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Introduction

Let {(,o,,(x)}1 be an arbitrary orthonormal system (ln abbreviation “ONS”)
in [0, 1]. We shall consider series -

(M . 2 -y @n(X)

with real coeﬁieients, {c.} €2, By the Riesz—Fischer theorem, (1) converges in.

" - the mean to -a square integrable function f(x).

Let B be the class of those {c, }v for which (1) converges almost everywhere
(in abbreviation “a.e. ») for every ONS in [0, 1]. (The set of divergence points may
depend on the system {¢,(x)}.) TANDORI [3] proved the following

Theorem. For any sequence ¢={c,}7 of real numbers set
Iy, ...,cp) = sup‘/'(1 max N|c @i(x)+- +cj(pj(x)|)? dx,
. sisjs .

the supremu'm‘being taken over all ONS in [0, 1]; furthermore, define

||c1| =1 lim I’/Z(cl, ces CN) (=o0).

We have ¢< B if and only if |c|| <. B is a Banach space with respect to rhe usual
vector operations and the norm Ilell.

The aim of . this paper is to extend this result to 7-summability instead of
convergence. More exactly, let T=(ay)%~1 be a double infinite matrix of real
numbers satisfying the conditions ' '

V) _ limay =0  (k=1,2,..),
3) ' lim 2 a, =1,
i+co k=
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and
@) Sl =K (=12.)"
where K is a positive constant. In the sequel, we use K, K, K, ... to denote positive

constants. Set
= Za,-k (n= 1, 2,...).

We denote by s,(x) the kth partlal sum of (1) The series (1) is called T-summable '
at the point x¢€[0, 1] if

t(x) = k;‘”; Q.S (%) = g Aincn(pn(x)

exists for all 7, and
' lim 7, (x) f().

.Let B(T) be the class of those {c,}; for which (1) is T-summable a.e. for every
ONS in [0, 1]. (The set, in the points of which (1) is not T-summable, depends on
the _system {go,,(x)}) We note that if (1) is 7-summable a.e. for every ONS in [0, 11,
then “necessarily {c,}€ 2. For example, the Rademacher series c,r,(x) is not
T-summable when >'c? = oo, (See ZYGMUND [5].) Hence we 1nfer that B(T)C 2,

‘Our principal result is the following

Theorem 1. Let T be a matrix satisfying condmons (2), (3) and (4) For any
sequence ¢= {c }n) of real numbers set

(T, ¢, N) = sup /( max |¢;(x)])? dx, )
§ 1=i=N ‘

the supremum being taken over all ONS in [0, 1]; furthermore, define

G AHCHr:\}imI‘/l(T, 6N) (=)
We have ¢ € B(T) if and only if |¢|+<oo. B(T) is a Banach space with respect to the
usual vector operations and the norm |c||r.

In a number of important special cases such as (C; o)-summability or (R, 2, 1)-
summability (see ALEXITS [1], p. 139) there exists an’increasing sequence n={n;}

" 1) We note that the conditions (2)—(4) are necessary and sufficient for the permanence .of the
T-summation. (See ZyGMUND [4], p. 74.) ' :
2) This is evidently a non-decreasing function of N.
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of natural numbers such that, under c¢/?, the a.e. T-summability of (1) for every
ONS is equivalent to the a.e. convergence of the sequence of the mth partial sums
of (1). In this special case, we have B(T)=B(T,), where T, is defined as follows:
for every i put a; ,,=1 and a, =0if k #n;; then our Theorem I includes Theorem II
of TANDORI [3] as a particular case. We note that, as MENCHOFF [2] showed, there
‘exists a matrix 7 with (2), (3) and 4 such that for any increasing sequence n of
natural numbers we bave B(T)s= B(T,). '

The following theorems are the extensions of those of TaNDORI that can
-also be found in his cited paper. ' '

We say that (1) is “boundedly” T-summable if

@) it is T-summable a.e. in [0, 1];

(ii) the T-means t,(x) are majorized by some square integrable function, the
square integral of which has a bound depending only on the sequence ¢ of coefficients.

Theorem 2. The a.e. T-summability of the series (1) for every ONS is equivalent
" to its bounded T-summability for every ONS in [0, 1].

The following three theorems contain assertions concernmg some properties
of the norm ¢/ and of the class B(T).

