \to \infty$ is very important one.

In this paper we give a construction in which the condition $\mu_k \to \infty$ is not essential. We are going to deal only with the important special case $\mu_k = 1$ (k = 0, 1, ...). Our theorem reads as follows:

Theorem. There exist an orthonormal system $\{\varphi_k(x)\}\$ in (0, 1), a coefficient sequence $\{c_k\}$, and a permanent T-summation process such that $\sum_{k=0}^{\infty} c_k^2 < \infty$ and the relation

(4)
$$\sup_{v(x)} \int_{a}^{b} L_{v(x)}(T; \{\varphi_k\}; x) dx < \infty$$

holds, where the sup is taken over all the measurable functions v(x) assuming only integer values, but the orthogonal series

$$\sum_{k=0}^{\infty} c_k \varphi_k(x)$$

is not T-summable almost everywhere in (0, 1).

The proof of our theorem will be accomplished by a direct construction. The *T*-summation process occurring in the theorem can be chosen as it was found by MENCHOFF [6] and applied to clarify another question.

It is an open question to prove this theorem under the following stronger condition instead of (4):

$$L_i(T; \{\varphi_k\}; x) = O(1) \quad (0 \le x \le 1).$$

This problem seems to be difficult.

§ 1. Lemmas

We require two lemmas to prove our theorem. In the following C_1, C_2, \ldots will denote positive absolute constants.

Lemma 1. Let n be a natural number. Then there exist an orthonormal system $\{\omega_l(x)\}\ (l=0,1,...,2^{2^n}-1)$ of step-functions in (0,1), a coefficient sequence $\{b_l\}\ (l=0,1,...,2^{2^n}-1)$, and a simple set $E(\subseteq(0,1))^1$) with the following properties: the integral of each function $\omega_l(x)$ extended over (0,1) vanishes,

(6)
$$\sum_{l=0}^{2^{2^{n}-1}} b_{l}^{2} \leq 1,$$

(7)
$$L_{2^{2^{n}}-1}(\{\omega_{l}\};x) = \int_{0}^{1} \left| \sum_{l=0}^{2^{2^{n}}-1} \omega_{l}(x) \omega_{l}(t) \right| dt \leq 1 \quad (0 \leq x \leq 1),$$

(8)
$$|E| = \frac{1}{8}, ^2$$

and

(9)
$$\max_{\substack{0 \le s \le 2^{2^n} - 1 \\ 0 \le s \le 2^{2^n} - 1}} \left| \sum_{l=0}^s b_l \omega_l(x) \right| \ge C_1 \sqrt{n} \quad \text{if} \quad x \in E.$$

Proof. This lemma have been essentially proved in an earlier paper of TANDORI [9]. For the sake of completeness, we give its proof in detail here also.

Let $r_n(x) = \text{sign sin } 2^n \pi x$ be the *n*-th Rademacher function (n = 0, 1, ...). Let be $w_0(x) \equiv 1$ in (0, 1); if $k \ge 1$ and $2^{v_1} + 2^{v_2} + ... + 2^{v_p}$ $(v_1 < v_2 < ... < v_p)$ is the dyadic representation of k, then let us put $w_k(x) = r_{v_1+1}(x)r_{v_2+1}(x)...r_{v_p+1}(x)$. The Walsh functions $w_k(x)$ (k = 0, 1, ...) defined in this manner are step-functions, orthogonal and obviously normed. It is known (see e.g. ALEXITS [1], p. 188) that for all natural numbers N

(10)
$$L_{2^{N-1}}(\{w_k\}; x) = \int_0^1 \left| \sum_{k=0}^{2^{N-1}} w_k(x) w_k(t) \right| dt \le 1.$$

¹⁾ A set E will be said simple if it is the union of finitely many, non-overlapping intervals.

[|]E| denotes the Lebesgue measure of the set E.

Let a be a natural number and let us consider the functions

$$\varphi_a\left(\frac{l}{2^a};x\right) = \frac{1}{2^{a-1}} \prod_{k=2}^a \left(1 + r_k \left(\frac{l}{2^a} + \frac{l}{2^{a+1}}\right) r_k(x)\right) \qquad (l = 0, 1, ..., 2^a - 1).$$

It is obvious that the functions $\varphi_a(l/2^a; x)$ are linear combinations of the Walsh functions $w_0(x), w_2(x), ..., w_{2^a-2}(x)$ and that the following equalities are true:

$$\varphi_{a}\left(\frac{l}{2^{a}};x\right) = \begin{cases} 1 & \text{if } \frac{l}{2^{a}} < x < \frac{l+1}{2^{a}}, & \text{or} \\ & \frac{1}{2} + \frac{l}{2^{a}} < x < \frac{1}{2} + \frac{l+1}{2^{a}}, & \text{or } \frac{l}{2^{a}} - \frac{1}{2} < x < \frac{l+1}{2^{a}} - \frac{1}{2}, \\ 0 & \text{elsewhere;} \end{cases}$$

and

$$\int_{0}^{1} \varphi_a^2 \left(\frac{l}{2^a}; x \right) dx = \frac{1}{2^{a-1}}.$$

Now let us consider the following functions:

$$\begin{split} \Phi_1(0;x) &= \varphi_2(0;x); \\ \Phi_1(1;x) &= r_3(x)\varphi_2(0;x), \quad \Phi_2(1;x) = -r_3(x)r_1(x)\varphi_2(0;x); \\ \Phi_1(2;x) &= r_4(x)\varphi_3(0;x), \quad \Phi_2(2;x) = -r_1(x)\Phi_1(2;x), \\ \Phi_3(2;x) &= r_5(x)\varphi_3\left(\frac{1}{2^3};x\right), \quad \Phi_4(2;x) = -r_1(x)\Phi_3(2;x); \end{split}$$

generally,

$$\Phi_{2j+1}(k;x) = r_{2+2^{k-1}+j}(x) \sum_{l} \varphi_{2+2^{k-2}+\lfloor j/2 \rfloor}(x_l;x) \quad (j=0,1,...,2^{k-1}-1),^3)$$

where the points x_i denote the left-hand side endpoints of the subintervals of $(0,\frac{1}{2})$, in which the function $\Phi_{i+1}(k-1;x)$ is positive, and finally

$$\Phi_{2j}(k;x) = -r_1(x)\Phi_{2j-1}(k;x)$$
 $(j=1,2,...,2^{k-1}).$

It is clear that for an arbitrary natural number $n(\ge 2)$ the functions $\Phi_r(k; x)$ $(k=0, 1, ..., n-1; r=1, 2, ..., 2^k)$ possess the following properties: these functions are also linear combinations of the Walsh functions, namely

(11)
$$\Phi_{r}(k;x) = \sum_{i} b_{i}(r,k) w_{n(i,r,k)}(x) \qquad (n(1,r,k) < n(2,r,k) < \dots);$$

³⁾ $[\alpha]$ denotes the integer part of α .

the different functions $\Phi_r(k; x)$ have no common Walsh function in their representation (11); in this representation of the function $\Phi_r(k; x)$ $(k = 0, 1, ..., n-1; r = 1, 2, ..., 2^k)$ only some of the Walsh functions $w_0(x), w_1(x), ..., w_2^{2^{n-1}} + 2^{2^{n-2}+1} - 1(x)$ occur; furthermore, the inequality

(12)
$$\sum_{r=1}^{2^k} \int_0^1 \Phi_r^2(k; x) dx \le 1 \qquad (k = 0, 1, ..., n-1)$$

is satisfied.

