A note on the strong T-summation of orthogonal series

By FERENC MÓRICZ in Szeged

1. Let $\left\{\varphi_{k}(x)\right\}(k=0,1, \cdots)$ be an orthonormal system on the finite interval (a, b). We shall consider series

$$
\begin{equation*}
\sum_{k=0}^{\infty} a_{k} \varphi_{k}(x) \tag{I}
\end{equation*}
$$

with real coefficients satisfying

$$
\begin{equation*}
\sum_{k=0}^{\infty} a_{k}^{2}<\infty \tag{2}
\end{equation*}
$$

By the Riesz-Fischer theorem, the series (1) converges in the mean to a squareintegrable function $f(x)$. We denote the k th partial sum of the series (1) by $s_{k}(x)$.

Let $T=\left(\alpha_{i k}\right)(i, k=0,1, \cdots)$ be a double infinite matrix of real numbers. We say that the series (1) is T-summable to $f(x)$ at the point $x \in(a, b)$ if

$$
t_{i}=\sum_{k=0}^{\infty} \alpha_{i k} s_{k}(x)
$$

exists for all i (except perhaps finitely many of them), and

$$
\lim _{i \rightarrow \infty} t_{i}(x)=f(x)
$$

The series (1) is called strongly T-summable at the point x if the relation

$$
\lim _{i \rightarrow \infty} \sum_{k=0}^{\infty} \alpha_{i k}\left(s_{k}(x)-f(x)\right)^{2}=0
$$

holds.
A T-summation process is called permanent if $\lim _{k \rightarrow \infty} s_{k}=s$ alway implies $\lim _{i \rightarrow \infty} t_{i}=s$. Necessary and sufficient conditions for the permanence of a summation process are well known. (See Alexits [1], p. 65.)
2. In the most frequently used cases T-summability and strong T-summability of the series (1) coincide under the condition (2), up to sets of measure zero. For the classical ($C, 1$)-summation process this was proved by Zygmund [9] (see also

Tandori [8]), for ($C, \beta>0$)-summation by Sunouchi [7], and for Riesz summation by Meder [4] and Leindler [2]. (In the latter case

$$
\alpha_{i k}=\frac{\lambda_{k+1}-\lambda_{k}}{\lambda_{i+1}} \text { for } k \leqq i, \quad \alpha_{i k}=0 \quad \text { for } k>i
$$

where $\left\{\lambda_{i}\right\}$ is a strictly increasing sequence of positive real numbers with $\lambda_{0}=0$ and $\lambda_{i} \rightarrow \infty$.) Finally, for the de la Vallée Poussin summation, this was proved also by Leindier [3]. (In this case

$$
\begin{aligned}
& \alpha_{i k}=\frac{1}{\mu_{i}} \quad \text { if } \quad k=i-\mu_{i}+1, \quad i-\mu_{i}+2, \ldots, i \\
& \alpha_{i k}=0 \quad \text { if } \quad k=0,1, \ldots, i-\mu_{i} ; \quad i+1, \quad i+2, \ldots
\end{aligned}
$$

where $\left\{\mu_{i}\right\}$ is an increasing sequence of natural numbers with $\mu_{i+1}-\mu_{i} \leqq 1$.)
3. These particular results raise the following question: does, under condition (2), T-summability of the series (1) almost everywhere imply strong. T-summability for any T-process?

In this paper we show that the answer is in general negative. We prove the following

Theorem. There exist a uniformly bounded orthonormal system $\left\{\Phi_{k}(x)\right\}$. in $(0,1)$; a sequence $\left\{c_{k}\right\}$ of coefficients and a permanent T-summation process such that

$$
\sum_{k=0}^{\infty} c_{k}^{2}<\infty
$$

is satisfied, the orthonormal series

$$
\begin{equation*}
\sum_{k=0}^{\infty} c_{k} \Phi_{k}(x) \tag{3}
\end{equation*}
$$

is T-summable almost everywhere, but the relation

$$
\begin{equation*}
\varlimsup_{i \rightarrow \infty} \sum_{k=0}^{\infty} \alpha_{i k}\left|s_{k}(x)-f(x)\right|^{\gamma}=\infty \tag{4}
\end{equation*}
$$

holds almost everywhere in $(0,1)$ for any $\gamma>0$.
The proof will be accomplished by direct construction, the T-summation in question being defined by a method due to Menchoff [6].
4. We require some lemmas. In the sequel, we use C, C_{1}, C_{2}, \cdots to denote positive constants.