.Theorem 3.. Let ¢={c,}T and 0={d,)T be two sequences of real numbers
with lc,|=1d,} (n=1,2,---). If be B(T) then. ¢ € B(T) and. |ic||z=|d|lr.

Theorem 4. Let ¢,y={Cps}nz1 (m=1,2, ) be such that, for every Jixed
N, €y is a decreasing sequence in'm and tends to 0. Suppose, moreover, that ¢ ||y < oo.
Then feullr =0 (m— <o)

- Theorem 5. B(T) is separable.

Finally we note, w1thout any proof that Theorem 1 remains valid if (5) is

replaced by
el =Nllm1,3/”(T, ¢, N) (lépé2),'

where

- . 1 .
I(T,¢,N) = supf( max |£;(x)|)" dx,
0 1sisN

the supremum being taken over.all ONS in [0,1].

4*
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§1. Lemmas

The proofs of the theorems depend on several lefnmas. First, let us introduce
the quantity

1 v . .
J(e, M,N) = J(T, ¢, M, N) = sup [( max [;(x)—t;(x)[)?dx =
0 M=i<j=N .

2
] dx,

- where ‘M and 'N- denote natural numbers with A <N, and the supremum is taken
over all ONS.in [0, 1]. Sometimes, if it does not cause any misunderstanding, instead -
of KT, ¢, N), |clr and B(T) we shall write I(c, N), [|c|| and B, respectively. It is

1
= supf [ max -
g WMsi<jsN

Z.e" (Ajn - Al'n) Ch@Py (X)

n=1

"~ obvious that

© _ %I(c, N)=I(e, M) = J(c, M, N) = 4I(c, N).

In the sequel we ‘shall work -with the projections P, P and P} defined as
follows: for any given ¢={c,}7 we denote by P,c the sequence that comes from
.¢ by replacing the first u—1 components of ¢ with 0, that is Py=
={0,,0,¢,, Cup1,~+}; similarly, Pc={c;,,¢,,0,0,-}; and Pjc=P,P’c=
={0, 0, ¢, Curys 5 6, 0,0, -} (I=p=v). ST
In the following lemmas we always suppose that c¢¢/2.

- Lemma 1. Let ¢ be a positive real number. Then there exists a natural number
. Ny=Ny(e) such that

m - IeME0-p Scd-e
n=1
holds for every N =N, ; furthermore, for every natural number N and v, we have -
) ’ B . v N2 -
®) - I(T®¢, N) = K? [ > ]c,,l] .
. - . n=1.

Proof. To.prove (7) we start with the relations
© 6 N) = f R dx = 2 P
Because c€/? we can ﬁk the natural number Vo = vo(8) such that

oo
> cl<e.

n=vo+1
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By virtue of (2) and (3), there exists a natural number N0 = Ny(e) such ‘that for every

I=v, we have
2

oo 2 1 ’
k=1 k=1 .
By '(9) we get o ‘

I, Ny = (1—¢) Zo’cfé(l—e)[Zcf—s] if Nz=N,.
n=1 n=1 - '
As to (8), it is sufficient to consider the following inequality: '

ZA," Caon(x)| = K2 Z le qon(x)l

n=1

max
1=i=N

Here we took (4) into consideration.
The proof of Lemma 1 is complete

Lemma 2. Let'A, u, v and N be natural numbers A<p<v=oo, Then we have

‘ I(Pfe, NY+I(P)y(c, NYy = I(Pj¢, N),
and in particular . .
; I(PYe, N) = I, N). ' A .

The proof of Lemma 2 is analegous to- that of Lemma IV of TANDORI [3].

Lemma 3. Let M and N be natural numbers M <N, and let & be a positive
real number. Then' there exists a natural number vo—vo(M N, &) such that

a0y J(Pyy 6, M,N) = &,

and o
- JPYe, M,Ny= J(e, M,N)—¢

hold for every v=v,. The similar assertions concerning I(c, N) are also valid.

Proof. It is sufficient to prove (10), as the second inequality is -a simple
consequence of (10), e.g. using the inequality (a+b)>=a%*—2la||b|. Let us
consider an arbitrary ONS {@ ()} in [0, 1]. Tt is clear that :

2 N 2 -

n=v+1

S (Ajn - Ain) C,,(P,,(X)

na=v+1

[ max
M=i<j=N

Integrating over [0, 1] term by term, on account of (4) we get

2 ' - - A
] dx = 4(N—-M+DK?> 3 <o,

n=v+1

1
f [ max
I} Msi<jsN
~if'v is large enough, since ¢€ /2. Since this estimate is valid for every ONS in [0, 1],
we obtain (10). »

Z (A_ln in) Ca P (.X)

n=v+1
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This finishes the proof of Lemma 3.