Now, let us consider the following sum:

$$S_n(x) = \Phi_1(0; x) + \sum_{k=1}^{n-1} \sum_{j=0}^{2^{k-1}-1} (\Phi_{2j+1}(k; x) + 2\Phi_{2(j+1)}(k; x)) =$$

$$= \sum_{l=0}^{2^{2^{n-1}}+2^{2^{n-2}+1}-1} b_l(n) w_l(x).$$

On account of (12) we get

(13)
$$\int_{0}^{1} S_{n}^{2}(x) dx = \sum_{l=0}^{2^{2^{n-1}} + 2^{2^{n-2} + 1} - 1} b_{l}^{2}(n) \le 5n.$$

Finally, set us arrange the terms $\Phi_j(k; x)$ of the sum $S_n(x)$ by recurrence with respect to k: let

$$s_1(S_n; x) = \Phi_1(0; x) + \Phi_1(1; x) + 2\Phi_2(1; x),$$

$$s_2(S_n; x) = \Phi_1(0; x) + \Phi_1(1; x) + \Phi_1(2; x) + 2\Phi_2(2; x) +$$

$$+ 2\Phi_2(1; x) + \Phi_3(2; x) + 2\Phi_4(2; x),$$

and so on. In general, from $s_{\mu}(S_n; x)$ we obtain $s_{\mu+1}(S_n; x)$ in such a manner that for every term $\Phi_{2j+1}(\mu; x)$ and $\Phi_{2(j+1)}(\mu; x)$ $(j=0,1,...,2^{\mu-1}-1)$ we look for the place where they occur in $s_{\mu}(S_n; x)$, and then immediately after them we insert the sums $\Phi_{2^2j+1}(\mu+1;x)+2\Phi_{2^2j+2}(\mu+1;x)$ and $\Phi_{2^2j+3}(\mu+1;x)+2\Phi_{2^2j+4}(\mu+1;x)$, respectively. Now, let us choose the set \bar{E} that is the set of the points of the interval $(0, \frac{1}{4})$ at which $w_l(x) \neq 0$ $(l=0,1,...,2^{2^{n-1}}+2^{2^{n-2}+1}-1)$ (i.e. apart from a finite number of the dyadically rational points). It is clear that this \bar{E} is a simple set and $|\bar{E}|=\frac{1}{4}$. From the definition of $\Phi_r(k;x)$ we get that the maximum of the partial sums of the prescribed rearrangement of the sum $S_n(x)$ will equal n in the points of \bar{E} .

If we substitute the representations (11) in the above rearrangement of $S_n(x)$

and label the occurring Walsh functions, in this order, by the subscript n_i $(i = 0, 1, ..., 2^{2^{n-1}} + 2^{2^{n-2}+1} - 1)$ then we have

$$S_n(x) = \sum_{i=0}^{2^{2^{n-1}} + 2^{2^{n-2} + 1} - 1} b_{n_i}(n) w_{n_i}(x).$$

Then the above assertion may be written as follows:

(14)
$$\max_{1 \le s \le 2^{2^{n-1}} + 2^{2^{n-2} + 1} - 1} \left| \sum_{i=0}^{s} b_{n_i}(n) w_{n_i}(x) \right| = n \qquad (x \in \overline{E}).$$

Now we put

$$\overline{\omega}_{i}(x) = w_{n_{i}}(x) \qquad (i = 0, 1, ..., 2^{2^{n-1}} + 2^{2^{n-2}+1} - 1),$$

$$\overline{\omega}_{i}(x) = w_{i}(x) \qquad (i = 2^{2^{n-1}} + 2^{2^{n-2}+1}, ..., 2^{2^{n}} - 1);$$

$$b_{i} = \frac{b_{n_{i}}(n)}{\sqrt{5n}} \qquad (i = 0, 1, ..., 2^{2^{n-1}} + 2^{2^{n-2}+1} - 1),$$

$$b_{i} = 0 \qquad (i = 2^{2^{n-1}} + 2^{2^{n-2}+1}, ..., 2^{2^{n}} - 1).$$

This is possible as $2^{2^{n-1}} + 2^{2^{n-2}+1} - 1 \le 2^{2^n} - 1$. Finally, we set

$$\omega_{i}(x) = \begin{cases} \overline{\omega}_{i}(2x) & \text{if } x \in \left[0, \frac{1}{2}\right], \\ -\overline{\omega}_{i}(2x-1) & \text{if } x \in \left[\frac{1}{2}, 1\right], \\ 0 & \text{elsewhere,} \end{cases}$$

 $(i=0, 1, ..., 2^{2^n}-1)$. Furthermore, let E be the set arising from \overline{E} as the result of the linear transformation of the interval (0, 1) into the subinterval $(0, \frac{1}{2})$.

It is obvious that E is a simple set and the assertion (8) is satisfied. We can easily see that the function system $\{\overline{\omega}_i(x)\}$ $(i=0, 1, ..., 2^{2^n}-1)$ is a rearrangement of the Walsh functions $\{w_i(x)\}$ $(i=0, 1, ..., 2^{2^n}-1)$. From (10) we have

$$\int_{2}^{1} \left| \sum_{l=0}^{2^{2^{n}}-1} \overline{\omega}_{l}(x) \, \overline{\omega}_{l}(t) \right| dt \leq 1 \qquad (0 \leq x \leq 1).$$

Hence, by a simple calculation we get that assertion (7) is also satisfied. Furthermore, by virtue of (13) and (14), the inequalities (6) and (9) hold. Finally, taking into account the construction of $\omega_l(x)$ it is obvious that

$$\int_{0}^{1} \omega_{l}(x) dx = 0 \qquad (l = 0, 1, ..., 2^{2^{n}} - 1).$$

The proof is thus completed.

Lemma 2. Let n be a natural number, λ real number such that $0 < \lambda < 1$, furthermore, let I_1, I_2, I_3 be arbitrary, mutually disjoint subintervals of the interval (0, 1) for which $|I_2| \leq |I_1|$ and $|I_3| \leq |I_1|$ are satisfied. Then there exist an orthonormal system $\{\psi_k(x)\}$ $(k = 1, 2, ..., 2.2^n)$ of step-functions in (0, 1), a coefficient sequence $\{d_k\}$ $(k = 1, 2, ..., 2.2^n)$, and a simple set $F(\subseteq I_1)$ having the following properties: the integral of each function $\psi_k(x)$ extended over (0, 1) vanishes,

(15)
$$\sum_{k=1}^{2 \cdot 2^{2^n}} d_k^2 \le 1 \qquad (d_k = 0 \quad \text{if} \quad k = 2^{2^n} + 1, \dots, 2 \cdot 2^{2^n}),$$

(16)
$$|F| = \frac{|I_1|}{8},$$

(17)
$$\max_{1 \le s < 2^{2n}} \left| \sum_{k=1}^{s} d_k \psi_k(x) \right| \ge C_2 \lambda \sqrt{n} \quad \text{if} \quad x \in F;$$

for the Lebesgue functions of this system the following upper estimates hold:

(18)
$$L_{2^{2^{n}}}(\{\psi_{k}\};x) = \int_{0}^{1} \left| \sum_{k=1}^{2^{2^{n}}} \psi_{k}(x) \psi_{k}(t) \right| dt \leq \begin{cases} C_{3} \lambda & (x \in I_{1}), \\ C_{4}/\sqrt{|I_{2}|} & (x \in I_{2}), \\ C_{5}/\sqrt{|I_{3}|} & (x \in I_{3}), \\ 0 & elsewhere; \end{cases}$$