Lemma 1. (Menchoff [5]) Let $v>3$ be a natural number and let $C>1$. Then there exists in $(-1, C)$ a system $\left\{\psi_{k v}(x)\right\}\left(1 \leqq k \leqq v^{2}\right)$ of orthonormal step functions with the following properties:
(i) $\left|\psi_{k v}(x)\right| \leqq C_{1}\left(1 \leqq k \leqq v^{2},-1 \leqq x \leqq C\right)$;
(ii) for every point $x \in\left(\frac{1}{2}, 1\right)$ there exists ${ }^{7}$ an index $l(x)$ depending on $x\left(1 \leqq l(x) \leqq v^{2}\right)$ such that

$$
\sum_{k=1}^{l(x)} \psi_{k v}(x) \geqq C_{2} v \log v
$$

Let us define another system $\left\{\gamma_{k v}(x)\right\} \quad\left(1 \leqq k \leqq 2 v^{2}\right)$ of orthonormal step functions in ($-2, C$) as follows:

$$
\begin{gather*}
\chi_{k v}(x)=\chi_{v^{2}+k, v}(x)=\frac{1}{\sqrt{2}} \psi_{k v}(x) \quad\left(1 \leqq k \leqq v^{2},-1 \leqq x \leqq C\right), \tag{5}\\
\chi_{k v}(x)=\frac{1}{\sqrt{2}} r_{k}(x+2), \quad \chi_{v^{2}+k, v}(x)=-\frac{1}{\sqrt{2}} r_{k}(x+2) \quad\left(1 \leqq k \leqq v^{2},-2 \leqq x<-1\right),
\end{gather*}
$$

where $r_{k}(x)=\operatorname{sign} \sin 2^{k} \pi x$ denotes the k th Rademacher function $(k=0,1, \cdots)$. By virtue of Lemma 1 it is clear that

$$
\left|\chi_{k v}(x)\right| \leqq C_{3} \quad\left(1 \leqq k \leqq 2 v^{2},-2 \leqq x \leqq C\right) ;
$$

furthermore, for every point $x \in\left(\frac{1}{2}, 1\right)$ there exists an index $l(x)\left(1 \leqq l(x) \leqq v^{2}\right)$ such that

$$
\begin{equation*}
\sum_{k=1}^{L(x)} \chi_{k v}(x)=\sum_{k=v^{2}+1}^{v^{2}+l(x)} \chi_{k v}(x) \geqq C_{4} v \log v . \tag{6}
\end{equation*}
$$

This construction can also be found in the cited paper of Menchoff [6].
5. Proof of the theorem. Let $g(y)$ be an arbitrary function defined in $(-2, C)$ and let $I=(u, v)$ be an arbitrary finite interval. We proceed from the interval I to the interval $(-2, C)$ by means of the linear transformation

$$
y=-2+\frac{x-u}{v-u}(2+C) \quad(u \leqq x \leqq v,-2 \leqq y \leqq C)
$$

and put

$$
g(I ; x)=\left\{\begin{array}{cl}
\sqrt{2+C} g(y) & \text { if } u \leqq x \leqq v \\
0 & \text { elsewhere }
\end{array}\right.
$$

Further, let $E(I)$ denote the image set of an arbitrary set $E \subset(-2, C)$ arising. from this transformation. It is obvious that

$$
\left.\int_{u}^{v} g^{2}(I ; x) d x=|I| \int_{-2}^{c} g^{2}(y) d y .^{1}\right)
$$