Lemma 4. Let u be a natural number -and let ¢ be a positive real number. Then
there exists. My = My(u, &) such that
(11) J(Pte, M, N) = ¢,

and -
. J(Py16, M,N)=J(c, M, N)—¢ .

~ hold whenever My=M<N.

Pf_oof, It is also sufficient to prove (1 1); Let us consider an arbitrary ONS
{@a(2)} in [0, 1]. By a simple calculation we get

1 : PR 2
f [ max Z’ (Ajn—Ain) Cp (P,,(x)] dx =
§ \Msicjsn|n=1 : _
: 2 10, 32 : u 2
= [ ma{( lAjn_Ainl] /-[ Icn(pn(x)l] dx = ( sup IAjn;—AinIJZ [ Z lcnl] .
Msi<jsN _ § =1 M=si<j n=1

By virtue of (2) and (3), there exists a natural number M, such that for every n=pu
we have - ‘

U KR E T RER R

2 : '
]dXée if My=M=<N.

- whenever M, =i<j, whence
1
f(,mor
0 M=i<j=N

Since this is valid for every ONS in [0, 1], (11) followé.
Thus the proof is complete.

3 (A= Ai) ey 02 (%)

n=1 .

Lemma 5. The inequality

1%(c+8, N) = I"2(c, N)+1%(8, N)
holds. ) _ .
Lemma 6. Let L, M and N be natural nu_rhbers, L<M<N. Then the

" inequalities ‘ . , ’
: J%(e, L, N) = J%(c, L, M)+ J"%(¢c, M, N),
and ' g
o I'2(¢, N) = I'(¢c, M)+ J"%(c, M, N)

hold. _ ' _ .
The proofs of Lemma 5 and Lemma 6 are similar to that of Lemma II of
TANDOR! [3].
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Lemma 7. Let v and N be natural numbers. Then I(P*, N) is a continuous
Sfunction of the coefficients c,.

Proof. This is.an immediate consequence of'L_emma 1 and Lemma 5.

Lemma 8. Let M, and N, be natural numbers, M, <N, and let ¢ be a positive -
real number. Then there exists a natural number’ My=M, (M 1> Ny, &) =N, such that

J(clea l)+J(c 1‘42’]\'72)<J(c MI’N2)+8’
whenever Mog=M,<N,. ‘

Proof. By virtue of Lemma 3 there exnsts a natural number vo = vo(M1 , N, €
- such that

J(PYc, M, Ny) = J(i, Ml,Nl)—%
According to Lefnma 4 there exists a natural number’ Mono(vO, &)=
=My(M,, N, ¢) such that A
J(P\oﬂc, Mz:N2)>J(C Mz,Nz)

whenever M, = M, < N,. Thus there éxist ONS {(p,,(x)}‘l"’ and {y,(x)}x,; in [0, 1]
for which

2 ' S
]dx;J(c,Ml,Nl)—g,

1

[ max Z (A4;,— A;) 0, (x)
o Mi=i<j=N [n=
(12)

oo

2 (A= A eal,(x)

n=vo+ 1

1
f [ max
§ \Msi<jsn;

] dx = J(c, M, Nz)_~—§~-'
Sét, forn=1,2,..., v .

1

1. (%) = V2 9,(2%) if O0=x= 5 and y,(x) = 0 otherwise;
and, for n=vo+1, v0+2
1 (¥) = V2 2 (2%~ if Loxs 1, and y,(x) = 0 otherwise.

2
- It is obvious that {y,(x)}T is an ONS in [0, 1], and Vitvfollows from (12) that

Je, M, N)+J(c, M;, N))—¢e =

1 2
= f [ max Z (A4;— i,.)cn%.(x)] dx +
o M isi<j=N; |n=
. . 2 .
+f[ max Z (Ajn in)cnwn(x)] dx =
Ma=i<j=N3|n=vo+1 C
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) 2
= 2[ [ max 2 (AJH in) C" (pn(zx)) dx+
0 M151<15N1 n= .
1 ) . ) 2-
+-2f[ max | > (4, ,-,,)c,,lp,,(Zx—-l)] dx =
My=i<j=N3 |n=vo+1

2 (A, — ,..)C 1n (%)

n=

2
[ max ] dx = J(c, M]5N2),
M=si<j=N2
which concludes ‘the proof. 4
Lemma ' 9.” Let ¢ and d be such that le, |<]d| (n=1, 2 ). Then for every
N we have

1iA
O\ i

I{¢, N) = I(d, N).
The proof can bé'carriedv out-exactly in the same way as that of Lemma V of
TANDORI [3}.