(19)
$$L_{2,2^{2n}}(\{\psi_k\};x) \leq \begin{cases} C_6 \lambda & (x \in I_1), \\ C_7/\sqrt{|I_2|} & (x \in I_2), \\ 1 & (x \in I_3), \\ 0 & elsewhere; \end{cases}$$

furthermore, for the function

$$R_i(x) = \int_0^1 \left| \sum_{k=1}^i \psi_k(x) \psi_k(t) + \sum_{k=2^{2^n}+1}^{2 \cdot 2^{2^n}-i} \psi_k(x) \psi_k(t) \right| dt \qquad (1 \le i < 2^{2^n})$$

we have also the following upper estimate:

(20)
$$R_{i}(x) \leq \begin{cases} C_{8}\lambda + L_{n}\sqrt{|I_{3}|}/\sqrt{|I_{1}|} & (x \in I_{1}), \\ C_{9}L_{n}/\sqrt{|I_{2}|} & (x \in I_{2}), \\ C_{10}L_{n}/\sqrt{|I_{3}|} & (x \in I_{3}), \\ 0 & elsewhere \end{cases}$$

with

$$L_n = \max_{\substack{0 \le i \le 2^{2^n} - 1, \\ 0 \le x \le 1}} L_i(\{\omega_l\}; x);$$

the functions $\omega_l(x)$ occurring here are defined by Lemma 1. (As the functions $\omega_l(x)$ are uniformly bounded, L_n is a finite number for every n.)

Proof. Let f(x) be an arbitrary function defined in the interval (0, 1), furthermore, let I = (a, b) be an arbitrary subinterval of (0, 1) and H an arbitrary subset of (0, 1). Now, we proceed from the interval (0, 1) to the interval I by means of the linear tarnsformation y = (x - a)/(b - a) $(a \le x \le b, 0 \le y \le 1)$, and put

$$f(I;x) = \begin{cases} f\left(\frac{x-a}{b-a}\right) & (a \le x \le b), \\ 0 & \text{elsewhere}; \end{cases}$$

let H(I) be the set into which H is carried over by this linear transformation.

Let $\{\omega_l(x)\}\ (l=0, 1, ..., 2^{2^n}-1), \{b_l\}\ (l=0, 1, ..., 2^{2^n}-1)$ and E denote the corresponding orthonormal system, the coefficient sequence, and the simple set occurring in Lemma 1, respectively.

Let us put

$$d_{l} = \begin{cases} b_{l-1} & \text{for } 1 \leq l \leq 2^{2^{n}}, \\ 0 & \text{for } 2^{2^{n}} + 1 \leq l \leq 2 \cdot 2^{2^{n}}; \end{cases}$$

furthermore, $F = E(I_1)$. It then follows from (6) and (8) that (15) and (16) are fulfilled. The functions $\psi_k(x)$ are defined as follows: for $k = 1, 2, ..., 2^{2^n}$ let us set

$$\psi_k(x) = \frac{\lambda}{\sqrt{2|I_1|}} \omega_{k-1}(I_1; x) + \frac{\sqrt{1-\lambda^2}}{\sqrt{2|I_2|}} \omega_{k-1}(I_2; x) + \frac{1}{\sqrt{2|I_3|}} \omega_{k-1}(I_3; x),$$

and for $k = 2^{2^n} + 1, ..., 2 \cdot 2^{2^n}$

$$\psi_k(x) = \frac{\lambda}{\sqrt{2|I_1|}} \omega_{2.2^{2^n}-k}(I_1;x) + \frac{\sqrt{1-\lambda^2}}{\sqrt{2|I_2|}} \omega_{2.2^{2^n}-k}(I_2;x) - \frac{1}{\sqrt{2|I_3|}} \omega_{2.2^{2^n}-k}(I_3;x).$$

By a simple calculation we get from these definitions that the functions $\psi_k(x)$ form an orthonormal system in (0, 1). If $x \in F$ then there exists $y \in E$ such that

$$\psi_k(x) = \frac{\lambda}{\sqrt{2|I_1|}} \omega_{k-1}(y)$$
 $(k = 1, 2, ..., 2^{2^n}),$

thus the correctness of (17) follows from (9). On account of Lemma 1, it is clear that

$$\int_{0}^{1} \psi_{k}(x) dx = 0 \qquad (k = 1, 2, ..., 2.2^{2^{n}}).$$

It remains to be proved that the inequalities (18), (19) and (20) are also satisfied.

First of all, we remark that the functions $\psi_k(x)$ vanish outside the set $I_1 \cup I_2 \cup I_3$. According to the definition of the functions $\psi_k(x)$, by calculating the integrals on the right-hand side, we obtain for $x \in I_1$

$$L_{2^{2^{n}}}(\{\psi_{k}\};x) = \frac{\lambda}{\sqrt{2|I_{1}|}} \left(\int_{I_{1}} + \int_{I_{2}} + \int_{I_{3}} \right) \left| \sum_{k=1}^{2^{2^{n}}} \omega_{k-1}(I_{1};x) \psi_{k}(t) \right| dt =$$

$$= \frac{\lambda}{\sqrt{2|I_{1}|}} \left(\frac{\lambda}{\sqrt{2|I|_{1}}} |I_{1}| + \frac{\sqrt{1-\lambda^{2}}}{\sqrt{2|I_{2}|}} |I_{2}| + \frac{|I_{3}|}{\sqrt{2|I_{3}|}} \right) \int_{0}^{1} \left| \sum_{l=0}^{2^{2^{n}-1}} \omega_{l}(y) \omega_{l}(t) \right| dt;^{4}$$

for $x \in I_2$

(22)
$$L_{2^{2^{n}}}(\{\psi_{k}\}; x) = \frac{\sqrt{1-\lambda^{2}}}{\sqrt{2|I_{2}|}} \left(\int_{I_{1}} + \int_{I_{2}} + \int_{I_{3}} \right) \left| \sum_{k=1}^{2^{2^{n}}} \omega_{k-1}(I_{2}; x) \psi_{k}(t) \right| dt =$$

$$= \frac{\sqrt{1-\lambda^{2}}}{\sqrt{2|I_{2}|}} \left(\frac{\lambda}{\sqrt{2|I_{1}|}} |I_{1}| + \frac{\sqrt{1-\lambda^{2}}}{\sqrt{2|I_{2}|}} |I_{2}| + \frac{|I_{3}|}{\sqrt{2|I_{3}|}} \right) \int_{I_{1}}^{1} \left| \sum_{l=0}^{2^{2^{n}}-1} \omega_{l}(y') \omega_{l}(t) \right| dt;$$

and for $x \in I_3$

(23)
$$L_{2^{2^{n}}}(\{\psi_{k}\};x) = \frac{1}{\sqrt{2|I_{3}|}} \left(\int_{I_{1}} + \int_{I_{2}} + \int_{I_{3}} \right) \left| \sum_{k=1}^{2^{2^{n}}} \omega_{k-1}(I_{3};x) \psi_{k}(t) \right| dt =$$

$$= \frac{1}{\sqrt{2|I_{3}|}} \left(\frac{\lambda}{\sqrt{2|I_{1}|}} |I_{1}| + \frac{\sqrt{1-\lambda^{2}}}{\sqrt{2|I_{2}|}} |I_{2}| + \frac{|I_{3}|}{\sqrt{2|I_{3}|}} \right) \int_{2}^{1} \left| \sum_{l=0}^{2^{2^{n}-1}} \omega_{l}(y'') \omega_{l}(t) \right| dt.$$

By paying attention to (7), from (21), (22) and (23) we obtain the estimate (18) Now we treat the Lebesgue function $L_{2\cdot 2^{2^n}}(\{\psi_k\}; x)$. We also distinguish three subcases as above. If $x \in I_1$, we get