[^0]We are going to construct the system $\left\{\Phi_{k}(x)\right\}$ and an auxiliary system $\left\{\Psi_{k}(x)\right\}$ which has an important role in the proof. Let $\left\{v_{r}\right\}$ be any sequence of natural numbers, with $v_{r}>3(r=1,2, \cdots)$, and let

$$
N_{0}=0, \quad N_{r}=2 \sum_{0=1}^{n} v_{e}^{2}, \quad N_{r}^{\prime}=N_{r-1}+v_{r}^{2} \quad(r=1,2, \ldots)
$$

First we set

$$
\Phi_{k}(x)=\Psi_{k}(x)=r_{k}(x) \quad\left(k=0,1, \ldots, N_{1} ; 0 \leqq x \leqq 1\right) .
$$

Now $r>1$ being arbitrary, we assume that the step functions $\Phi_{k}(x), \Psi_{k}(x)$ ($k=0,1, \cdots, N_{r-1}$) are already defined. Then we divide (0,1) into a finite number of mutually disjoint subintervals $I_{1}, I_{2}, \cdots, I_{s}$, in which every function $\Phi_{k}(x), \Psi_{k}(x)$ with $k \leqq N_{r-1}$ is constant. Let $I_{\sigma}^{\prime}, I_{\sigma}^{\prime \prime}$ denote the two halves of the interval I_{σ}, and set

$$
\begin{aligned}
& \Phi_{k}(x)=\left\{\begin{array}{lll}
\chi_{k-N_{r-1}, v_{r}}\left(I_{\sigma}^{\prime} ; x\right) & \text { if } & x \in I_{\sigma}^{\prime} \\
-\chi_{k-N_{r-1}, v_{r}}\left(I_{\sigma}^{\prime \prime} ; x\right) & \text { if } & x \in I_{\sigma}^{\prime \prime}
\end{array}\left(\sigma=1,2, \ldots, s ; N_{r-1}<k \leqq N_{r}\right) ;\right. \\
& \Psi_{k}(x)=\left\{\begin{array}{llll}
\frac{1}{\sqrt{2+C}} r_{k-N_{r-1}}\left(\tilde{I}_{\sigma} ; x\right) & \text { if } & x \in \tilde{I}_{\sigma} \quad \text { and } \quad N_{r-1}<k \leqq N_{r}^{\prime}, \\
-\frac{1}{\sqrt{2+C}} r_{k-N_{r}}\left(\tilde{I}_{\sigma} ; x\right) & \text { if } & x \in \tilde{I}_{\sigma} & \text { and }
\end{array} N_{r}^{\prime}<k \leqq N_{r},\right.
\end{aligned}, ~ \$
$$

where I_{σ} can be either I_{σ}^{\prime} or $I_{\sigma}^{\prime \prime}(\sigma=1,2, \cdots, s)$. It is clear that these functions are also step functions.

Set $E_{1}=(-2,-1), E_{2}=(-1, C)$ and $E_{3}=\left(\frac{1}{2}, 1\right)$; furthermore, write
and

$$
G_{r}^{\prime}(1)=\bigcup_{\sigma=1}^{s} E_{1}\left(I_{\sigma}^{\prime}\right), \quad G_{r}^{\prime \prime}(1)=\bigcup_{\sigma=1}^{s} E_{1}\left(I_{\sigma}^{\prime \prime}\right),
$$

$$
G_{r}(i)=\bigcup_{\sigma=1}^{s}\left(E_{i}\left(I_{\sigma}^{\prime}\right) \cup E_{i}\left(I_{\sigma}^{\prime}\right)\right) \quad(i=2,3)
$$

It is obvious that the interval $(0,1)$ is the union of the mutually disjoint subsets $G_{r}^{\prime}(1), G_{r}^{\prime \prime}(1)$ and $G_{r}(2)$, and that

$$
\begin{equation*}
\left|G_{r}(3)\right|=\frac{1}{2(2+C)} \quad(r=1,2, \ldots) \tag{7}
\end{equation*}
$$

We can easily prove that the system $\left\{\Phi_{k}(x)\right\}$ as constructed from the previously defined functions is orthonormal and uniformly bounded. Furthermore, the system $\left\{\Psi_{k}(x)\right\}$ can be divided into two subsystems, both of which are orthonormal. More exactly, Menchoff [6] proved the following

