A note on the existence of derivations

By R. J. LOY*) in Clayton (Victoria, Australia)

Let K be a commutative ring with unit; $\mathfrak{A}, \mathfrak{B}$ two K-algebras, and denote by $\mathfrak{E}(\mathfrak{H}, \mathfrak{B})$ the (left) K-module of all K-linear mappings of \mathfrak{A} into \mathfrak{B}. We write $\mathfrak{Q}(\mathfrak{H})$ for $\mathfrak{E}(\mathfrak{Y}, \mathfrak{H})$ and note that this is a K-algebra. If $\varphi, D \in \mathscr{P}(\mathfrak{U}, \mathfrak{B})$ and D satisfies the equation

$$
D(x y)=D x \cdot \varphi y+\varphi x \cdot D y
$$

for all $x, y \in \mathfrak{N}$, we call D a φ-derivation. If \mathfrak{A} is a subalgebra of \mathfrak{B} and $I \in \mathfrak{L}(\mathfrak{Q}, \mathfrak{B})$ is the identity map on \mathfrak{H}, an I-derivation will be termed a derivation. We will only consider φ-derivations where φ is a homomorphism.

Note that our φ-derivations are different from the φ-derivations of Amitsur [1] and JaCobson [3], which are additive mappings defined on fields satisfying $D(x y)=$ $=\varphi x \cdot D y+D x \cdot y$ ((or $D(x y)=D x \cdot \varphi y+x \cdot D y$) for all x, y in the field. Our φ-derivations satisfy the defining equation for the (φ, φ)- derivations of [4], p. 177; they are closely related to the φ-derivations of order one of [5].

Now let $D \in \mathfrak{L}(\mathfrak{H}, \mathfrak{B})$ be a φ-derivation of \mathfrak{A} into \mathfrak{B} for some homomorphism $\varphi \in \mathcal{Z}$ $(\mathfrak{A}, \mathfrak{B})$. We define the 'spread' \mathfrak{S} of the D as the smallest subalgebra of \mathfrak{B} contain$i_{\text {ng }}$ both the range of D and the range of φ. S is in fact the smallest subalgebra of \mathfrak{B} such that both φ and D are in $\mathcal{L}(\mathfrak{A}, \mathfrak{S})$, that is, such that D is a φ-derivation from \mathfrak{N} into \mathfrak{S}. It is clear that \mathfrak{S} depends on the mapping φ, and if D is a φ-derivation for more than one φ it may have more than one spread. In the cases where we use this notion of spread however, it will be clear which mapping φ is being considered, and no explicit mention of it will be made.

We will denote the algebra direct sum of two K-algebras $\mathfrak{H}, \mathfrak{B}$ by $\mathfrak{H} \oplus \mathfrak{B}$, and their K-module direct sum by $\mathfrak{H}+\mathfrak{B}$. Thus $\mathfrak{H} \oplus \mathfrak{B}$ is the K-algebra of all pairs (a, b) with $a \in \mathfrak{H}, b \in \mathfrak{B}$ and componentwise operations, while $\mathfrak{A}+\mathfrak{B}$ is the K-module of all such pairs and will not be assumed to have the algebra structure of $\mathfrak{A} \oplus \mathfrak{B}$.

[^0]If $\varphi \in \mathfrak{L}(\mathfrak{H}, \mathfrak{B})$ is a homomorphism, the K-linear isomorphism Φ of \mathfrak{A} into $\mathfrak{H} \oplus \mathfrak{B}$ defined by

$$
\Phi x=(x, \varphi x)
$$

for all $x \in \mathfrak{H}$, will be called the φ-embedding of \mathfrak{A} in $\mathfrak{A} \oplus \mathfrak{B}$. Any isomorphism of this type will be termed an embedding of \mathfrak{Y} in $\mathfrak{H} \oplus \mathfrak{B}$.

With these notations we have the following result.
Theorem 1. Let \mathfrak{A} be a K-algebra with a (K-module) direct sum decomposition $\mathfrak{O}=\mathfrak{B}+\mathfrak{S}$ where \mathfrak{I} is a proper left ideal of \mathfrak{Y} and \mathfrak{B} is a subalgebra of $\mathfrak{2}$ but not a left ideal. Then there is an embedding Φ of \mathfrak{H} in $\mathfrak{H} \oplus \mathfrak{Q}(\mathfrak{H})$, such that \mathfrak{H} admits a nonzero Φ-derivation $D: \mathfrak{H} \rightarrow \mathfrak{V} \oplus \mathfrak{Q}(\mathfrak{H})$ satisfying $D(\mathfrak{B})=\{0\}$.

Proof. For $a \in \mathfrak{H}$, let $a=x+y$ be the unique decomposition of a with $x \in \mathfrak{B}, y \in \mathfrak{I}$, and define idempotent mappings $P, Q \in \mathscr{P}(\mathfrak{H})$ by $P a=x, Q a=y$. Then we have immediately that $P^{2}=P, P Q=Q P=0, Q^{2}=Q$ and $P+Q=I$.

