
On the /"-summation of orthogonal series 
By F E R E N C MÓRICZ in Szeged 

Introduction 

Let {(pn(x)}r be an arbitrary orthonormal system (in abbreviation "ONS") 
in [0, 1]. We shall consider series 

(1) 2 cnq>n(x) 
N=L 

with real coefficients, {c„}£/2. By the Riesz—Fischer theorem, (1) converges in. 
the mean to a square integrable function fix). 

Let B be the class of those {c„}T for which (1) converges almost everywhere 
(in abbreviation "a.e.") for every ONS in [0, 1]. (The set of divergence points may 
depend on the system {<p„(x}}.) TANDORI [3] proved the following 

T h e o r e m . For any sequence c = {c„}j° of real numbers set 

i 
I{cl, ..., cN) = sup f( max \c¡(p¡(x) + •••+cJ<pJ(x)|)2 dx, 

o i simjmN 

the supremum being taken over all ONS in [0, 1]; furthermore, define 

||cj| = lim/%(<:„...,<*) 
N—OO 

We have c£B if and only if | |c||<°°.'i? is a Banach space with respect to the usual 
vector operations and the norm ||c||. 

The aim of this paper is to extend this result to T-summability instead of 
convergence. More exactly, let T=(aik)~k= { be a double infinite matrix of real 
numbers satisfying the conditions 

(2) lima J4 = 0 (k = 1 , 2 , . . . ) , 
i—eo 

(3) lim 2 a¡k = 1 . 
i — <x> k = 1 

4 A • . 
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and 

(4) 

where A' is a positive constant. In the sequel, we use K, Ki, K2, ... to denote positive 
constants. Set 

oo 
An = Z^ik (» = 1» 2, ...). 

k = n 

We denote by sk(x) the &th partial sum of (1). The series (1) is called T-summable 
at the point x£[0, 1] if 

OO CO 

>/(*) = 2 aik*k0) = 2 Aincnq>n(x) k=l n=1 
exists for all and 

lim /,-(*) = f ( x ) . 
oo . 

Let B(T) be the class of those {c„}r for which (1) is r-summable a.e. for every 
ONS in [0, 1]. (The set, in the points of which (1) is not T-summable, depends on 
the system {q>n(x)}.) We note that if (1) is r-summable a.e. for every ONS in [0, 1], 
then" necessarily {c„}£/2. For example, the Rademacher series 2 c n r n ( x ) is not 
T-summable when Z c l = (See ZYGMUND [ 5 ] . ) Hence we infer that B(T)Ql2. 

Our principal result is the following 

T h e o r e m 1. Let T be a matrix satisfying conditions (2), (3) and (4). For any 
sequence c = {cn}r; of real numbers set 

I(T, c, N) = s u p f ( m a x \tt(x)\)2dx, 2) . 

0 lgiSiV 

the supremum being taken over all ONS in [0, I]-, furthermore, define 

(5) | [c | | r= \imV^T,t,N) 

We have c € 5(7") if and only if | | t | | r
< 0 0 - B(T) is a Banach space with respect to the 

usual vector operations and the norm ||c]|r. 

In a number of important special cases such as (C, a)-summability or (R, ).„, 1)-
summability (see ALEXITS [1], p. 139) there exists an increasing sequence N = {«i} 

0 We note that the conditions (2)—(4) are necessary and sufficient for the permanence of the 
7'-summation. (See Z Y G M U N D [4], p. 7 4 . ) 

2) This is evidently a non-decreasing function of N. 

2 iai*i — K ( / = 1,2, :..), !) 
k= 1 
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of natural numbers such that, under c<E(2, the a.e. r-summability of (1) for every 
ONS is equivalent to the a.e. convergence of the sequence of the «¡th partial sums 
of (1). In this special case, we have B(T)=£(Tn), where T„ is defined as follows: 
for every / put a¡ = 1 and aik = 0 if k n¡; then our Theorem 1 includes Theorem II 
of TANDORI [3] as a particular case. We note that, as MENCHOFF [2] showed, there 
exists a matrix T with (2), (3) and (4) such that for any increasing sequence n of 
natural numbers we have B{T) B(Ttt). 

The following theorems are the extensions of those of TANDORI that can 
also be found in his cited paper. 

We say that (1) is "boundedly" T-summable if 
(i) it is T-summable a.e. in [0, 1]; 
(ii) the T-means t¡(x) are majorized by some square integrable function, the 

square integral of which has a bound depending only on the sequence c of coefficients. 