Lemma 2. Let. $\left\{\Psi_{k}(x)\right\}$ be the system of functions in $(0,1)$ defined above, and set

$$
S^{\prime}=\bigcup_{r=1}^{\infty}\left\{\Psi_{k}(x): N_{r-1}<k \leqq N_{r}^{\prime}\right\}, \quad S^{\prime \prime}=\bigcup_{r=1}^{\infty}\left\{\Psi_{k}^{\prime}(x): N_{r}^{\prime}<k \leqq N_{r}\right\}
$$

Then both S^{\prime} and $S^{\prime \prime}$ are orthonormal convergence systems ${ }^{2}$).
6. We define the matrix $T=\left(\alpha_{i k}\right)(i, k=0,1, \cdots)$ as follows

$$
\alpha_{00}=1 \quad \text { and } \quad \alpha_{0 k}=0 \text { for } k \geqq 1,
$$

and in general, for an arbitrary natural number $r(\geqq 1)$, we distinguish two subcases: if $N_{r-1}<i \leqq N_{r}^{\prime}$, then we set

$$
\dot{\alpha}_{i i}=\alpha_{i, v_{r}^{2}+i}=\frac{1}{2} \quad \text { and } \quad \alpha_{i k}=0 \quad \text { otherwise }
$$

if $N_{r}^{\prime}<i \leqq N_{r}$, then

$$
\alpha_{i, N_{r}}=1 \quad \text { and } \quad \alpha_{i k}=0 \quad \text { otherwise }
$$

From the definition of the matrix T we can immediately infer the permanence of the T-summation process.
7. We define the sequence $\left\{c_{k}\right\}\left(c_{0}=0\right)$ of coefficients as follows

$$
c_{k}=\left\{\begin{array}{lll}
p_{r} & \text { if } & N_{r-1}<k \leqq N_{r}^{\prime}, \\
-p_{r} & \text { if } & N_{r}^{\prime}<k \leqq N_{r}
\end{array} \quad(r=1,2, \ldots),\right.
$$

where the sequence $\left\{i_{r}\right\}$ of natural numbers and the sequence $\left\{p_{r}\right\}$ of positive real numbers are chosen such that the relations

$$
\begin{equation*}
\sum_{r=1}^{\infty} p_{r} v_{r}<\infty \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{r \rightarrow \infty} p_{r} v_{r} \log v_{r}=\infty \tag{9}
\end{equation*}
$$

are satisfied. An appropriate choice is for example

$$
v_{r}=2^{r^{3}} \quad \text { and } \quad p_{r}=\frac{1}{r^{2} v_{r}} \quad(r=1,2, \ldots)
$$

[^1]8. By (8) we can easily see that
$$
\sum_{k=0}^{\infty} c_{k}^{2}=\sum_{r=1}^{\infty} \sum_{k=N_{r-1}+1}^{N_{r}} c_{k}^{2}=2 \sum_{r=1}^{\infty} p_{r}^{2} v_{r}^{2} \leqq C_{5} \sum_{r=1}^{\infty} p_{r} v_{r}<\infty
$$

We show that (8) implies also the convergence of the partial sums $\left\{s_{N_{r}}(x)\right\}$ and $\left\{s_{N_{r}^{\prime}}(x)\right\}$ of the series (3) almost everywhere. On account of

$$
\begin{gathered}
\sum_{r=1}^{\infty} \int_{0}^{1}\left|s_{N_{r}}(x)-s_{N_{r-1}}(x)\right| d x \leqq \sum_{r=1}^{\infty}\left\{\int_{0}^{1}\left(s_{N_{r}}(x)-s_{N_{r-1}}(x)\right)^{2} d x\right\}^{\frac{1}{2}}= \\
=\sum_{r=1}^{\infty}\left\{\left\{_{k=N_{r-1}+1} \sum_{k}^{N_{r}} c^{2}\right\}^{\frac{1}{2}}=\sqrt{2} \sum_{r=1}^{\infty} p_{r} v_{r}<\infty\right.
\end{gathered}
$$