Lemma 10. Let ¢ be such that llell <oo. Then there exists an increasing sequence -
{N,)s of integers, No=1, with the followmg properties: for every ONS {o.(x)}
in [0 1] we have

_ o 1 ,
13) ‘ g/mﬂrmww<%”
. r=1¢ -

and, moreover, .

(14)

"ME

(C, r—1s: r)<°°

Proof. First we shall choose an increasing sequence {z,c}1 of natural numbers
for which

(15)

|.| M3

PAC wﬁWW<%

el <o implies, using Lemma 1, ¢€12. Thus there exist two sequences v1 <V, <-
and i, <i;<-- of natural numbers such that

S d=a,
n=ve+1 2

[IA

and for every n=v,, making use of (2) and (3),
o

]Aik,n—'ll = Zaik’,—lt_—!- Z ]aik,ll = 2k (k = 1, 2, ...).
o I=1 ) =1 .

3) f(x) admits an expansion convergent in the mean: f(x):né‘lc,‘q;,.(x).
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By (4) we get

oo ’ Vic oo l Vi . oo R
; 2,2 . ’ 2 2 2 :
2 (Aik,n_ e = 2= 2% cnt+4K 2 G =
n=1 n=1 n=vg+1 ~ n=1 n=ve+1 -

whence (15) follows

For the sake of brevity we write J(M, N) instead of J(¢, M, N) in the remain-
ing part of the proof. Set Ny=1 and N,;=i,. By Lemma 8 we can select an
index ' N, =i, with k;>1 such that . ‘

J, N1)+J(k ND=J0, D+
whenever N, =k </ In particular, replacmg k by N, and /by N, —Ikl+1 , we obtain:

J(, N+, Ng)=J(, N3)+3.

+

| Let us repeat the above argument. We get that there-exists an index N,y=i,, with
ky=>k,+1 such that * . :
g J(, Ny)+J(k, D=J(1, D +4,

whenever N4§k<_l,'-é1nd in particular
J(1, Ny)+J(Ny; Ns)=J(1, Ns)+4

with  Ns=i,,,. Continuing this procedure we obtain an infinite sequence:
- Ny<N,<-- of indices such that we have

(16) : J(1, Nop )+ Ik, 1) = J(1, l)+2,,

whenever /=k=N, =i, (@ >i;_,+1), and in particular

(17) - J(L, Ny, - 1)+J(N2.-:N2r+1) = J(, N2r+1)+

where N, 44 =lkr+1.
Let ¢ be a natural number. Let us consider the inequalities (17) in turn for
r=1,2,--, 0, and add them. Then we get

27’

[ e e
_Z,IJ(I’NZ'-_—I)"- Z;J(Naner) = ;J(I’me)‘f‘l,

whence
0 .
(18) _ZJ(NZ” Napry) = J(1, Nyp ) +1 (e=12,..).

By (16), putting k=N,,,, and /= Nz,”, we obtain

1
(19) J(l N2r 1)+J(N2r+l’N2r+2) = J(l N2r+2)+ (r = 192’ )*
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Let us consider the inequality (19) for every r=1, 2, ---, . By adding them, and
using the fact that J(1, N) is a non-decreasing function of ¥, we get

2 0 ’ e
—le J(, Ny, ) +1 = ;:J(I’Nz.-—l)‘*' _ZI’J(N?r+1’N2r+2) =

- Q [ .
= _ZIIJ(I,NZr—z)‘F _Z;J(N2r+l’N2r+2)’
therefore, we have ’ ' '

e - ’ . :
(20) ZIJ(NZr—I’NZr = J(I, Nyp) +J(1, Naypyp) + 1.

Combining the results (18) and (20), we obfain

20+1 .
2 L N) = 3J(1 Nyps2)+2 = 121(@ Nigs2)+2.