T h e o r e m 2 . The a.e. T-swnmability of the series (1) for every ONS is equivalent 
to its bounded T-summability for every ONS in [0, 1]. 

The following three theorems contain assertions concerning some properties 
of the norm ||c||T and of the class B(T). 

T h e o r e m 3. Let c = {c„}f and b = {d„}7 be two sequences of real numbers 
with \cn\^\dn\ ( « = 1 , 2 , •••)• Ifb£B(T) then c£B(T) and. | | t||TS | |b| |T . 

T h e o r e m 4. Let cm = {c,„„}„" , (m= 1,2, •••) be such that, for every fixed 
n, c„m is a decreasing sequence in m and tends to 0. Suppose, moreover, that | | c 1 | | r < 
Then | |cj | . r — 0 (m - o=). 

T h e o rem 5. B(T) is separable. 

Finally we note, without any proof, that Theorem 1 remains valid if (5) is 
replaced by 

||c||W = lim/p
1/"(r,c,iV) (1S/>S2), 

JV-oo 
where 

i 
I„(T, c, N) = sup f( max \ti(x)\)pdx, 

0 ISiSJV 

the supremum being taken over all ONS in [0,1]. 

4* 
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§1. Lemmas 

The proofs of the theorems depend on several lemmas. First, let us introduce 
the quantity 

1 
J(c, M, AO = J(T, c, M, N) = sup f( max | / , . (x)- ; , (x) |)2dx = 

M Si < j ^ N 

\2 

= s u p f m a x 2 " (Aj„-Ain)c„<p„(x) 
0 | B=1 

dx, 

where M and N denote natural numbers with M<N, and the supremum is taken 
over all ONS in [0, 1]. Sometimes, if it does not cause any misunderstanding, instead 
of I(T, t, AO, ||c||r and B(T) we shall write /(c, N), ||c|| and B, respectively. It is 
obvious that 

(6) . ~I(c,N)~I(c,M)^J(c,M,N)s4I(c,N). 

In the sequel we shall work with the projections P^, P% and P* defined as 
follows: for any given c = {c„}j° we denote by Pflc the sequence that comes from 
c by replacing the first n — 1 components of c with 0, that is P(1c = 
= {0, •••, 0, c^, c„+ 1 , ••••}; similarly, P\ = {c1, • ••, cv, 0, 0, •••}; and P;c = P„Pvc = 

In the following lemmas we always suppose that c £/2 . 

L e m m a 1. Let e be a positive real number. Then there exists a natural number 
N0=Ms) such that 

(7) I{t,N)±(\-e) 2cl-e 
n= 1 

holds for every N^N0; furthermore, for every natural number N and v, we have 

(8) / ( r . ' c , i V ) s ^ [ i l c 1 1 | j 2 . -

P r o o f . To prove (7) we start with the relations 

i „ 
(9) I(c,N)s ftS(x)dx = 2 A2,nc2„. 

o "=1 

Because c € J2 we can fix the natural number v0 = v0(s) such that 

oo 
2 c»<e-
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By virtue of (2) and (3), there exists a.natural number N0=N0(s) such that for every 
I ̂  v0 we have 

\A2
m-l\=S 2 

U = i 
By (9) we get 

vo 

2 aNk\ -1 + 2 LU £ if NïêN0. 

7(c, N) s (1 - e) 2 c* S (1 - e) \ 2 cl - e\ if N^N0. 

n= 1 Vn=l ) 

As to (8), it is sufficient to consider the following inequality: 
max 
1 SiSJV 

2 Ain Cn(Pn(x) ^ K2 2 K<Pn(x)\. 

Here we took (4) into consideration. 
The proof of Lemma 1 is complete. 

L e m m a 2. Let X, pi, v and N be natural numbers,- Then we have 

I(P?c,N) + I(P; + ic,N)^I<-Pit,N), 
in particular 

7(Pvc, N) s /(c, N). 

The proof of Lemma 2 is analogous to that of Lemma I V of TANDORI [3]. 

L e m m a 3. Let M and N be natural numbers, M<N, and let e be a positive 
real number. Then there exists a natural number v0 = v0 (M, N, e) such that 

(10) J(Pv+1c, M,N) s e, 
and 

J(Pvc,M,N)mJ(c,M,N)-s 

hold for every v ̂  v0 . The similar assertions concerning 7(c, N) are also valid. 
P r o o f . It is sufficient to prove (10), as the second inequality is a simple 

consequence of (10), e.g. using the inequality (a + b)2 g f l 2 — 2 \a\ |6|. Let us 
consider an arbitrary ONS {<?„(:*•)} in [0, 1]. It is clear that 

max 
MSi<jsN 

2 {Ajn-Ai„)cnq>n{x) 
n=v+ 1 

2 N ( ~ Y 
s 4 2 \ 2 AinCn<Pn(x)\ . 

i = M Vn = v+1 ) 

Integrating over [0, 1] term by term, on account of (4) we get 

/ max 2 (Aj„-Ain)c„(pn(x) 
n=v + l 

dx s 4(N-M+ \)K2 2 c„2<e, 
n=v+ 1 

if v is large enough, since c £l 2 . Since this estimate is valid for every ONS in [0, 1], 
we obtain (10). 
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This finishes the proof of Lemma 3. 

