A note on the strong T-summation of orthogonal series
By FERENC MORICZ in Szeged

1. Let {p(x)} (k=0,1,--) be an orthonormal system on the finite interval
(a, b). We shall consider series ' <

RN : | o 2an®
with real coefficients satisfying
@ 2a;<
. - k=0

: _By the Riesz—Fischer theorem, the series (1) converges in the mean to a square-
iﬁtegrable function f(x). We denote the kth partial sum of the series (1) by s;(x).

Let T=(ay) (i, k=0, 1, ---) be a double infinite matrix of real numbers. We say
that the series (1) is 7T-summable to f(x) at the point x€(a, b) if

oo

= 2 oSy (x)'

exists for all i (except perhaps. finitely many of them), ahc_l_
lim £,(x) = /().

The series (1) is called strongly T-summable at the point x if the relation

Jim 3 e (5409 = /G = 0
holds. . . o
A T-summation process is called permanent if ' lim s, = s always implies ] lim t,=s.

- Necessary and sufficient condltlons for the permanence of a summatlon process
~ are well known. (See ALEXITS [11, p.. 65

2. In the most frequently used cases T-summability and strong T -summablllty
of the series (1) coincide under the condition (2), up to sets of measure zero. For
the classical (C, 1)-summation process this was proved by ZYGMUND [9] (see also
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- TaNDORI [8]), for (C, /2>0)¥summati6n by SunNoucH1 [7], and for Riesz summation
by MEDER [4] and LEINDLER [2]. (In the latter case

;Lk+1 A

for k=i, o,=0 for k=>i,
)"l""l : .

Oy =
where {4;} is a’strictly increaéing'sequence of positive real’ numbers with lo=0
and A; —<0.) Finally, for the de la Vallée Poussin summation, this was proved also -
by LemNDLER {3]. (In ‘this case

O

. .
- lf k: i—/.li+1, i'.—‘ui‘l_z,...,i,

i

I

o =0 if k=0,1,...,i—p; i+1, i+2,..,
" where {u;} is an-increasing sequence of natural ‘numbv'_ers with g —w;=1.) |

3. These particular results raise the foltowing question : does, under condition (2), '
T-summability of the serLes (1) almost everywhere imply strong T-summablhty
for any T-process? : :

In this paper we show that the answer is in genexal negative. We prove the
- following -

Theorem. There exist a uniformly bounded orthonormal system {P(x)}. in
0, 1); a sequence {c,} of coefficients dnd a permanent T-summation process such that

Z_ C,% << oo
‘ k=0
s satisfied, the orthonormal series
3) R 2 P (x)
. . o k=0 : ..
is T-summable almost eberyWheré, but the relation
@ - E Ei‘%“iklsk(x) =S =

holds almost everywhere in (0 1) for any y=0.
The proof will be accomplished by direct constructlon the T-summatlon in
" question being defined by a method due to MENCHOFF [6]

4. We require some lemmas. In. the sequel, we use C, Cl, C,, - : to denote
posmve constants.
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‘ .Lemma 1. (MENCHOFF [5]) Let v=>3 be a natural number and let C>1. Then
there exists in (—1, C) a system {(x)} (1 =k= v2) of orthornormal step functmns
" with the following properties:
B WiM|=C, (1=k=v, —1=x=C);
(i) for every point x€(%,1) t/1ere exists " an index I(x) dependmg on
x (1=1(x)=v?) such that ' »

(%)
Z Y (%) = szlogv

Let us define another system {y,,(x)} (l§k§:2v2)~ of- orthonormal step
functions in (—2, C) as follows: : C '

O ha® = e = 'V%wk;(x)  (=k=v, —1=x=0),

1 -1 . '
o b)) = —=r(x+2), e =——r(x+2) (I=k=v?, 2=x<-1),
_Xk () Vz w( ), X +k, (x) V2 w( ) )
where r(x)=sign sin 2*nx denotes the kth Rademacher function (k=0, 1, --).
By virtue of Lemma 1 it'is clear that
kav(x)]’_c.? (1<k<2\’ —.2<x<c),

furthermore, for every  point xE(%, 1) there exists an index /(x) (1<1(x)<v2)
such that :

