On the cosine of unbounded operators

By KARL GUSTAFSON*) and BRUNO ZWAHLEN in Geneva (Swrtzerland)

The concept of the cosine cosgA of an accretive linear operator A is a useful
parameter in determining when the product of two accretive operators is itself
accretive (see [2]). To be (nontrivially) -applicable in that context, it is necessary_
that the cosine be strictly positive, which-is always the case for strongly accretive -
‘bounded operators. The object of the present note is to show that cosgA =0 for
_ all unbounded- accretive operators. 4. This fact seems mterestmg since it serves
to distinguish’ geometrlcally the topologrcal notions of boundedness and unbounded-
ness for strongly- accretive operators.

We restrict ourselves to (real or complex separable or non—separable) pre-
Hilbert spaces H and to unbounded accretive operators 4. It i is not necessary that 4
be closed or densely defined, and no completeness properties for H are needed;
however, it should be noted that when H is a Hilbert space and D(A), the domain
of A4, is dense, then the accretiveness of A implies that 4-is “closeable (see [3, p.
268]) Our demonstration does not immediately extend to Banach spaces because -
we make use of both bilinearity of the inner product (not generally’ present for
- the semi-inner product, see [1, 4]) and orthogonality in" H.

We recall that an operator 4 is accretive if Re (4x, x)=0 for all x€D(A).

- Definition.
Re(Ax, x) inf [(Ax, x)|
| Ax] - llx] * Cx [l Ax) -l

3 Theorem cosgd =0 for all accretive unbounded operators A.

cosgd = 1nf |cos|A (xeD(4), Ax=0)."

Proof. If Re (4x, x) is  bounded abovc umformly, cosA 0 1mmed1ately
by the unboundedness of A; therefore we may assume that there €xists a sequence
{0, 1l =1, Re(tfy; ) ~so. " Let iv, =, + &, where 7, =[Re (Au,, u)]"%
&=0—n3)t 1=a<1, and T, ED(A), ol =1; v,, will be specifically chosen

-
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later. Then for all sufficiently large #, if lIAu | is umform]y bounded one has by
the inverse triangle inequality: :

o | _ Re(ww) _
(1) . R(W,,)_ “A‘vn"f ”wn“ -

€2 RE (v, 4) + Eulla Re (A0, 4 1,Ey Re (Auty, v,) + 12 Re (Aty, ) _
= T Tl REDI RN

(Nl +Nz + N3+ N,)/D,

with the denommator D —o, since ]C n,,l—»l and [|Au,- [Re (4u,, u,,)]‘“—»oo
for O<a<1; the latter may be seen as follows. Let fu, il =1, x<1, and
Re'(Au,, u,) ~<=. Then by SCHWARZ’S mequallty one has || 4u,|?- [Re (4u,, u,)]~%*
=[Re (Auy, u,)]2~2* ~ oo,

.. Let us now consider the four terms 'N,/D separately. If nAu,,n is umformly
bounded clearly (by SCHWARZ’s mequallty) N,/D -0 and N, 0. Also, N,=1
if a=1/2, Nj—>0if a=1/2; thus(N; +N,+ N,)-D~! >0for 1/2=a<1. Therefore
if |N,] is uniformly bounded, R(w,)—0 in (1). Now, if there exists at least one
nontrivial vector ‘v € D(4) N D(4*) (let it have norm =1); then taking v, =v, | 4v,)
is obviously uniformly. bounded, and (N, =7,¢, Re(u,, A*v v)| =4%0||l. If D(A4)
ND(4*)={0}, - we may proceed as follows. Select x, y€D(A), x| =lyl=1,
(x, »)=0, and let v,=ox+p,y, [0 [2+]8.2=1. Now choose a,, §, so that
(Uny Au,)=0; that this can always be dopne is assured by taking o, and B, from the
solutlons of the equation «;,(x, Au,) i ﬁ,,(y, Au,)=0. Then llv,ll =1, | 4oyl = [ 4[| +--
+l4yl, N3 0, and R(w,,)—»O : : : .

One may obtain the followmg stronger result

Corollary. |[cos|d=0 for all unbowiided operators.

"Proof. Replace Re (4x,, x;) by [(4x,, x,)| everywhere in the above.
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