L e m m a 4. Let n be a natural number and let s be a positive real number. Then 
there exists. M0 — M0(ji, s) such that 

(11) 
and 

J(P"c,M,N) sá e, 

1 c. M, N) s J(c, M, N) -e 
hold whenever M0^McN. 

P r o o f . It is also sufficient to prove (11). Let us consider an arbitrary ONS 
\(p„(x)} in [0, 1]. By a simple calculation we get 

f I max 
0 \MSi<jSN 

(x) dx r~-

( max \AJn-Ain\\ /'{ 2 \cn(pa(x)\ dx ^ ( sup \AJn-Ain\y i 2 |c„|) • 
(MSKjSN J o V»=l \M^i<j ) U=1 J 

By virtue of (2) and (3), there exists a natural number M0 such that for every n S / i 
we have 

u r „ \2 
(Aj„ - Ain)2 :5 4 { [ | aJk- l) + | j j aik -

whenever M0 ^ i < j, whence 

1| + [ 2 ajk\ + ) 
i Kl 

«= 1 

/ max 
o 

2(Aj"-Ain)Cn(Pn(x) dx s £ if M 0 s M < i V . 

Since this is valid for every ONS in [0, 1], (11) follows. 
Thus the proof is complete. 

L e m m a 5. The inequality 

/'¿(c + 5, N) g /*4(c, AO + /'/2(<5, N) 
holds. 

L e m m a 6. Let L, M and N be natural numbers, L<M<N. Then the 
inequalities 

and 

hold. 

/'/2(c, L, N) = /Vi(c, L, M)+JK(c, M, N), 

I* (c, N) fh(c, M) + (c, M, N) 

The proofs of Lemma 5 and Lemma 6 are similar to that of Lemma II of 
TANDORI [3]. 
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L e m m a 7. Let v and N be natural numbers. Then I(PVc, N) is a continuous 
function of the coefficients c„. 

P r o o f . This is an immediate consequence of Lemma 1 and Lemma 5. 

L e m m a 8. Let M\ and /V, be natural numbers, A/, < N , , and let s be a positive 
real number. Then there exists a natural number M0 = MQ(M{,Nl,e)>Nl such that 

J(C, M , ,Nt) + J(c, M2, N2) =g J{C, M , , N2) + e, 

whenever M0 s M2 < N2. 

P r o o f . By virtue of Lemma 3 there exists a natural number v0 = v ^ A / j , Nlf s) 
such that 

J(Pvoc, Mu A^j) s J(c, Mx, A^,) — 

According to Lemma 4 there exists a natural number M 0 = M 0 ( v 0 , e) = 
= M0{MY,Nl,e) such that 

J(PV0+ic,M2,N2)^J(c,M2,N2)-j, 

whenever M0 == M2 < N2. Thus there exist ONS {<?„(*)}10 and {^n(x)}^0+l in [0, 1] 
for which 

f I max 

(12) 

f 1 max 
0 [miSKJSNI 

Set, for n— 1,2, ..., v0, 

2 (Ajn ~ Ain)c„ <pn(x) 
n= 1 

2 (Aj„-A^c„\l/n(x) 

dx^J(c, M^NJ--, 

n= V0+ 1 
dx S J(c, M2, N2) -

X„(x) = |/2 (pn(2x) if O s ^ S y , and *„(*) = 0 otherwise; 

and, for n = v 0 + 1, v0 + 2 , . . . , 
1 

Xn(x) = f^ \j/„{2x — 1) if arid /„(x) = 0 otherwise. 