As ]|c|| < oo, we get (14). Since {N,} a subsequence of {i,}, (13) is also sansﬁed
The proof of Lemma 10 is complete.

Lemma 1l. Let M and N be natural numbers, M <N. There exists an ONS
{0} of step Sfunctions in [0 1] and an interval ECIO0, 2] having the followmg
propertzes

max
Ms=si<j=N

Z (Ajn in) Cn "pn (x)

n=1

=2 if x€E, -
.and '

|E| = Klmm[1 J(c,M N)] )

-Proof. According to the definition of J there exists an ONS '{(p,‘(x)}‘{"
10, 1] such that
1 : 2

[ - max §(Aj,,—A,-,,)c,,(p,,(x) dx =

0 M=i<j=N |n=1

L e, M, vy,

0| =

By virtue of Lemma 3 there exists-a natural number vg such that

1(" Yo . 2 1

ey S| max |3 (A~ A)e,0u()|| dx = 7 I, M, N).

0 M=i<j=N |n=

Let ¢ be an arbitrary positive real number e<1. We cons1der a system {y,(x)}{°
-of step functions for which

_ f((p,,(x)—x,,(x))z dx = & n= 1,2, ey Vo).

4)'|E| denotes the Lebesgue measure of the set E.
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Set 1 . A
Gy ='_/‘Xl(x)x,,(x) dx  (Ln=1,2,...,v),

and ° _ _ ’ -

= ;511 [l +z=§1 7 ’(ﬂ ='1’ 2, ..., Vo).

We get by a simple calculation that

1 . 2
@ ([ max | "2 (4 i,.)cnxn@] dv = g I, M, N),
and ‘ . ’
n : L)
'(23) 6/ [Mi?gi(sjv nZ (A,Jn in)cn [l_m] Xn(x)] dx = 16 J((9 M N)

provided ¢ is small enough 3).

. Now we continue ¥,(x) on [0,2] so that we divide (1, 2] into as many equal
parts as there exist pairs of numbers /, n with 1=/ n=v,,In We denote the -
single subintervals by I,,, and then deﬁne for x€(1; 2] the values of the function
Znlx) (n=v,) as follows:

X (x) —_ V%VO(VO— 1) [ulnl - . XEIH!’
V% vO(VO—l)]aln] Sig]’l o478 XEIM (I: 1 2 ’vO’ l#n)

The functions y,(x) are orthogonal to each other in [0, 2] since for I =0

fXJ(x)Xn(x)dx = [ +f = f + ./+ f = aln“]%n] SignAalnlz 0.

0 nip - I

Furthermore, we have

2 . n—1 vo
[B@dx = [Zdxt 3 anl+ S (ol =t
0 0 =1 I=n+1
Setting : :

() = 1n (%),

I S
Vallll + r’ll

we get an ONS of step functions in [0, 2], and from (22) and (23) we obtain

2
] dx = ——J(c,M N).

Z (A]n in)ann(x) = 32

0 M51<j5N n=

24) /2 [ max

5) To show (22), we can, for example, use the inequality (¢+b)2=a?—- 2|a||b[, and to show
(23), we make use of another inequality Il - l/}/l -{-_a‘élal if a=K,, where 7—1<K2<0
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Let us consider the step function

S(X) .max Z (A]n in) Cy Zn (X) .

Msi<j=N |n=

We can divide [0, 2] into a finite number of subintervals J 1 das s d, such that S(x)
" has a constant value w, on each subinterval J, (¢=1,2,---,r). Set

2 Wg IJQI =A.
e=1

Without loss of generality, we may assume that 4 =2. Putting

S - »
uo=0, u,= %Z vZ|J,] e=1,2,...,r),
and ' B 4 v
2 _( 4 e o - o
Xn w2 - g)+'2 'Jal if xE[ug:ug-(—l)
Galx) = et e
" : : (vve¢0;Q=0,l,...,r'~l), :

0 - otherwise in [0, 1],

we can see that {,(x)}{°is an ONS in [0, 1]. Set E=[0, ,). It is clear that ES[0, 4],
and by virtue of (24) ’ :

]E[ = mm[1 J(e, M, N)]

2° 32

. On account of the definition of the functions @,(x), we have

25) a " max

M=i<j=N

Z (Ajn in) Cy (ﬁn (x)

n=1

=2 if x€E. .