(24)
$$L_{2.2^{2n}}(\{\psi_k\};x) = \left(\int_{I_1} + \int_{I_2} + \int_{I_3}\right) \left|\sum_{k=1}^{2.2^{2n}} \psi_k(x) \psi_k(t)\right| dt =$$

$$= \frac{\lambda}{\sqrt{2|I_1|}} \left(\frac{2\lambda}{\sqrt{2|I_1|}} |I_1| + \frac{2\sqrt{1-\lambda^2}}{\sqrt{2|I_2|}} |I_2|\right) \int_0^1 \left|\sum_{l=0}^{2^{2n}-1} \omega_l(y) \omega_l(t)\right| dt;$$

⁴⁾ Let y, y' and y'' denote the image points into which the points $x \in I_1$, $x \in I_2$ and $x \in I_3$ are carried over by the corresponding linear transformations transferring the intervals I_1 , I_2 and I_3 into the interval (0, 1), respectively.

if $x \in I_2$ then

(25)
$$L_{2,2^{2n}}(\{\psi_k\};x) = \left(\int_{I_1} + \int_{I_2} + \int_{I_3}\right) \left|\sum_{k=1}^{2,2^{2n}} \psi_k(x)\psi_k(t)\right| dt =$$

$$= \frac{\sqrt{1-\lambda^2}}{\sqrt{2|I_2|}} \left(\frac{2\lambda}{\sqrt{2|I_1|}} |I_1| + \frac{2\sqrt{1-\lambda^2}}{\sqrt{2|I_2|}} |I_2|\right) \int_{0}^{1} \left|\sum_{l=0}^{2^{2n}-1} \omega_l(y') \omega_l(t)\right| dt;$$

and if $x \in I_3$ then

(26)
$$L_{2.2^{2n}}(\{\psi_k\};x) = \left(\int\limits_{I_1} + \int\limits_{I_2} + \int\limits_{I_3} \right) \left| \sum_{k=1}^{2.2^{2n}} \psi_k(x) \psi_k(t) \right| dt =$$

$$= \frac{1}{2|I_3|} 2|I_3| \int\limits_{0}^{1} \left| \sum_{l=0}^{2^{2n}-1} \omega_l(y'') \omega_l(t) \right| dt.$$

By virtue of (7), (24), (25) and (26) we have also the estimate (19).

The validity of (20) follows in a similar way as before. According to the definition of the function $R_i(x)$, we have for $x \in I_1$

$$R_{i}(x) = \left(\int_{I_{1}} + \int_{I_{2}} + \int_{I_{3}} \right) \left| \sum_{k=1}^{i} \psi_{k}(x) \psi_{k}(t) + \sum_{k=2^{2^{n}-i}}^{2 \cdot 2^{2^{n}-i}} \psi_{k}(x) \psi_{k}(t) \right| dt =$$

$$(27) \qquad = \frac{\lambda}{\sqrt{2|I_{1}|}} \left\{ \left(\frac{\lambda}{\sqrt{2|I_{1}|}} |I_{1}| + \frac{\sqrt{1-\lambda^{2}}}{\sqrt{2|I_{2}|}} |I_{2}| \right) \int_{0}^{1} \left| \sum_{l=0}^{2^{2^{n}-1}} \omega_{l}(y) \omega_{l}(t) \right| dt + \frac{1}{\sqrt{2|I_{3}|}} |I_{3}| \int_{0}^{1} \left| \sum_{l=0}^{i-1} \omega_{l}(y) \omega_{l}(t) - \sum_{l=i}^{2^{2^{n}-1}} \omega_{l}(y) \omega_{l}(t) \right| dt \right\};$$
for $x \in I_{2}$

$$R_{i}(x) = \left(\int_{I_{1}} + \int_{I_{2}} + \int_{I_{3}} \right) \left| \sum_{k=1}^{i} \psi_{k}(x) \psi_{k}(t) + \sum_{k=2^{2^{n}-i}}^{2 \cdot 2^{2^{n}-i}} \psi_{k}(x) \psi_{k}(t) \right| dt =$$

$$(28) \qquad = \frac{\sqrt{1-\lambda^{2}}}{\sqrt{2|I_{2}|}} \left\{ \left(\frac{\lambda}{\sqrt{2|I_{1}|}} |I_{1}| + \frac{\sqrt{1-\lambda^{2}}}{\sqrt{2|I_{2}|}} |I_{2}| \right) \int_{0}^{1} \left| \sum_{l=0}^{2^{2^{n}-1}} \omega_{l}(y') \omega_{l}(t) \right| dt + \frac{1}{\sqrt{2|I_{2}|}} |I_{3}| \int_{1}^{1} \left| \sum_{l=0}^{i-1} \omega_{l}(y') \omega_{l}(t) - \sum_{l=i}^{2^{n}-1} \omega_{l}(y') \omega_{l}(t) \right| dt \right\};$$

and finally for $x \in I_3$

$$R_{i}(x) = \left(\int_{I_{1}} + \int_{I_{2}} + \int_{I_{3}} \right) \left| \sum_{k=1}^{i} \psi_{k}(x) \psi_{k}(t) + \sum_{k=2^{2n}+1}^{2 \cdot 2^{2n}-i} \psi_{k}(x) \psi_{k}(t) \right| dt =$$

$$(29) \quad \frac{1}{\sqrt{2|I_{3}|}} \left\{ \left(\frac{\lambda}{\sqrt{2|I_{1}|}} |I_{1}| + \frac{\sqrt{1-\lambda^{2}}}{\sqrt{2|I_{2}|}} |I_{2}| \right) \int_{0}^{1} \left| \sum_{l=0}^{i-1} \omega_{l}(y'') \omega_{l}(t) - \sum_{l=i}^{2^{2n}-1} \omega_{l}(y''') \omega_{l}(t) \right| dt + \frac{|I_{3}|}{\sqrt{2|I_{3}|}} \int_{0}^{1} \left| \sum_{l=0}^{2^{2n}-1} \omega_{l}(y''') \omega_{l}(t) \right| dt \right\}.$$

Taking into consideration that $|I_2| < 1$, $|I_3| < 1$ and $|I_n| \ge 1$, from (27), (28) and (29) we obtain the estimate (20). This completes the proof of Lemma 2.

§ 2. Proof of the theorem

Let $\{v_n\}$ and $\{N_n\}$ (n=2, 3, ...) be the following sequences of natural numbers:

$$v_n = 2^{2^{n^6}}$$
 $(n = 2, 3, ...),$
 $N_2 = 0, \quad N_n = \sum_{i=2}^{n-1} 2v_i$ $(n = 3, 4, ...).$

Define the matrix $T = \{\alpha_{ik}\}$ (i, k = 0, 1, 2, ...) occurring in our theorem as follows:

$$\alpha_{00} = 1, \quad \alpha_{0k} = 0 \qquad (k = 1, 2, ...),$$

and in general, for an arbitrary natural number $n \ge 2$ we distinguish three subcases: if $N_n < i < N_n + v_n$ then we put

$$\alpha_{ii} = \frac{1}{2}$$
, $\alpha_{i, N_{n+1}-(i-N_n)} = \frac{1}{2}$, $\alpha_{ik} = 0$ otherwise;

if $i = N_n + v_n$ then

$$\alpha_{i, N_n + \nu_n} = 1, \quad \alpha_{ik} = 0$$
 otherwise;

and finally if $N_n + v_n < i \le N_{n+1}$ then

$$\alpha_{i,N_{n+1}} = 1, \quad \alpha_{ik} = 0$$
 otherwise.

From the definition of the matrix T it immediately follows that the conditions

$$\alpha_{ik} \ge 0$$
 $(i, k = 0, 1, 2, ...);$ $\lim_{i \to \infty} \alpha_{ik} = 0$ $(k = 0, 1, 2, ...);$
$$\sum_{k=0}^{\infty} \alpha_{ik} = 1 \quad (i = 0, 1, 2, ...)$$

are satisfied. Therefore, on account of a theorem (see e.g. ALEXITS [1], p. 65) we infer the permanence of the T-summation process.