It is obvious that {x„(.x)}r is an ONS in [0, 1], and it follows from (12) that 

J(c, My, NJ + J(c, M2, N2) - e s 

max 
0 

4- f max 
0 \ M l S i < j 

2 (Ajn~ A,„)cn(pn(x) dx + 

iNz 
2 (AJn- Ain)cnipn(x) 

n= VO+ 1 
dx = 
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= 2 f I max 
0 \MlSi<jSNt 

2 (AJn-Ain)cn(pn(2x) n= 1 
dx + 

+ 2 f í ma> 
i/2 KMimKj 

f max 
0 lM,s.<ja 

•JV2 
2 04 — A ,„) c„ij/„ (2x — 1 ) 

n = VO + 1 
dx S 

2" O 4 ; * - A „ K / „ ( x ) ¿x s J(c,Mi,N2), 

which concludes the proof. 
L e m m a 9. Let c and b be such that | c j ^ \d„\ (« = 1,2, •••)• Then for every 

N we have 
J(c, N) =s / (b, N). . 

The proof can be carried out exactly in the same way as that of Lemma V of 
TANDORI [3]. 

L e m m a 10. Let c be such that ||c|| Then there exists an increasing sequence 
{/Vr}o of integers, N0 = l, with the following properties: for every ONS {<p„(x)} 
in [0, 1] we have 

(13) 

and, moreover, 

(14) 

2 / M x ) - / ( x ) ) 2 < / * < ~ , 3 > 

P r o o f . First we shall choose an increasing sequence {4}r of natural numbers 
for which 

(15) 2 Z ( A i k , n - i ) 2 c " 2 ^ ~ . 
k = 1 fl=l 

||c|| < » implies, using Lemma 1, c£ / 2 . Thus there exist two sequences Vi < v2-
and i1 < i2 < • • • of natural numbers such that 

9 c2 — • — Ik > 
n = v f c + l 

and for every making use of (2) and (3), 

2 « w - i i=i 
VFC 1 

+ (fc= 1,2,...). 

3) / ( x ) admits an expansion convergent in the mean: / ( * ) = Z cnq>n(x). 
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By (4) we get 
oo Vk 00 | vk 00 . ' 

2(Ak,n-\)2c2
n= 2 + 2 — 2 c2 + ^K2 2 = 

n=l n=l n-Vit+1 n= I n=vic+1 

whence (15) follows. 
For the sake of brevity we write J(M, N) instead of J(c, M, N) in the remain-

ing part of the proof. Set N0 = 1 and Nt = il. By Lemma 8 we can select an 
index N2 = ikl with k1> \ such that 

whenever N2Sk<l. In particular, replacing k by N2 and Iby N3 = ikl + l , we obtain 

J(1, NJ + J(N2, N3) =5 7(1, N3) + f • 

Let us repeat the above argument. We get that there exists an index N4. = ikl with-
k 2 > k i + 1 such that ' 

whenever and in particular 

J(], N3) + J(N4, N5) S J{\, Ns) + i 

with N5 = ikj+l. Continuing this procedure we obtain an infinite sequence 
ATj < JV2 < •.. of indices such that we have 

(16) J(l,N2r_l) + J ( k , l ) ^ J ( l , l ) + ^ , 

whenever l > k ^ N 2 r = ikr ( ik r>ik r_ l + i), and in particular 

(17) J(UN2r_1) + J(N2r,N2r+l)^J(\,N2r+i) + ^ , 

where N2r+, = 4r+1• 
Let Q be a natural number. Let us consider the inequalities (17) in turn for 

> = 1 , 2 , •••, g, and add them. Then we get 

r = l r = l r = 1 
whence 

(18) ¿J(N2r,N2r+i)sJ(l,N2l+l)+l (g= 1 ,2 , . . . ) . 
r = 0 

By (16), putting k = N2r+1 and l = N2r+2, we obtain 

(19) J(l,N2r_t) + J(N2r+1,N2r+2)*J(l,N2r+2)+± (r = 1 ,2 , . . . ) . • 
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Let us consider the inequality (19) for every r= 1,2, •••, g. By adding them, and 
using the fact that / (1, N) is a non-decreasing function of N, we get 

a 
2 

r= 1 
2J(hN2r+2) + \ S 2 J ( 1 , ^ 2 , - 1 ) + 2J{N2r+x,N2r+2) S 

r = l r = l • 

¿ • / ( l , W 2 r _ 2 ) + i j ( N 2 r + l , N 2 r + 2 ) , 
r= 1 

therefore, we have 

<20) i j ( N 2 r . l t Nlr) s 7(1, iV2e) + / ( l , tf2(?+2) + 1. 
r = l 

Combining the results (18) and (20), we obtain 

• + 12/(c, A r
2 o + 2) + 2. 

r= 1 i 

As lldl < we get (14). Since {/V,.} a subsequence of (13) is also satisfied. 
The proof of Lemma 10 is complete. 