(=)
© gmw=

~ This construction can also be found in the cited paper of MENCHOFF [6].

v2+1(x)

22 x,w(x) = C,vlogv.

k=vi+1

5. Proof of the theorem. Let g(y) be an arbitrary function defined in
(—2,°C) and let /=(u, v) be an arbitrary finite interval. We proceed from the interval
I to ‘the interval (—2, C) by means of the linear transformation

y=

usx=v, —2=y=0),

and pﬁt
' V2+Cg(p) if u=x=y,
8( I x) = { 0 o elsewhere

Further, let E(I) denote the image set of an arbitrary set Ec(—2, C) arlsmg
from this transformatlon It is obvious that

f g (I3 )dx = |1 f g2 (y)dy. 1)
u -2

) }| denotes the Lebesgue measure of the set 1.
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We are going to construct the system {#«(x)} and an auxiliary  system
{¥,(x)} which has an important role in the proof. Let {v,} be any sequence of natural
numbers, with v,>3 (r=1,2, ---), and let

Ny =0, N_ZZVQ, N, =N,_ +v2  (r=1,2,..).

First we set :
D, (x) = Vi (x) = r(x) k=01,..,N;0=sx=1).

Now r=1 being arbitrary, we assume that the step functions &,(x), ¥.(x)
(k=90,1, -, N,_,) are already defined.. Then we divide (0, 1) into a finite number
of mutually disjoint subintervals I, I,, -+, I, in which every function D,(x), ¥(x)
~with k= N,_, is constant. Let I, I denote the two halves of the interval I,, and set

N pi N,,,v,( x) L if xel;
‘pk(x)—{

Xk-N (1” X) if ‘CEI” (‘7_:1,2,--55; N—1<k§Nr)3

v (I;x) if xel, and N,_,<k=N,,

1
| v2¥c "

Y(x) = : o
n-w;x) if xel, and N, <k=N,,

y2+C

where I, can be either I or I” (6 =1, 2, .-, 5). It is clear that these functibns’ are
also step functions. a '
. Set E,=(=2,-1), E2—~(—l C) and E;= (4, 1); furthermore, write -

G:(l) = UIEI (1;): G:(l) = L_JIEI(I;/ >
and - ' : -

6.0)= UEWUED) (=29,

It is obvious that the 1nterval (0 1) is the union of the mutually disjoint subsets_
"~ G(l), G/(1) and G/2), and that
a 6,0 1 (r¥12

‘We can ‘easily prove that the system {®,(x)} as constructed from the previously
defined functions is orthonormal and uniformly bounded. Furthermore, the system
{¥.(x)} can be divided into two subsystems, both of which are orthonormal. More
exactly, MENCHOFF [6] proved the following
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Lemma 2. Let. {Y’k(x)} be the system of functwns in (0, 1) defined above,.
and set

r=

s'= U {#:N,o <k=N}, 5" = 0 ()i N,<k=N,},
= r=1

" Then both 'S’ and S” are orthonormal convergence systems>).

6. We define the matrix T=(o) (1 k=0,1, ) as follows"
sge=1 and -a0k=0 for k=1,

and in general, for an arbitrary natural number #(=1), we drstmgulsh two sub-
cases: if N, L <i=Nj, then we set : :

6 =%, 240 = and . o =0 - otherwise;

if NJ<i=N,, then
V o y=1 and ou=0 otherwise.
. From’ the definition of the matrix 7 we can 1mmedrate1y mfer the permanence of
the 7- summatron process.
7. We define the - sequence {ck} (co=0) of coeﬁicrents as follows

{pr lf Nr-—1<k§N:'9
“= \—p, if Ni<k=N, " (r=1,2..),

where the sequence {v,} of natural numbers and the sequence {p,} of positive real
numbers are chosen such that the relations

® c va<w
9 ; lim p',v,. logv, = o .

are satisfied. An appropriate choice is for example
S Al : 1 .
v, =2 | and Pr= oy (r=1,2,...).