Since the functions @,(x) with n=v, identically vanish outside [0, 4], we can
give an ONS {i/,(x)}7 of step functions in [0, 1] in a trivial manner such that we have
V(X)) =@,(x) for n=v,, and Y, (x)=0 if x€[0, 4] for ‘every n=v,+1. This does
not affect the inequality (25), and concludes the proof of Lemma 11.

§2. Proofs of Theorem 1 and Theorem 2

Proof of Theorem 1. (A) Sufficiency. Assume that |c|| <. By virtue of
Lemma 10 there exists an increasing sequence {N,} of natural numbers such that
both (13) and (14) are convergent. Applying B. LEvr’s theorem, we get on the one
hand that the subsequence {fy(x)} converges a.e., on the other hand that

5(x) = max |(x)—4(x)|-0 (r;oo).

NpZi<j=Nesr
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It is obvious that for N,_,<n<N,
[t,(x)— ty, ()] = 8, ()0 (r—>=0),

- and the proof of the sufficiency is complete.

In the course of this proof we have obtained the following result: if there exists

- an increasing sequence {N,} of integers such that both rhe subsequence {ty| (r)} is
convergent a.e. and -

ZJ(C’ r—1» r)<°°

holds, then the series (1) is T-summable a.e.
‘ (B) Necessity. Suppose |c]| =c=. Using Lemma 6, we get that for any fixed .
natural number M
(26) : o lim (e, M, N) =

N-—oo
“holds. We shall define by induction two sequences 1=M; <N, <M, <N, <
.and 0=v, <v,<--- of integers, depending only on T and ¢, such that

@n o Je, M,,N) =1 r=1,2,..),
(28) - - S J(P¥e, M,, N,) <<,
. : r=1
and ‘
(29) | S IPy,, 16 M, Ny <o
. r=1
hold.

First let r=1. By virtue of (26) there exists a natural number N, for which
' Je, 1, N) = L.

Applying Lemma 3, there exists another natural number v, such that

J(Py, 4161, Ny) = 1

) =5
. " Nowrz1 being arbitrary, we assume that M,, N, vosy With 9=1,2,--,r—1
are already defined. According to Lemma 4 there exists a natural number M, =N,.
such that for every N =M, we have

- (30) | I M N)_zl,.

By (26) we can choose a natural number N,> M, such that

J(e M, N) = 1.
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(30) holds if N is replaced by N, in it. Finally using Lemma 3,-we obtain a natural
number v,.,; for which
‘ ' 1

= 2, .

Thus M,, N, and v, will be defined by induction for every r=1 in such a manner

that the relations (27),.(28) and (29) will be satisfied. '
After these preliminaries, we begin with applying Lemma 11 by choosing

subsequently M, and N, (r=1,2, --) (instead of M and N). Denote by {y{?(x)}7

the corresponding ONS “of step functions in [0, 1] and by E, (r=1,2,--) the

corresponding intervals in the sense of Lemma 11. That is, for every r=1 we have

the following properties:

Gy - | max 00— 1009] = 2

M,=i<j=N,

Sy, 516 M, N,

in the points of the interval E. €0, 1] with

(32 _ |E| = K, min [1 J(e, M. Nr)] = £

where #{(x) denotes the ith T-mean of the series Zcr{(x).

We are going to define a system {®,(x)}7 of orthonormal step functlons in
[0, 1], and a stochastically independent sequence {F,}; of simple sets ®) having
the following properties: for every x¢ F, there exists a point y¢E, for which

Ve 1

(33) max 2 (Ajll in) Cy dsn (x)

M,=i<j=N, n=v+

and

G4) C RI=IEl =120

S = A e O,

n= vr+1

max
AI,-51<15N,.

The construction will be accompllshed by recurrence w1th respect to r. First,
let r=1. Writing A :
. ) ‘din(x) = lpr(ll)(x) (n - 15 2) ey V2)7

=Ey,

we can see that (33) and (34) are satisfied. :

Now we suppose that all the orthonormal step functions @,(x) with
n=1,2,:.,v, and the stochastically independent simple sets F, with
¢=1,2,---,r—1 are already determined and satisfy. (33) and (34). Then we can
divide [0, 1] into a finite number of subintervals I, [,, ---, 1y, in which every function
@,(x) (n=v,) remains constant and every simple set F, (¢=r—1) is the union

and

8) A set Fis called simple if it is the union of finitely. many non-overlapping intérvals.
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of a finite number of I, (1=¢g=0). Let I, /; denote the two halves of the intervak '
I,. Now let us put for v, <n=v,,

2,09 = ZU0Ui9- 3 b,

and

- 0 @wyuea)

where f(I; x) denotes the function arising from f(x) as the result of the linear trans-
formation of the interval [0, 1] into its subinterval 7=[u, ], i.e.