L e m m a 11. Let M and N be natural numbers, M T h e r e exists an ONS 
{&n(x)}T of step functions in [0, 1] and an interval £^[0,-]] having the following 
properties: 

«and 

max 
MSi< jsiv 

2(AJn~Ain)cn\l/„(x) 2 if x£E, 

\E\ S Kt min / (c , M, iV)j • 
P r o o f . According to the definition of J there exists an ONS {<?„(*)}" in 

;[0, 1] such that 

/ max 
0 (.MSi<jSAT 

2 (Aj ii ~~A in) 
1 

d x ^ j J(c, M, N). 

By virtue of Lemma 3 there exists a natural number v0 such that 

<21) / max 
0 I M S U J S I V 

2(Aj*-Ain)cn<Pn(x) 
n= 1 

dx s jJ(c,M,N). 

Let s be an arbitrary positive real number, £ < 1. We consider a system {x„(x)}i° 
of step functions for which 

I 

J{<Pn(x)-Xn(.x)fdx S £2 (« = 1,2, . . . , v 0 ) . 

\E\ denotes the Lebesgue measure of the set E. 
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Set 

and 

«•In f Xi(x)Xn(x) dx ( l , n = 1 , 2 , . . . , v0) , 

n-l 
nn= 2 K I + 2 I««»! (« = 1 , 2 , . . . , v0). 

¡=1 l=n+1 

We get by a simple calculation that 

f max 
5 \Mmi<j^N 

(22) 

a n d 

(23) f I max 
S ( w s . c j s i v 

2 (Aj„- Ain)cnxn(x) 

2(Ajn-Ain)cn 1. 
n = i Y<*nn + rin 

dx ë J J(c, M, N), 

Xn(x) 
1 

dx J( c, M, N)> 
10 

provided e is small enough 5). 
Now we continue x„(x) on [0, 2] so that we divide (1, 2] into as many equal 

parts as there exist pairs of numbers /, n with 1 === /, n zs Vq , I ̂  n. We denote the 
single subintervals by /.„, and then define for x £ ( l , 2 ] the values of the function 
yn(x) (w ^ v0) as follows: 

„ (V\ - \ /ivo(v0— 1) x£lni> 
Xn\x) — i 

I — Fiv 0 (v 0 — 1) |a,„| sign aln x£I,„ (/ = 1, 2, ..., v0; l^n). 

The functions %„(x) are orthogonal to each other in [0,2] since for l ^ n 
2 1 2 1 

fXi(x)Xn(x)dx = f + / = / + / + / = a , „ - K I signa,„ = 0. 
0 1 0 /[„ . /„i 

Furthermore, we have 

2 

Setting 

f Xn (x) dx = f Xn(x)dx+ 2 KI + 2 Kl = + '/n • ^ i=i i = n+i 

-Xn(x), 
fann + ln 

we get an ONS of step functions in [0, 2], and from (22) and (23) we obtain 

(24) f ( max 2 (AJn-Ain)c„xn(x) 

5) To show (22), we can, for example, use the inequality (a + b)2^a2 — 2\a\\b\, and to show 
<23), we make use of another inequality |l - l / ^ l i f a>K2, where — 
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Let us consider the step function 

S(x) = max 
Msi< jSN 

2 (Ajn A ill) Cn ~/.n(X) 
n = l 

We can divide [0, 2] into a finite number of subintervals Jx, J2, -••-, Jr such that S(x) 
has a constant value we on each subinterval Je (q = 1, 2, • ••, r). Set 

' ¿we
2|/e| = A. • 

e-1 

Without loss of generality, we may assume that A s 2. Putting 

1 « Mo = 0, UQ = — 2 wl\J„\ ( 0 = 1 , 2 , . . . , / - ) , . 
' a ' 

and 

<Pn(x) = 
w (•*-««)+ 2 1-41 if X^[ue,ug+1) 

l <r = i ) 
= 0, 1, . . . , / • - ! ) , 

.0 otherwise in [0, 1], 

we can see that {^„(x)}? is an ONS in [0, 1]. Set E=[0, ur). It is clear that E<g [0, {], 
and by virtue of (24) 

\E\ m i n j y , ~ J ( c , M , N ) ^ . 

On account of the definition of the functions <pn(x), we have 

(25) max 
Msi<Ji iV 

vo 
2(Ajn-Ain)c„(pn(x) 
1=1 

S 2 if xiE. 