2) An orthonormal system {p.(x)} is called a convergence system if every serles Za, 0 (x)
whose coefﬁcrents satisfy the condrtron 2)is convergent almost everywhere
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8. By (8) we can easily see that

Nr

Zd=2 c3=2,>:32<cszp,v<oo
k=0 r=1 r=1

‘We show that (8) implies also the convergence of the partial sums {sN (x)} and
{sn:(x)} of the series (3) almost everywhere. On account of :

Z flSN,(x) SN, (V)]dx = {f(sN (x)—sn, -, (X))de} =

r=1g

N,
> } V22p,vw°
Ne—1+1

we infer, by applying the theorem of B. Levi, that the sequence {sy,(x)}is convergent.
"The convergence of {sy/(x)} almost everywhere follows in the same way.

_5{

k=

9. Now we are able to prove the 7-summability of the series (3) almost every-
~ where. On the one hand, if N,<i=N,, then we have
‘ 19 (x} =8N, (JC),
on the other hand, if N,_,<i=N,, then »
- itv

10 = 3@+ Fee@ = 3@t asg@ |2+ S laoc.

k=Nr—1+1 k=Ni+

™w

For the sake of brevity, we write

T ity '
R(r,isx) = { 2t 2 }Ck¢k(X)-
k=Np-(+1 k=N;:+1 .
For our purpdse it is enough to show that R(r, i; x) tends to 0 almost everywhere
in (0, 1) as r —~<o. Taking into account the definition of the coefficients ¢; and (5), -
~ we can see that the R(r, i; x) equals 0 at every point x€ G,(2). In case x€ G/ (1)U
UG/(1), we get by a simple calculation that
2+C .
—V—V% ¥ .(x)if xeGl()

V2+c
V2

(N,_,<k=N;,r=1,2,---). Hence we can write

Di(x) = ‘l’k(X) if xeG (1), P(x) =

R(r,i;X) =+ V2-|;C {k Z + igr }CkY’k(X),

V2 =N TiEl k=Nrk1

according as x€G.(1) or x€G/(1). Applying Lemma 2, we mfer that R(r, i; x)
tends to 0 almost everywhere as r-»oo,
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10. ‘To ‘accomplish the proof, we have to show that (4) is also satisfied. Let
_ us consider the sets "G,(3) (r=1,2, --). According to the definition of the intervals
L,I’(e=1,2, -, s) and G;(3), we can easily see that the sets G,(3) are stochastically
independent. Applying the Borel—Cantelli lemma we get, by virtue of (7),

(10) - ‘ Iﬁ G,(3)’ =1
Let N, ;<i=N,. By looking at the inequality
la—b=COlla’—|6]  (@>0),°) |
where C(y) denotes a poAsitive constant depending only on y, we obtain the estimate

©o

k;’ 3 (%) ~ f(x)(”_-lS(X) f(x)|y+ 8143 (X)—f(Y)l’>

By v1rtue of (6), there exists an mdex 1-—I(x) (N; l<l(x)§N;) for almost évery
pomt xEG,(3) such that :

z+v

S @ ()

k=Nz+1

Z e Py (x)

k=Np-1+1

-3 . = by P =1

zcm{

2’; Uy a1 (X) ~ [ = CoC()p,v, logy, — C(x)

holds, where- C(x) is.a positive constant depending only on x. Here we again took
into consideration that the sequences {sy (x)} and {sy/(x)} converge almost every--
where. By (10) this estimate holds at almost every point x € (0, 1) for infinitely many
values of r. Using (9) we get that the relation (4) is satisfied almost everywhere

. We have thus completed the proof of our theorem.

3) If 0<y=1 then this mequallty follows from la+b6|” = |al’ + b7, and if y>l then it fol-
lows from |a+b" = 2" '(lal” +|B,")
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