we infer, by applying the theorem of B. Levi, that the sequence $\left\{s_{N_{r}}(x)\right\}$ is convergent. The convergence of $\left\{s_{N_{r}^{\prime}}(x)\right\}$ almost everywhere follows in the same way.
9. Now we are able to prove the T-summability of the series (3) almost everywhere. On the one hand, if $N_{r}^{\prime}<i \leqq N_{r}$, then we have

$$
\boldsymbol{t}_{i}(x)=s_{N_{r}}(x)
$$

on the other hand, if $N_{r-1}<i \leqq N_{r}^{\prime}$, then

$$
t_{i}(x)=\frac{1}{2} s_{i}(x)+\frac{1}{2} s_{i+v_{r}^{2}}^{2}(x)=\frac{1}{2} s_{N_{r-1}}(x)+\frac{1}{2} s_{N_{r}^{\prime}}(x)+\left\{\sum_{k=N_{r-1}+1}^{i}+\sum_{k=N_{r}^{\prime}+1}^{i+v_{2}^{2}}\right\} c_{k} \Phi_{k}(x) .
$$

For the sake of brevity, we write

$$
R(r, i ; x)=\left\{\sum_{k=N_{r-1}+1}^{i}+\sum_{k=N_{r}^{\prime}+1}^{i+v_{r}^{2}}\right\} c_{k} \Phi_{k}(x)
$$

For our purpose it is enough to show that $R(r, i ; x)$ tends to 0 almost everywhere in $(0,1)$ as $r \rightarrow \infty$. Taking into account the definition of the coefficients c_{k} and (5), we can see that the $R(r, i ; x)$ equals 0 at every point $x \in G_{r}(2)$. In case $x \in G_{r}^{\prime}(1) \cup$ $\cup G_{r}^{\prime \prime}(1)$, we get by a simple calculation that
$\Phi_{k}(x)=\frac{\sqrt{2+C}}{\sqrt{2}} \Psi_{k}(x) \quad$ if $\quad x \in G_{r}^{\prime}(1), \quad \Phi_{k}(x)=-\frac{\sqrt{2+C}}{\sqrt{2}} \Psi_{k}(x) \quad$ if $\quad x \in G_{r}^{\prime \prime}(1)$ ($N_{r-1}<k \leqq N_{r}, r=1,2, \cdots$). Hence we can write

$$
R(r, i ; x)= \pm \frac{\sqrt{2+C}}{\sqrt{2}}\left\{\sum_{k=N_{r-1}+1}^{i}+\sum_{k=N_{r}^{\prime}+1}^{i+v_{r}^{2}}\right\} c_{k} \Psi_{k}(x)
$$

according as $x \in G_{r}^{\prime}(1)$ or $x \in G_{r}^{\prime \prime}(1)$. Applying Lemma 2, we infer that $R(r, i ; x)$ tends to 0 almost everywhere as $r \rightarrow \infty$.
10. To accomplish the proof, we have to show that (4) is also satisfied. Let us consider the sets $G_{r}(3)(r=1,2, \cdots)$. According to the definition of the intervals $I_{\sigma}^{\prime}, I_{\sigma}^{\prime \prime}(\sigma=1,2, \cdots, s)$ and $G_{r}(3)$, we can easily see that the sets $G_{r}(3)$ are stochastically independent. Applying the Borel-Cantelli lemma we get, by virtue of (7),

$$
\begin{equation*}
\left|\varlimsup_{r \rightarrow \infty} G_{r}(3)\right|=1 \tag{10}
\end{equation*}
$$