Since the functions <pn(x) with n S v0 identically vanish outside [0, we can 
give an ONS {^„(x)}" of step functions in [0, 1] in a trivial manner such that we have 
\j/„(x) = cpn(x) for « S v 0 , and i]/„(x) = 0 if x f [ 0 , for every n^v0 + l. This does 
not affect the inequality (25), and concludes the proof of Lemma 11. 

§2. Proofs of Theorem 1 and Theorem 2 

P r o o f of T h e o r e m 1. (A) Sufficiency. Assume that ||e||<«>. By virtue of 
Lemma 10 there exists an increasing sequence {Nr} of natural numbers such that 
both (13) and (14) are convergent. Applying B. LEVI'S theorem, we get on the one 
hand that the subsequence {¿¡vr(x)} converges a.e., on the other hand that 

<5r(x) = max | i ( x ) —/¡(x)| — 0 (/-—°=). 
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It is obvious that for , </? <7Vr 

\t„(x)-tNXx)\^Sr(x)~0 (r-co), 

and the proof of the sufficiency is complete. 
In the course of this proof we have obtained the following result: if there exists 

an increasing sequence {Nr} of integers such that both the subsequence {/lVr(.v)} is 
convergent a.e. and 

r— 1 

holds, then the series (1) is T-summable a.e. 
(B) Necessity. Suppose | |c | |=°°. Using Lemma 6, we get that for any fixed 

natural number M 
(26) lim J(c, M, N) ='« 

N-CO 

holds. We shall define by induction two sequences 1 = Mx < Nx < M2 < Nz < • • • 
and 0 = v 1 < v 2 < — of integers,.depending only on T and c, such that 

(27) J(t,Mr,Nr)^l ( r = 1 ,2 , . . . ) , 

(28) 2 J { P v ' t , M r , N r ) ^ < ~ , 
r = l 

and 

(29) 2 ^ v r + 1 + i C , M r , i V r ) < -
r = l 

hold. 

First let r—l. By virtue of (26) there exists a natural number A^ for which 

Applying Lemma 3, there exists another natural number v2 such that 

Now rS1 being arbitrary, we assume that Mg, Ne, v e + 1 with g = l , 2, •••,/•—1 
are already defined. According to Lemma 4 there exists a natural number M r>~N r^.1 

such that for every N>Mr we have 

(30) J ( P : R C , M R , N ) ^ ~ . 

By (26) we can choose a natural number Nr>Mr such that 

J{t,Mr,Nr)^\. 
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(30) holds if N is replaced by Nr in it. Finally using Lemma 3, we obtain a natural 
number v r + 1 for which 

J(PVr+1 + lc,Mr,Nr) s I . 

Thus Mr, Nr and v r + 1 will be defined by induction for every r & l in such a manner 
that the relations (27),.(28) and (29) will be satisfied. 

After these preliminaries, we begin with applying Lemma 11 by choosing 
subsequently Mr and Nr (/• = !, 2, •••) (instead of M and N). Denote by {iAir)(^)}r 
the corresponding ONS of step functions in [0, 1] and by Er (r = 1,2, •••) the 
corresponding intervals in the sense of Lemma 11. That is, for every e g 1 we have 
the following properties: 
(31) max \t^(x)~t}r\x)\ s 2 

in the points of the interval Er ^ [0, with 

i 

2.' " "rJ t 2 

1 I K 
(32) \Er | S Kt min J( c, Mr,Nr)\- 1 

where tfr)(x) denotes the z'th T-mean of the series Xc„i//ll
r,(x). 

We are going to define a system {$„(x)}r of orthonormal step functions in 
[0, 1], and a stochastically independent sequence of simple sets 6) having 
the following properties: for every x £ F r there exists a point y€_Er for which 

(33) max 

and 

2 (Aj„ Ain) n-Vr+ 1 
= max 2 (A]n-Ain)cnx!f^(y) 

n = V r + 1 

(34) |F , | -= |E r | ' ( » •= 1,2,....). 

The construction will be accomplished by recurrence with respect to r. First, 
let r = 1. Writing 

= • № ( * ) (« = L 2, ..., v2), 
and 

we can see that (33) and (34) are satisfied. 
Now we suppose that all the orthonormal step functions (Pn(x) with 

« = 1,2, •••, vr and the stochastically independent simple sets Fe with 
e = 1, 2, •••,r— 1 are already determined and satisfy (33) and (34). Then we can 
divide [0,1] into a finite number of subintervals Ilt / 2 , •••, IQ, in which every function 
<t>„(x) (n^vr) remains constant and every simple set Fe (g^r — 1) is the union 