To define the orthonormal system $\{\varphi_k(x)\}\ (k=0,1,2,...)$ and the coefficient sequence $\{c_k\}\ (k=0,1,2,...)$ occurring in our theorem we apply induction. The construction is similar to that of TANDORI [10].

Let $\lambda_n = 1/n$ (n = 2, 3, ...) be. First of all, let us consider three sequences of subintervals $\{I_1(n)\}$, $\{I_2(n)\}$ and $\{I_3(n)\}$ of the interval (0, 1) so that the conditions

(30)
$$I_i(n) \cap I_i(n) = O \quad (i \neq j; n = 2, 3, ...);$$

(31)
$$I_{i}(n') \cap I_{i}(n'') = O \qquad (i = 2, 3; \quad n' \neq n''; \quad n', n'' = 2, 3, ...); \\ I_{2}(n') \cap I_{3}(n'') = O \qquad (n', n'' = 2, 3, ...);$$

(32)
$$I_1(n) = \left[\frac{2^{m+1} - n}{2^m}, \frac{2^{m+1} - n + 1}{2^m} \right] \qquad (2^m < n \le 2^{m+1}; \quad m = 0, 1, 2, ...);$$

$$(33) \qquad \sum_{n=2}^{\infty} L_{n^6} \left(\sqrt{|I_2(n)|} + \sqrt{|I_3(n)|} \right) < \infty,$$

where L_n is defined in Lemma 2, and

(34)
$$\frac{L_{n^6}\sqrt{|I_3(n)|}}{\sqrt{|I_1(n)|}} \le \lambda_n \qquad (n = 2, 3, ...)$$

should be satisfied. It is obvious that both intervals $I_2(n)$ and $I_3(n)$ can be chosen in accordance with these requirements.

From (31) we can easily see that every point x of (0,1) belongs to at most one of all the subintervals $I_2(n)$ and $I_3(n)$. Furthermore, by (32) it follows that every point $x \in (0,1)$ lies in $I_1(n)$ for infinitely many values of n, and for every non-negative integer m there exists a uniquely determined natural number $n_m(x)$ for which $2^m < n_m(x) \le 2^{m+1}$ and $x \in I_1(n_m(x))$. By the definition of $\{\lambda_n\}$ we get immediately that

(35)
$$\sum_{m=0}^{\infty} \lambda_{n_m(x)} \le \sum_{m=0}^{\infty} \frac{1}{2^m} = 2.$$

Now we are going to construct a system $\{\varphi_k(x)\}$ (k=0, 1, 2, ...) of orthonormal step-functions in (0, 1), a coefficient sequence $\{c_k\}$ (k=0, 1, 2, ...), and a sequence of simple subsets $G_n(\leq I_1(n))$ (n=2, 3, ...) in (0, 1) so that the following relations should be satisfied:

(36)
$$\sum_{k=N_n+1}^{N_n+\nu_n} c_k^2 \le \frac{1}{n^2} \text{ and } c_k = 0 \text{ for } k = N_n + \nu_n + 1, \dots, N_{n+1} \qquad (n = 2, 3, \dots);$$

(37)
$$|G_n| = \frac{|I_1(n)|}{8};$$

(38)
$$\max_{N_n < i \le N_n + \nu_n} \left| \sum_{k=N_n+1}^{i} c_k \varphi_k(x) \right| \ge C_2 n \quad \text{if} \quad x \in G_n \qquad (n=2,3,...);$$

furthermore,

(39)
$$\int_{0}^{1} \left| \sum_{k=N_{n}+1}^{N_{n}+\nu_{n}} \varphi_{k}(x) \varphi_{k}(t) \right| dt \leq \begin{cases} C_{3} \lambda_{n} & (x \in I_{1}(n)), \\ C_{4} / \sqrt{|I_{2}(n)|} & (x \in I_{2}(n)), \\ C_{5} / \sqrt{|I_{3}(n)|} & (x \in I_{3}(n)), \\ 0 & \text{elsewhere}; \end{cases}$$

(40)
$$\int_{0}^{1} \left| \sum_{k=N_{n}+1}^{N_{n+1}} \varphi_{k}(x) \varphi_{k}(t) \right| dt \leq \begin{cases} C_{6} \lambda_{n} & (x \in I_{1}(n)), \\ C_{7} / \sqrt{|I_{2}(n)|} & (x \in I_{2}(n)), \\ 1 & (x \in I_{3}(n)), \\ 0 & \text{elsewhere}; \end{cases}$$

$$(41) S_{i}(n;x) = \int_{0}^{1} \left| \sum_{k=N_{n}+1}^{N_{n}+i} \varphi_{k}(x) \varphi_{k}(t) + \sum_{k=N_{n}+\nu_{n}+1}^{N_{n+1}-i} \varphi_{k}(x) \varphi_{k}(t) \right| dt \le$$

$$\leq \begin{cases} C_{8} \lambda_{n} + L_{n^{6}} \sqrt{|I_{3}(n)|} / \sqrt{|I_{1}(n)|} & (x \in I_{1}(n)), \\ C_{9} L_{n^{6}} / \sqrt{|I_{2}(n)|} & (x \in I_{2}(n)), \\ C_{10} L_{n^{6}} / \sqrt{|I_{3}(n)|} & (x \in I_{3}(n)), \\ 0 & \text{elsewhere} \end{cases}$$

$$(N_n < i < N_n + v_n; \quad n = 2, 3, ...).$$

We notice that, on account of (34) and (41), the estimate

(42)
$$S_{l}(n;x) \leq \begin{cases} C_{11}\lambda_{n} & (x \in I_{1}(n)), \\ C_{9}L_{n^{6}}/\sqrt{|I_{2}(n)|} & (x \in I_{2}(n)), \\ C_{10}L_{n^{6}}/\sqrt{|I_{3}(n)|} & (x \in I_{3}(n)), \\ 0 & \text{elsewhere} \end{cases}$$

$$(N_n < i < N_n + v_n; n = 2, 3, ...)$$

also follows.

Let $\varphi_0(x) \equiv 1$ and $c_0 = 0$ be. We apply Lemma 2 with $n = 2^6$, $\lambda = \lambda_2$ and $I_i = I_i(2)$ (i = 1, 2, 3) (on account of (30) it is permissible). We get the orthonormal system $\{\psi_k(x)\}$ $(k = 1, 2, ..., 2v_2)$, the coefficient sequence $\{d_k\}$ $(k = 1, 2, ..., 2v_2)$, and the simple set F satisfying (15)—(20). Now we write

$$\varphi_k(x) = \psi_k(x), \quad c_k = \frac{d_k}{2} \qquad (k = 1, 2, ..., N_3), \text{ and } G_2 = F.$$

According to Lemma 2 the step-functions $\varphi_k(x)$ $(k=0, 1, ..., N_3)$ are orthonormal, and the relations (36)—(41) hold for n=2.

Now, $n_0(\ge 2)$ being arbitrary, we assume that the step-functions $\varphi_k(x)$ $(k=0,1,...,N_{n_0+1})$, the coefficients c_k $(k=0,1,...,N_{n_0+1})$, and the simple sets $G_n(\subseteq I_1(n))$ $(n=2,3,...,n_0)$ are already determined such that these functions

are orthogonal and normed in (0, 1) and that the requirements (36)—(41) are satisfied for each integer $n \le n_0$. We are going to construct the functions, coefficients, and simple set corresponding to $n_0 + 1$ so that these also satisfy (36)—(41).