Let $N_{r-1}<i \leqq N_{r}$. By looking at the inequality

$$
\left.|a-b|^{\gamma} \geqq C(\gamma)|a|^{\gamma}-|b|^{\gamma} \quad(\gamma>0),{ }^{3}\right)
$$

where $C(\gamma)$ denotes a positive constant depending only on γ, we obtain the estimate

$$
\begin{gathered}
\sum_{k=0}^{\infty} \alpha_{i k}\left|s_{k}(x)-f(x)\right|^{\gamma}=\frac{1}{2}\left|s_{i}(x)-f(x)\right|^{\gamma}+\frac{1}{2}\left|s_{i+v_{r}^{2}}^{2}(x)-f(x)\right|^{\gamma} \geqq \\
\geqq C(\gamma)\left\{\left.| |_{k=N_{r-1}+1} \sum_{k}^{i} \Phi_{k}(x)\right|^{\gamma}+\left.\left|\sum_{k=N_{r}^{\prime+1}}^{i+v_{r}^{2}} c_{k} \Phi_{k}(x)\right|\right|^{\gamma}\right\}- \\
-\frac{1}{2}\left|s_{N_{r-1}-1}(x)\right|^{\gamma}-\frac{1}{2}\left|s_{N_{r}^{\prime}}^{\prime}(x)\right|^{\gamma}-|f(x)|^{\gamma} .
\end{gathered}
$$

By virtue of (6), there exists an index $i=l(x)\left(N_{r-1}<l(x) \leqq N_{r}^{\prime}\right)$ for almost every point $x \in G_{r}(3)$ such that

$$
\sum_{k=0}^{\infty} \alpha_{l(x), k}\left|s_{k}(x)-f(x)\right|^{\gamma} \geqq C_{4} C(\gamma) p_{r} v_{r} \log v_{r}-C(x)
$$

holds, where $C(x)$ is a positive constant depending only on x. Here we again took into consideration that the sequences $\left\{s_{N_{r}}(x)\right\}$ and $\left\{s_{N_{r}^{\prime}}(x)\right\}$ converge almost everywhere. By (10) this estimate holds at almost every point $x \in(0,1)$ for infinitely many values of r. Using (9), we get that the relation (4) is satisfied almost everywhere.

We have thus completed the proof of our theorem.

[^2]
References

[1] G. Alexits, Convergence problems of orthonormal series (Budapest, 1961).
[2] L. Leindler, Über die sehr starke Riesz-Summierbarkeit der Orthogonalreihen und Konvergenz lückenhafter Orthogonalreihen, Acta Math. Hung., 13 (1962), 401 -414.
[3] L. Leindler, Über die de la Vallée Poussinsche Summierbarkeit allgemeiner Orthogonalreihen, Acta Math. Hung., 16 (1965), 375-387.
[4] J. Meder, On very strong Riesz-summability of orthogonal series, Studia Math., 20 (1961), 285-300.
[5] D. Menchoff, Sur les séries de fonctions orthogonales bornées dans leur ensemble, Recueil Math. Moscou (Math. Sbornik), 3 (1938), 103-118.
[6] Д. Е. Меньшов, О суммировании ортогональных рядов линейными методами, Труды - Москов. Матем. Обиц., 10 (1961), 351-418.
[7] G. Sunouchi, On the strong summability of orthogonal series, Acta Sci. Math., 27 (1966), 71-76.
[8] K. Tandori, Über die orthogonalen Funktionen. IV (Starke Summation), Acta Sci. Math., 19 (1958), 18-25.
[9] A. Zygmund, Sur l'application de la première moyenne arithmétique dans la théorie des séries: orthogonales, Fund. Math., 10 (1927), 356-362.
(Received January 22, 1968)

[^0]: $\left.{ }^{1}\right)|I|$ denotes the Lebesgue measure of the set I.

[^1]: ${ }^{\text {2 }}$) An orthonormal system $\left\{\varphi_{k}(x)\right\}$ is called a convergence system if every series $\Sigma a_{k} \varphi_{k}(x)$ whose coefficients satisfy the condition (2) is convergent almost everywhere.

[^2]: ${ }^{3}$) If $0<\gamma \leqq 1$ then this inequality follows from $|a+b|^{\gamma} \leqq|a|^{\gamma}+|b|^{\gamma}$, and if $\gamma>1$ then it follows from $|a+b|^{\nu} \leqq 2^{\gamma-1}\left(|a|^{\nu}+\mid b_{1}^{\nu}\right)$.