6) A set F is called simple if it is the union of finitely.many non-overlapping intervals. 
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of a finite number of Jq (1 Let I'q, denote the two halves of the interval 
I , r Now let us put for v r < « S v r + 1 

and 
9=1 5=1 

Fr= u (£,(/;) u£r (/;)), 
4= I 

where / ( / ; .v) denotes the function arising from f(x) as the result of the linear trans-
formation of the interval [0, 1] into its subinterval I=[u, v], i.e. 

m * ) = 
f\ 

x — u 
v — u 

0 

if x£ («, v), 

otherwise; 

furthermore, let E{I) denote the image set of E arising from this transformation. 
It is obvious that the step functions <P„(x) with n = 1, 2, •••, v r + 1 are orthonormal,. 
the simple sets Fe with g = 1, 2, r are stochastically independent, (33) holds 
for r, and 

\Fr\ = 2 o w i + \ E X Q \ ) = \E,\ 2 m + m = \Er\, 9=1 9 = 1 

i.e. (34) is also satisfied for r. Thus {$n(x)}~ and {F r)r will be given by induction. 
To finish the proof of the necessity, we have to show that the series 

(35) 2 c M x ) 

fails at almost every point .x to be T-summable. For the sake of simplicity, let us 
denote the /th T-mean of (35) by [^(x). Taking into account (33), let us consider 
the following inequality for every r ^ l 

max i r / x ) - ^ ) ! ^ max | / f ( j ) - / / r ) O O I -

— max 
Mr7Êii< jSNr 

max 
Mr^i<jmNr 

2 (AJn-Ain)cB<Pn(x) 

2 (AJn-Ain)cJP(y) 

max 
MrSi<jSN r 

max 
MrSi< j S Nr 

2 (Aj„-A,„)cn4>„(x) 
n = vr + 1 -f J 

2 {Ajn-Ain)cMr\y) 
n = Vr + 1 + 1 

where x £ F r and y£Er in the sense of (33). We show that the last four maxima 
on the right-hand side of this inequality tend to 0 as In fact, this follows 
by virtue of (28) and (29), using B. LEVI'S theorem. More precisely, there exists a set 
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G of measure zero such that for every 1] — G we have 

I I S ( m a x l ^ i x ) - r ; ( x ) n íím f m a x \tf\y) - /<"(.y)|) . 

Since the sets Fr are stochastically independent, by (32) and (34), we get 

I íím Fr| = 1. 
| r - = o I 

Thus, on account of (31), we obtain that 

I im( max \Tj(x)~ T^x)!) Sé 2 

holds whenever 
x £ Iím Fr-G, 

r-*oo 

that is, for almost every x£[0, 1]. 
The proof of the necessity is now complete. 
To accomplish the proof of Theorem 1, we have to show that the assertions 

concerning |jc|| are also fulfilled. Let us define the usual vector operations in ¿ ' a s 
follows: 

c + b .= {c
n
 + d

n
}~, <xc = {acn}r. 

It is obvious that B is a linear space. From Lemma 1 we infer 

(36) f i c n 4 / 2 s ||c|| N -
U = 1 1 n = l 

||c|| is a norm in B, for (i) |!cj| = 0 if and only if c„ = 0 for every «; (ii) ||ac|| = |a|i|c|| 
for every real number a ; (iii) |lc + b|| á ||c|| + ||b||. (i) follows from (36), (ii) is obvious, 
(iii) follows from Lemma 5. 

We prove that B is a complete space. For this purpose, let cm = {cm„}„°l t £ B 
(m = 1,2, •••) be for which 

l | c m ' - c m » | | - 0 (m', m"—<=°). 

By virtue of (36), we get for every n 
cmn^cn (m^oo). 

Let e be an arbitrary positive real number. According to the definition of the norm, 
we have 

/ ( < V - c m ~ , iV) ?s £2 (m',m" ÍÉ n(s)) 

for every N, and, by virtue of Lemma 2, for every v 

For m' fixed and m" tending to infinity, by Lemma 7, we get 
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for every v and N. Hence, applying Lemma 3, we obtain 

f(cm.-c,JV) S e2 ( m ' ^ /1(8)) : 

for every N, where c = {cn}f, and consequently 

IICm'-cII — £ - ( « ' S / i ( 8 ) ) . 

So we have, by (iii), c£B and, moreover, 

| | e m - c | | - 0 ( / » — ) , 

which was to be proved. 

This concludes the proof of Theorem 1. 