We can divide the intervals $I_1(n_0+1)$, $I_2(n_0+1)$ and $I_3(n_0+1)$ into a finite number of mutually disjoint subintervals

$$I_1(n_0+1) = \bigcup_{i=1}^{q_1} J_i(1), \quad I_2(n_0+1) = \bigcup_{i=1}^{q_2} J_i(2), \quad I_3(n_0+1) = \bigcup_{i=1}^{q_3} J_i(3)$$

on which every function $\varphi_k(x)$ $(k=0, 1, ..., N_{n_0+1})$ remains constant, and every set $G_n \cap I_1(n_0+1)$ $(n=2, 3, ..., n_0)$ can be represented as the union of some intervals $I_i(1)$.

We begin with applying Lemma 1 with $n=(n_0+1)^6$. We get the functions $\omega_l(x)$ $(l=0,1,...,2^{2^{(n_0+1)^6}}-1)$. Next applying Lemma 2 with $n=(n_0+1)^6$, $\lambda=\lambda_{n_0+1}$ and $I_i=I_i(n_0+1)$ (i=1,2,3), we obtain the functions $\psi_k(x)$ $(k=1,2,...,2v_{n_0+1})$, the coefficients d_k $(k=1,2,...,2v_{n_0+1})$, and the simple set F_{n_0+1} . Let us put

$$\varphi_{N_{n_0+1}+l}(x) = \frac{\lambda_{n_0+1}}{\sqrt{2|I_1(n_0+1)|}} \sum_{i=1}^{q_1} \omega_{l-1} \left(J_i(1); x \right) + \frac{\sqrt{1-\lambda_{n_0+1}^2}}{\sqrt{2|I_2(n_0+1)|}} \sum_{i=1}^{q_2} \omega_{l-1} \left(J_i(2); x \right) + \frac{1}{\sqrt{2|I_3(n_0+1)|}} \sum_{i=1}^{q_3} \omega_{l-1} \left(J_i(3); x \right) \qquad (l=1,2,\ldots,v_{n_0+1}),$$

$$\varphi_{N_{n_0+1}+v_{n_0+1}+l}(x) = \frac{\lambda_{n_0+1}}{\sqrt{2|I_1(n_0+1)|}} \sum_{i=1}^{q_1} \omega_{v_{n_0+1}-l} \left(J_i(1); x \right) + \frac{\sqrt{1-\lambda_{n_0+1}^2}}{\sqrt{2|I_2(n_0+1)|}} \sum_{i=1}^{q_2} \omega_{v_{n_0+1}-l} \left(J_i(2); x \right) - \frac{1}{\sqrt{2|I_3(n_0+1)|}} \sum_{i=1}^{q_3} \omega_{v_{n_0+1}-l} \left(J_i(3); x \right)$$

$$(l=1,2,\ldots,v_{n_0+1}).$$

It is clear that the functions $\varphi_k(x)$ $(k = N_{n_0+1} + 1, ..., N_{n_0+2})$ are also step-functions. By virtue of Lemma 1 and the definition, we can easily prove that the functions $\varphi_k(x)$ $(k = 0, 1, ..., N_{n_0+2})$ are orthonormal in (0, 1).

Let us put

$$c_{N_{n_0+1}+k} = \frac{d_k}{n_0+1}$$
 $(k = 1, 2, ..., 2v_{n_0+1}).$

From (16) it follows that (36) is satisfied for $n = n_0 + 1$. Finally, we set

$$G_{n_0+1} = \bigcup_{i=1}^{q_1} E(J_i(1)).$$

It is obvious that G_{n_0+1} is a simple set, and on account of Lemma 1, (37) holds for $n=n_0+1$.

If $x \in G_{n_0+1}$ then there exists a point $y \in F_{n_0+1}$ such that

$$\varphi_{N_{n_0+1}+k}(x) = \psi_k(y)$$
 $(k = 1, 2, ..., 2v_{n_0+1}).$

Taking into consideration of the definition of the coefficients c_k and (17), we obtain (38) for $n = n_0 + 1$.

According to the definition of the functions $\varphi_k(x)$ $(N_{n_0+1} < k \le N_{n_0+2})$ and the proof of Lemma 2, if $x \in (0, 1)$ then for an appropriately chosen y we have

$$\int_{0}^{1} \left| \sum_{k=N_{n_{0}+1}+1}^{N_{n_{0}+1}+\nu_{n_{0}+1}} \varphi_{k}(x) \varphi_{k}(t) \right| dt = \int_{0}^{1} \left| \sum_{l=1}^{\nu_{n_{0}+1}} \psi_{l}(y) \psi_{l}(t) \right| dt.$$

To show this, let $x \in I_1(n_0+1) \cup I_2(n_0+1) \cup I_3(n_0+1)$ be fixed. Then by simple integral transformations we get that the left-hand side equals

$$\begin{split} \frac{\lambda_{n_{0}+1}}{\sqrt{2|I_{1}(n_{0}+1)|}} & \sum_{i=1}^{q_{1}} \int_{J_{i}(1)} \left| \sum_{l=1}^{\nu_{n_{0}+1}} \psi_{l}(y) \, \omega_{l-1} \left(J_{i}(1); t \right) \right| dt + \\ & + \frac{\sqrt{1-\lambda_{n_{0}+1}^{2}}}{\sqrt{2|I_{2}(n_{0}+1)|}} \sum_{i=1}^{q_{2}} \int_{J_{i}(2)} \left| \sum_{l=1}^{\nu_{n_{0}+1}} \psi_{l}(y) \, \omega_{l-1} \left(J_{i}(2); t \right) \right| dt + \\ & + \frac{1}{\sqrt{2|I_{3}(n_{0}+1)|}} \sum_{i=1}^{q_{3}} \int_{J_{i}(3)} \left| \sum_{l=1}^{\nu_{n_{0}+1}} \psi_{l}(y) \, \omega_{l-1} \left(J_{i}(3); t \right) \right| dt = \\ & = \frac{\lambda_{n_{0}+1}}{\sqrt{2|I_{1}(n_{0}+1)|}} \int_{0}^{1} \left| \sum_{l=1}^{\nu_{n_{0}+1}} \psi_{l}(y) \, \omega_{l-1}(t) \right| dt \sum_{i=1}^{q_{1}} \left| J_{i}(1) \right| + \\ & + \frac{\sqrt{1-\lambda_{n_{0}+1}^{2}}}{\sqrt{2|I_{2}(n_{0}+1)|}} \int_{0}^{1} \left| \sum_{l=1}^{\nu_{n_{0}+1}} \psi_{l}(y) \, \omega_{l-1}(t) \right| dt \sum_{i=1}^{q_{2}} \left| J_{i}(2) \right| + \\ & + \frac{1}{\sqrt{2|I_{3}(n_{0}+1)|}} \int_{0}^{1} \left| \sum_{l=1}^{\nu_{n_{0}+1}} \psi_{l}(y) \, \omega_{l-1}(t) \right| dt \sum_{i=1}^{q_{3}} \left| J_{i}(3) \right| = \\ & = \left(\int_{J_{1}(n_{0}+1)} + \int_{J_{2}(n_{0}+1)} + \int_{J_{3}(n_{0}+1)} \left| \sum_{l=1}^{\nu_{n_{0}+1}} \psi_{l}(y) \, \psi_{l}(t) \right| dt = \int_{0}^{1} \left| \sum_{l=1}^{\nu_{n_{0}+1}} \psi_{l}(y) \, \psi_{l}(t) \right| dt. \end{split}$$