- Pl vewn,
' 0 otherw1se
furthermore, let E(I) denote the image set of E arising from this transformation.
It is obvious that the step functions @,(x) with n=1,2, ---, v, ; are orthonormal,
the simple sets F, with ¢=1,2,:.,r aretstochastica]ly independent, (33) holds.
for r, and ‘ ’ '

o - 0 |
£l = 2 B0+ IE ) = E] 2 (L1+115) = IE],

i.e. (34) is also satisfied for r. Thus {&,(x)}7 and {F,}7 will be given by induction.
To finish the proof of the necessity, we have to show that the series ’

(35) S eae®

fails at almost every point x to be T-summable. For the sake of simplicity, let us.
denote the ith T-mean of (35) by [T(x). Taking into account (33), let us conmder*
the followmg inequality for every r=1

max |T;(x)—T;(x)| = max |l(')(Y)—f")(J’)|—

M, =i<j=Ny - M,y=i<j=

2”' (Ajn _Ain) Cy ¢"(X) -

n=vpyt1

max
Mp=i<j=N,

2 (Ajn— Ain)cn q)n('\‘) -

n=

— -max
M,=i<j=N,

— max
M, =i<j=N,|n

2 (AJ,,-—A,")C W')(J’) max

= M,=i<j=N,

2 (AJII Ain) Ca ll’r(rr)(y)l ?
n= Vr+1+ i .
where x¢ F, and y€E, in the sense of (33). We show that the last four maxima -
on the right-hand side of this inequality tend to 0 as r . In fact, this follows.
by virtue of (28) and (29), using B. Levr’s theorem. More precisely, there exists a set



64 . F. Méricz

‘G of measure zero such that for every x€[0, 1]— G we have

I ( max |T@-TWI) = Fn( max 100)-100)).

r~<\M,=si<j=sN, M, sSi<j=N,

Since the sets F, are stochastically independent, by (32) and (34), we get
' =1,

Thus, on account of (31), we obtain that

ﬁ( max lTj(X)—T.-(x)l] =2
ree M =i<j=N, .
holds whenever
x€imF,—G,

‘that is, for almost every x¢]0, 1]. ‘

The proof of the necessity is now complete

To accomplish the proof of Theorem 1, we have to show that the assertions
concerning | ¢| are also fulﬁlled Let us define the usual vector opera‘uons in B as
follows:

c+d.={c,+4d,)7, ac= {occ,,}T.‘

It is obvious that B is a linear space. From Lemma 1 we infer

: o b oo
36) S {zc} = ld =K 3 la)

llell is @ norm in B, for (i) |ci =0if and only if ¢,=0 for every n; (ii) |ac| = |ozH'|c|[
for every real number «; (iii) [lc+d| = ||c]] + ||bu (i) follows from (36), (ii) is obvious,
(iii) follows from Lemma 5.

We prove that B is a complete space. For this purpose let ¢, —{c,,,,,},l 1 EB'
(m=1,2,--) be for which
| | lew = carll =0~ (', "+ ).

By virtue of (36), we get for every n
| ().

Let ¢ be an arbitrary posmve real number According to the definition of the norm,
we have

Hew—tus N) 6 (m/,m" = (o))
. for every N, and, by virtue of Lemma 2, for every v
- I(PY(tpy—Cpr), N) = €2 (m', m” u(a))

. For m’ fixed and m” tending to infinity, by Lemma 7, we get '

I(P'(cw—0),N)=¢e>  (m = )
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for every v and N. Hence, applying Lemma 3, we obtain
’ . I(¢c, —¢, N) = ¢? (m" = u(e)
for every N, where c¢={c,}7, and consequently
. few—cl =& (m = u(e).
So we have, by (iii), ¢€ B and, moreover,
| lew—cll=0  (m—co),
which was to be proved.
This concludes the proof of Theorem 1.