P r o o f of T h e o r e m 2. If (1) is T-summable a.e. for every ONS in [0, 1], then 
by virtue of Theorem 1, we have ||c|| < Let us consider an arbitrary ONS {<¡c„(x)} 
by [0, 1], and denote by t¡(x) the /th T-mean of (1). From Lemma 10, applying B. 
Levi's theorem, we get that the series 

r — 1 

converges a.e. Let us denote by F(x) the positive square root of the sum of this 
er It is obvious that F(x) is a square integrable function, the square integral 
of which depends only on the coefficients cn. By (14), it follows that the function 

G(x) = f ¿ ( max \tj(x)~ f.-Wn2}* 

is square integrable; its square integral depends only on the coefficients c„. Let 
be an arbitrary index with Nr_ { It is clear that 

\t,(x)\ 4 | i , ( x ) - tNr(x)\ + I / „ , ( * ) - f i x ) I + \f(x)\ 4 G(x) + Fix) + |/(.x-)|. 

This completes the proof. 

§3. Proofs of Theorems 3—5 

Theorem 3 follows immediately from Lemma 9. 

P r o o f of T h e o r e m 4. Let e be a positive real number, given in advance, 
furthermore, let {<?„(*)} be an arbitrary ONS in [0, 1]. We denote by sj,m)(x) the 
fcth partial sum of the series 

2 cmn(p„ix) 
»= i 

and by t[m)(x) the /th T-mean. By Theorem 3, HcJ implies | | tm | |<°= and so 
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cm £ 12 for every w. By the Riesz—Fischer theorem there exists a square integrable 
function fm(x) such that {4m)(*)} converges in the mean to fm(x) as k — and 
so does {í¡(m)(x)} a s /' —oo. 

Since Hcjll < by virtue of Lemma 10 there exists an increasing sequence 
{N,} of integers such that N0 = L, 

(37) 2 2 ( A s r i K - l ) 2 c?„<~ , 
r= ln=l 

and 

(38) 
r= 1 

Let us consider the following inequalities: 

l'A 
+ 

+ 
whence 

max |//»>(*)| = \ f j x ) \ + \ 2 ( f j x ) ~ t ^ ( x ) f \ 

.misN lr=i J 

| i f max 
lr=l ) i 

j( max | t W ( x ) \ y dx s 3 f J c2
mn + J 2 - l)2c2

mn + J 7 ( c m , N r _ t , JVr)| 1 

0 U a i S J V ) — 1 r = l n = l r = 1 ,1 

for every m ê l and iVsl'. By (37) and (38), we can choose the natural numbers 
g0 and v0 so that 

1 c l ^ s 2 , i 2(ANr<n-l)2c2
ln^e2, 

n = oo+'l r = g o + l n = l 

• CO QQ CO 
2 A c , , N ^ ^ N ^ ^ S 2 , 2 2 ( \ , , - l ) 2 4 s a 2 

r = eO+l r=l n = V0+l 

are satisfied. The coefficients cmn being decreasing in m for every fixed n, we obtain 

1 
J ^ max |//m)(x)|j2 dx 

HQ) ( eo Bo VO go ) 
v J • S3 2 4 + 2 2(ANr,„-ï)2cL+ 2J(cm,K-i>Nr)\ + 12e2. 

\ n = - l r = 1 n= 1 r= 1 J 

By a simple calculation we get 

eo eo eo 
(40) 2 J(cm, N,_ !, Nr) 2 2 J(PX cm, JVr_ !, Nr) + 2 2 J(Pt +1 cm, Nr_ t , Nr), 

r = 1 ' r = 1 r = 1 
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where the natural number X is fixed in such a manner that 

go go 
(41) 2 J(Px+icm,Nr_„Nr) ^ 4 2 Л Л + 1 С т , Л д s 4 ß 0 / ( P A + 1 C ! , Nea) =s e 2 . 

r = l r = 1 

Here we took Lemma 9 and Lemma 3 into consideration. 
By (39), (40) and (41), on account of Lemma 7, we get that there exists a natura! 

number such that 
l 

f ^ max \t[m,(x)\j2 dx si 16e2 (тшц(е)). 

Since {cpn{x)} is an arbitrary ONS,- thus we obtain for every N 

I(cm,N)S 16a2 '(тшЖ)), 
and consequently 

||cm|| ^ 4e (т^ц(е)), 
which is what had to be proved. 

Proof of Theorem 5. If с t h e n , according to Theorem 4, we have 

| / , v c - c ' - 0 ( v - » o ) . 

Hence the class of all the finite sequences is everywhere dense in B. Applying the 
continuity we infer that every finite sequence can be approximated, as closely as we 
wish, by a finite sequence of rational numbers. But all the finite sequences of rational 
numbers form a countable set. So we have proved that В is separable. 
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