Here we took into consideration that

$$\sum_{i=1}^{q_1} |J_i(1)| = |I_1(n_0+1)|, \quad \sum_{i=1}^{q_2} |J_i(2)| = |I_2(n_0+1)|, \quad \sum_{i=1}^{q_3} |J_i(3)| = |I_3(n_0+1)|.$$

Similarly, we have also the following equations:

$$\int_{0}^{1} \left| \sum_{k=N_{n_{0}+1}+1}^{N_{n_{0}+2}} \varphi_{k}(x) \varphi_{k}(t) \right| dt = \int_{0}^{1} \left| \sum_{l=1}^{2\nu_{n_{0}+1}} \psi_{l}(x) \psi_{l}(t) \right| dt,$$

$$\int_{0}^{1} \left| \sum_{k=N_{n_{0}+1}+i}^{N_{n_{0}+2}-i} \psi_{k}(x) \psi_{k}(t) \right| dt = \int_{0}^{1} \left| \sum_{k=1}^{2\nu_{n_{0}+1}} \psi_{k}(x) \psi_{k}(t) \right| dt,$$

$$\int_{0}^{1} \left| \sum_{k=N_{n_{0}+1}+1}^{N_{n_{0}+1}+i} \varphi_{k}(x) \varphi_{k}(t) + \sum_{k=N_{n_{0}+1}+1}^{N_{n_{0}+2}-i} \varphi_{\kappa}(x) \varphi_{k}(t) \right| dt =$$

$$= \int_{1}^{1} \left| \sum_{l=1}^{i} \psi_{l}(y) \psi_{l}(t) + \sum_{l=v_{n_{0}+1}+1}^{2v_{n_{0}+1}-i} \psi_{l}(y) \psi_{l}(t) \right| dt \qquad (i=1,2,...,v_{n_{0}+1}-1);$$

here $y \in I_1(n_0+1)$, $y \in I_2(n_0+1)$, $y \in I_3(n_0+1)$ and $y \notin \bigcup_{i=1}^3 I_i(n_0+1)$ according to $x \in I_1(n_0+1)$, $x \in I_2(n_0+1)$, $x \in I_3(n_0+1)$ and $x \in \bigcup_{i=1}^3 I_i(n_0+1)$, respectively. By (18), (19) and (20) we get (39), (40) and (41) also for $n = n_0 + 1$.

Thus we obtained the orthonormal system $\{\varphi_k(x)\}$, the coefficient sequence $\{c_k\}$, and the sequence of simple sets $\{G_n\}$ by induction, which fulfil the requirements (36)—(41).

Let us consider the sets

and

$$H_m = \bigcup_{n=2^m+1}^{2^{m+1}} G_n$$
 $(m=1,2,...).$

By virtue of the definition of the intervals $I_1(n)$ and (36), we have

(43)
$$|H_m| = \frac{1}{8} \qquad (m = 1, 2, ...).$$

According to the definition of the sets G_n , it can easily be seen that the sets H_m are stochastically independent. Applying the Borel—Cantelli lemma we get

$$\left|\overline{\lim}_{m\to\infty}H_m\right|=1$$
.

If $x \in \overline{\lim}_{m \to \infty} H_m$ then the inequality (38) is satisfied for infinitely many values of m and hence

(44)
$$\overline{\lim}_{n\to\infty} \left(\max_{N_n < i \le N_n + \nu_n} \left| \sum_{k=N_n + 1}^{i} c_k \varphi_k(x) \right| \right) = \infty$$

holds almost everywhere.

As to the Lebesgue functions

$$L_i(\{\varphi_k\};x) = \int_0^1 \left| \sum_{k=0}^i \varphi_k(x) \varphi_k(t) \right| dt$$

of the system $\{\varphi_k(x)\}\$ with $i=N_n$ and $i=N_n+\nu_n$, we have

$$L_{N_n}(\{\varphi_k\};x) \le 1 + \sum_{r=1}^n \int_0^1 \left| \sum_{k=N_{r-1}+1}^{N_r} \varphi_k(x) \varphi_k(t) \right| dt,$$

as $\varphi_0(x) \equiv 1$. From the definition of the intervals $I_i(n)$ (i = 1, 2, 3; n = 2, 3, ...), by (35) and (40), it follows

(45)
$$L_{N_n}(\{\varphi_k\}; x) \leq \begin{cases} C_{12} & \left(x \in \bigcup_{l=2}^{\infty} \left(I_2(l) \cup I_3(l)\right)\right), \\ C_{13}/\sqrt{|I_2(p)|} & \left(x \in I_2(p)\right), \\ C_{14} & \left(x \in I_3(q)\right) & (n = 2, 3, \ldots). \end{cases}$$

It follows exactly in the same way as before that

$$L_{N_n+\nu_n}(\{\varphi_k\};x) \leq 1 + \sum_{r=1}^n \int_0^1 \left| \sum_{k=N_{r-1}+1}^{N_r} \varphi_k(x) \varphi_k(t) \right| dt + \int_0^1 \left| \sum_{k=N_n+1}^{N_n+\nu_n} \varphi_k(x) \varphi_k(t) \right| dt,$$

and taking into consideration (35) and (39), we get the estimate

(46)
$$L_{N_n+\nu_n}(\{\varphi_k\};x) \leq \begin{cases} C_{15} & \left(x \in \bigcup_{l=2}^{\infty} \left(I_2(l) \cup I_3(l)\right)\right), \\ C_{16}/\sqrt{|I_2(p)|} & \left(x \in I_2(p)\right), \\ C_{17}/\sqrt{|I_3(q)|} & \left(x \in I_3(q)\right) & (n=2,3,\ldots). \end{cases}$$

Hence and by (45) and (46), in virtue of (33), we obtain that

$$\int_{0}^{1} \left(\sup_{n} L_{N_{n}}(\{\varphi_{k}\}; x)\right) dx < \infty, \quad \int_{0}^{1} \left(\sup_{n} L_{N_{n}+\nu_{n}}(\{\varphi_{k}\}; x)\right) dx < \infty.$$

Furthermore, (36) implies $\sum_{k=0}^{\infty} c_k^2 < \infty$. Denote by $s_i(x)$ the *i*-th partial sum of the series (5). On account of a theorem of Leindler [5] it follows that $\{s_{N_n}(x)\}$ and $\{s_{N_n+v_n}(x)\}$ converge almost everywhere.

The above mentioned theorem of LEINDLER reads as follows:

Let $\{\varphi_k(x)\}\ (k=0,1,...)$ be an arbitrary orthonormal system in (a,b). If for a monotone increasing sequence $\{n_r\}$ of indices the inequality

$$L_{n_r}(\{\varphi_k\}; x) = O(1) \qquad (a \le x \le b)$$

holds, then under the condition $\sum_{k=0}^{\infty} a_k^2 < \infty$ the n_r -th partial sums of the orthogonal series (1) converge almost everywhere.

A more detailed analysis of Leindler's proof shows that the assertion remains valid under the weaker condition:

$$\sup L_{n_r}(\{\varphi_k\};x)\in L(a,b).$$

Let us denote by $t_i(x)$ the *i*-th *T*-mean of the orthogonal series (5). If $N_n < i < N_n + v_n$ then on account of the definition of the matrix *T* and the sequence $\{c_k\}$, we have

$$t_i(x) = \frac{1}{2} s_i(x) + \frac{1}{2} s_{N_{n+1}-i}(x) = \frac{1}{2} s_{N_n}(x) + \frac{1}{2} \sum_{k=N_n+1}^{i} c_k \varphi_k(x) + \frac{1}{2} s_{N_n+\nu_n}(x).$$

Hence, if we pay attention to (44), it follows from the convergence of $\{s_{N_n}(x)\}$ and $\{s_{N_n+\nu_n}(x)\}$ that

 $\overline{\lim}_{i \to \infty} |t_i(x)| = \infty$

almost everywhere. Thus the orthogonal series (5) is not T-summable almost everywhere in (0, 1).