Proof of Theorem 2. If (1) is T-summable a.e. for every ONS in [0, l] then
by virtue of Theorem 1, we have ||¢| <. Let us consider an arbitrary ONS {¢,(x)}
by {0, 1], and denote by #(x) the ith T-mean of (I). From Lémma 10, applying B.
Levi’s theorem, we get that the series ‘ .

21 (tn, () —f(x))?

converges a.e. Let us denote by F(x) the posmve square root of the sum of this
.er - Tt is obvious that F(x) is a square integrable function, the square integral
of which depends only on the coefficients ¢,. By (14), it follows that the function

w ' A R Y
G(X)={Z( max It,-(X)—t,-(X)I]Z}

r=1\N,_1=i<j=N,;

is square mtegrable its square integral depends only on the coeﬁ’icncnts ¢, . Let
be an arbltrary index with N,_; <i=N,. It is clear that '

()| = |1 (X)—tzv,(x)l+|t~,(X)—f(x)|+|f(X)| = G(X)+F(x)+lf(x)|
This completes the proof

§3. Proofs of Theorems 3—5

Theorem 3. follows immediately from Lemma 9.

Proof of Theorem 4. Let ¢ be a positive real number, given in advance,
furthermore, let {p,(x)} be an arbltrary ONS in [0, 1]. We denote by s{™(x) the
kth partlal sum of the series

-21 Conn Pn(X)
and by #™(x) the ith 7-mean. By Theorem 3, |¢,|| << implies |¢,ll << and so

5 A
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¢, €1? for every m. By the Riesz—Fischer theorem there exists a square integrable
function f,(x) such that {s{™(x)} converges in the mean to f,(x) as k -, and
so does {t{™(x)} as i—co. :

Since |¢,|| <=, by virtue of Lemma 10 there exists an 1ncreasing sequence
{N,} of integers such that Ny=1,

37) 3 3 (A= D<o,
- . r=1n=1 '
and _ - .
) (38) . - : ZJ(CU r-1s N,)=oo,

Let us consider the following inequalities:

- ’ o [
max (4909 = 19 +{ 3 (00— o] +
- °° | -- ’ Y2
HE( me @]
r=1\N,_1=i<jsN,
whence ' _

1

- (jmax el dx = 3[2c3m+ 3 5 Uy -1t 5 s N, 1,N>]
0 \l=i=N n=1 . r=1ln=1" :

Al

for every m=1 and N=1. By (37) and (38), we can choose the natural numbers
Qo and vo so that

Z'cf,,§z—:2, Z Z(AN,*1)22<8>»

n=go+1 r= go+1n

) Qo oo
2 J(cl ’ r—1: r) = 82’ 2 2 (AN,-,n_ 1)20%71 = 82

r=go+1 r=1n=vo+1

are satisfied. The coefficients c,, being decreasing in m for every fixed n, we obtain

1

v f[ max |t,-(»""(x)]J2 a’x.é 1

¢ \Us=isN

r=1n=1 .

o <3[zc,...,+ > Sy, —1)2 ut 3 I(ens Ny, N ,>]+‘12e2.

By a simple calculation we get _

(40) ZJ(C,", r— 13Nr ——2 ZJ(PA Cms r—l’r r)+2 ZJ(Pl+lcm’ r—-1: r)>
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where the natural number 1 is fixed in such a manner that

ea .. v o @0 . ' ) )
(41) _ZJJ(PHJC".; N.,N)=4 ZII(Pl+lcm5Nr) = 40ol(Py 1€, Nyy) = &

‘Here we took Lemma 9 and Lemma 3 into consideration.
By (39), (40) and (41), on account of Lemma 7, we get that there ex1sts a natural

number ,u(s) such that
1

f[ max ];(m’(x)|)2 dx = 168 (m=p(e)).

0 1=i{=N
Since {(p,,(x)} is an arbitrary ONS; thus we obtain for every N

I(c;;, N) = 16¢° (m>u(z-:))
and consequently
' “cm“ = 4e (méﬂ(ﬁ)),
which is what had to be proved. '

Proof of Theorem 5. If ¢€.B then, according to Theorem 4, we have
IIP“C—CII—>0 (v o).

Hence the class of all the finite sequences is everywhere dense in B. Applying the
continuity we infer that every finite sequence can be approximated, as closely as we
wish, by a finite sequence of rational numbers. But all the finite sequences of rational
numbers form a countable set. So we have proved that B is separable.
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