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The concept of the cosine cosR^4 of an accretive linear operator A is a useful 
parameter in determining when the product of two accretive operators is itself 
accretive (see [2]). To be (nontrivially) -applicable in that context, it is necessary 
that the cosine be strictly positive, which is always the case for strongly accretive 
bounded operators. The object of the present note is to show that cosRA = 0 for 
all unbounded accretive operators A. This fact seems interesting since it serves 
to distinguish geometrically the topological notions of boundedness and unbounded-
ness for strongly accretive operators. 

We restrict ourselves to (real or complex, separable or non-separable) pre-
Hilbert spaces H and to unbounded accretive operators A. It is not necessary that A 
be closed or densely defined, and no completeness properties for H are needed; 
however, it should be noted that when H is a Hilbert space and D(A), the domain 
of A, is dense, then the accretiveness of A implies that A is' closeable (see [3, p. 
268]). Our demonstration does not immediately extend to B'anach spaces because 
we make use of both bilinearity of the inner product (not generally present for 
the semi-inner product, see [1,4]) 'and orthogonality in H. 

We recall that an operator A is accretive if Re (Ax, x ) & 0 for all x^D(A). 

D e f i n i t i o n . 

. Re(^x, x) \(Ax,x)| , r n , .. . 

T h e o r e m . cosRA = 0 for all accretive unbounded operators A. 

P r o o f . If Re (Ax, x) is bounded above uniformly, cosv4=0 immediately 
by the unboundedness of A; therefore we may assume that there exists a sequence 
{"J,ll"nll = l> Let »„ = Iniin + £ A where f?„ = [Re (Aun, M„)]~ot, 
4 = (1 — ril)*, and v„£D(A), ||f„|| = l ; v„ will be specifically chosen 
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later. Then for all sufficiently large n, if \\Av„[\ is uniformly bounded, one has by 
the inverse triangle inequality: 

(1) = 
MwJI • | K | | 

. J t l Re (Avn, V„) + c„i]n Re (Aun, un)+rjn£,„ Re (Au„, v„) + ¡fn Re (Au n , un) = 

• X = (NI+N2+N3+NA)/D, 

with the denominator D -»°o, since |£„*—77J1, and ¡|/fwJ-[Re (Au„, M,,)]-*-*00 

for 0 < a < l ; the latter may be seen as follows. Let ||w„|| = 1, a < 1, and 
Re (Aun, u„) — T h e n by SCHWARZ'S inequality one has ||^i<„||2-[Re (Au„, u„)]~2* 
^ [ R e (Aun, u„)]2~2x7*00• 

Let us now consider the four terms 'NJD separately. If ||/4y„|| is uniformly 
bounded, clearly (by SCHWARZ'S inequality) NJD->-0 and N2-*0. Also, IV4 = 1 
if a = 1/2, -»0if a > 1/2; thus (NT +N2 -FN^-D'1^ for 1 / 2 i a < 1. Therefore 
if |iV3| is uniformly bounded, 7?(iv„)—0 in (1). Now, if there exists at least one 
nontrivial vector v £ D(A) D D(A*) (let it have norm = 1), then taking vn =v, \\Avn\\ 
is obviously uniformly bounded, and 1X̂ 1 = »/„<![„ |Re(t/n, A*vn)\ s l|4*i>||- If D(A) 
nz>(^[*) = {0}, we may proceed as follows. Select x,y^D(A),\\x\\ = \\y\\ = \, 
(x, = and let v„ = x„x+P„y, |a„|2+ \Pn\2 — 1. Now choose a„, /?„ so that 
(v„, Aun) = 0; that this can always be done is assured by taking a„ and J3„ f rom the 
solutions of the equation <xn(x, Aua) + /?„(>>, Au„) = 0. Then ||t;n|| = 1, l l^wj - || Ax|| + 
+ II4HI, yV3=0, and R(wH)T0. 

One may obtain the following stronger result. 

C o r o l l a r y . | cos \A=0 for all unbounded operators. 

P r o o f . Replace ReiAxx, x2) by \(Ax1,x2)\ everywhere in the above. 
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