To accomplish the proof of our theorem, we have to show that for the Lebesgue functions concerning the *T*-summation the relation (4) is satisfied.

If
$$N_n + v_n \le i \le N_{n+1}$$
 then

$$L_i(T; \{\varphi_k\}; x) = L_{N_{n+1}}(\{\varphi_k\}; x)$$
 and $L_i(T; \{\varphi_k\}; x) = L_{N_{n+1}}(\{\varphi_k\}; x)$,

respectively, thus in virtue of (45) and (46) the following estimate

(47)
$$L_{i}(T; \{\varphi_{k}\}; x) \leq \begin{cases} C_{18} & \left(x \in \bigcup_{l=2}^{\infty} (I_{2}(l) \cup I_{3}(l))\right), \\ C_{19}/\sqrt{|I_{2}(p)|} & \left(x \in I_{2}(p)\right), \\ C_{20}/\sqrt{|I_{3}(q)|} & \left(x \in I_{3}(q)\right) \end{cases}$$

$$(N_{n} + v_{n} \leq i \leq N_{n+1}; \quad n = 2, 3, \dots)$$

is true.

Finally, let $N_n < i < N_n + v_n$ be, i.e. $i = N_n + j$ $(1 \le j < v_n)$. Then

$$L_{i}(T; \{\varphi_{k}\}; x) = \frac{1}{2} \int_{0}^{1} \left| \sum_{k=0}^{N_{n+j}} \varphi_{k}(x) \varphi_{k}(t) + \sum_{k=0}^{N_{n+1}-j} \varphi_{k}(x) \varphi_{k}(t) \right| dt.$$

A simple calculation shows

$$L_{i}(T; \{\varphi_{k}\}; x) \leq \frac{1}{2} \int_{0}^{1} \left| \sum_{k=0}^{N_{n}} \varphi_{k}(x) \varphi_{k}(t) \right| dt + \frac{1}{2} \int_{0}^{1} \left| \sum_{k=0}^{N_{n}+\nu_{n}} \varphi_{k}(x) \varphi_{k}(t) \right| dt + \frac{1}{2} \int_{0}^{1} \left| \sum_{k=0}^{N_{n}+j} \varphi_{k}(x) \varphi_{k}(t) \right| dt + \frac{1}{2} \int_{0}^{1} \left| \sum_{k=N_{n}+j}^{N_{n}+j} \varphi_{k}(x) \varphi_{k}(t) \right| dt = \frac{1}{2} \left(L_{N_{n}}(\{\varphi_{k}\}; x) + L_{N_{n}+\nu_{n}}(\{\varphi_{k}\}; x) + S_{j}(n; x) \right).$$

By virtue of (42) we get

(49)
$$S_{j}(n;x) \leq \begin{cases} C_{11} & \left(x \in \bigcup_{l=2}^{\infty} \left(I_{2}(l) \cup I_{3}(l)\right)\right), \\ C_{9} L_{p^{6}} / \sqrt{|I_{2}(p)|} & \left(x \in I_{2}(p)\right), \\ C_{10} L_{q^{6}} / \sqrt{|I_{3}(q)|} & \left(x \in I_{3}(q)\right) \end{cases}$$
$$(1 \leq j < v_{n}; \quad n = 2, 3, \ldots).$$

From the inequalities (45), (46), (48) and (49) it follows

(50)
$$L_{i}(T; \{\varphi_{k}\}; x) \leq \begin{cases} C_{21} & \left(x \in \bigcup_{l=2}^{\infty} (I_{2}(l) \cup I_{3}(l))\right), \\ C_{22} L_{p^{6}} / \sqrt{|I_{2}(p)|} & \left(x \in I_{2}(p)\right), \\ C_{23} L_{q^{6}} / \sqrt{|I_{3}(q)|} & \left(x \in I_{3}(q)\right) \end{cases}$$

$$(N_{p} < i < N_{p} + v_{p}; \quad n = 2, 3, ...).$$

(Here we again took into consideration that $L_n \ge 1$ for every n.) From (47) and (50) we infer that

$$\int_{0}^{1} \sup_{i} L_{i}(T; \{\varphi_{k}\}; x) dx \leq C_{24} \left(1 + \sum_{n=2}^{\infty} L_{n^{6}}(\sqrt{|I_{2}(n)|} + \sqrt{|I_{3}(n)|}) \right)$$

holds. Hence on account of (33) we obtain that (4) is fulfilled.

We have thus completed the proof of our theorem.

References

- [1] G. ALEXITS, Convergence Problems of Orthogonal Series (Budapest, 1961).
- [2] А. В. Ефимов, О несуммируемых линейными методами ортогональных рядах, Доклады Акад. Наук СССР, 152 (1963), 31-34.
- [3] S. KACZMARZ, Sur la convergence et la sommabilité des développements orthogonaux, Studia Math., 1 (1929), 87—121.
- [4] L. LEINDLER, Über die sehr starke Riesz-summierbarkeit der Orthogonalreihen und Konvergenz lückenhafter Orthogonalreihen, Acta Math. Acad. Sci. Hungaricae, 13 (1962), 401—414.
- [5] L. LEINDLER, Nicht verbesserbare Summierbarkeitsbedingungen für Orthogonalreihen, Acta Math. Acad. Sci. Hungaricae, 13 (1962), 425—432.
- [6] Д. Е. Меньщов, О суммировании ортогональных рядов линейными методами, *Труды Москов*. *Мат. Общ.*, **10** (1961), 351—418.
- [7] G. SUNOUCHI, On the Riesz summability of Fourier series, *Tôhoku Math. J.*, second series, 11 (1959), 319—326.
- [8] K. TANDORI, Über die Cesàrosche Summierbarkeit der orthogonalen Reihen, Acta Sci. Math. 14 (1951/52), 85—95.
- [9] K. TANDORI, Über die Divergenz der Walshschen Reihen, Acta Sci. Math., 27 (1966), 261-263.
- [10] K. TANDORI, Ergänzung zu einem Satz von S. Kaczmarz, Acta Sci. Math., 28 (1967), 147—153.

(Received October 25, 1967)

Berichtigung zur Arbeit "Über die starke Summation von Fourierreihen"*)

Von KÁROLY TANDORI in Szeged

Der Beweis des Satzes I dieser Arbeit ist falsch. Mit der dort angewandten Methode kann man nur die folgende, ziemlich komplizierte Behauptung beweisen:

Ist f(t) nach 1 periodisch und in [0,1] Lebesgue-integrierbar, so gibt es für fast alle Punkte $x \in [0,1]$ eine positive Intervallfunktion $\Phi_x(I)$ mit $\sum_{n=0}^{\infty} \Phi_x\left(\left(\frac{1}{2^{n+1}},\frac{1}{2^n}\right)\right) < \infty$ derart, daß für $0 < k < \infty$ und $0 < h \to 0$ gilt:

(1)
$$\int_{h}^{2h} |f(x+u) - f(x)| du \int_{u-k}^{u+k} |f(x+v) - f(x)| dv = o(h^2 \Phi((h, 2h])) + o(hk),$$

undzwar gleichmäßig in Bezug auf k.

Ähnlicherweise, wie in der erwähnten Arbeit, kann bewiesen werden, daß aus (1) die H_2 -Summierbarkeit der Fourierreihe von f(t) in dem Punkt x folgt.

(Eingegangen am 28. März 1968)

^{*)} Acta Sci. Math., 16 (1955), 65-73.