For $a \in \mathcal{H}$ denote by \tilde{a} the image of a in $\mathcal{L}(\mathfrak{H})$ under the left regular representation and define K-linear mappings φ, Δ from \mathfrak{N} into $\mathfrak{L}(\mathfrak{A})$ by $\varphi a=P a \tilde{a} P+Q a \tilde{Q}$ and $\Delta a=Q \tilde{a} P$ for all $a \in \mathfrak{H}$. Since \mathfrak{J} is a left ideal it is invariant under each \tilde{a} for $a \in \mathfrak{H}$ and so $P \tilde{a} Q=0$ for any $a \in \mathfrak{N}$. But then if $x, y \in \mathfrak{N},(\overrightarrow{x y})=\tilde{x} \tilde{y}$ and so

$$
\begin{gathered}
\varphi(x y)=P \tilde{x}(P+Q) \tilde{y} P+Q \tilde{x}(P+Q) \tilde{y} Q=P \tilde{x} P \tilde{y} P+Q \tilde{x} Q \tilde{y} Q= \\
=(P \tilde{x} P+Q \tilde{x} Q)(P \tilde{y} P+Q \tilde{y} Q)=\varphi x \cdot \varphi y .
\end{gathered}
$$

Also

$$
\begin{gathered}
\Delta(x y)=Q \tilde{x}(P+Q) \tilde{y} P=Q \tilde{x} P \tilde{y} P+Q \tilde{x} Q \tilde{y} P= \\
=Q \tilde{x} P(P+Q) \tilde{y}(P+Q)+(P+Q) \tilde{x}(P+Q) Q \tilde{y} P=\Delta x \cdot \varphi y+\varphi x \cdot \Delta y .
\end{gathered}
$$

Thus φ is a homomorphism and Δ is a φ-derivation, which furthermore is nonzero since \mathfrak{B} is not a left ideal.

We now make use of a construction of Singer and Wermer [6]. Let Φ be the φ-embedding of \mathfrak{H} in $\mathfrak{A} \oplus \mathscr{L}(\mathfrak{H})$ and define a K-linear mapping $D: \mathfrak{H} \rightarrow \mathfrak{N} \oplus \mathscr{L}(\mathfrak{H})$ by $D a=(0, \Delta a)$ for all $a \in \mathfrak{H}$. It is easily seen that D is a Φ-derivation, non-zero since Δ is non-zero. If $x \in \mathfrak{B}$ then $(\tilde{x} P) y \in \mathfrak{B}$ for any $y \in \mathfrak{H}$, so that $(Q \tilde{x} P) y=0$. Thus $\Delta x=0$ if $x \in \mathfrak{B}$, that is, $D(\mathfrak{B})=\{0\}$.

The reason for wanting Φ to be an isomorphism is that we can identify \mathfrak{g} with $\Phi(\mathfrak{H})$ to get the following result.

Corollary 1. Let \mathfrak{H} satisfy the conditions of the theorem. Then \mathfrak{H} admits a non-zero derivation D into an extension of \mathfrak{G} such that $D(\mathfrak{B})=\{0\}$.

The spread of (the φ-derivation) D is in general non-commutative even when \mathfrak{N} is commutative ${ }^{1}$). A necessary and sufficient condition for the spread to be commutative is given by the following result.
${ }^{1}$) The range of D is easily seen to be a zero ring.

Theorem 2. If \mathfrak{A} is commutative then the spread of D is commutative if and only if $\mathfrak{J}^{2} \mathfrak{B}=0$.

Proof. From the definition of D, the spread of D is commutative if and only if the spread of Δ is commutative. Now the spread of Δ is the algebra generated by the set $\{\varphi a, \Delta a: a \in \mathfrak{N}\}$. Since \mathfrak{N} is commutative and φ is a homomorphism $\varphi x \cdot \varphi y=\varphi y \cdot \varphi x$ for all $x, y \in \mathfrak{H}$. Also, from the definitions, $\Delta x \cdot \Delta y=\Delta y \cdot \Delta x=0$. Thus it suffices to consider necessary and sufficient conditions for $\Delta x \cdot \varphi y=\varphi y \cdot \Delta x$, that is, $Q \tilde{x} P \tilde{y} P=Q \tilde{y} Q \tilde{x} P$ for all $x, y \in \mathfrak{H}$.
(i) Necessity of stated condition. Let $x, y \in \mathfrak{I}, z \in \mathfrak{B}$. Then $(Q \tilde{x} P \tilde{y} P) z=$ $=(Q \tilde{x} P \tilde{y}) z=0$ since $\tilde{y}(z)=y z \in \mathfrak{J}$ and $P(\mathfrak{S})=\{0\}$. On the other hand, $(Q \tilde{y} Q \tilde{x} P) z=$ $=(Q \tilde{y} Q \tilde{x}) z=(Q \tilde{y} Q) x z=(Q \tilde{y}) x z=Q(y x z)=y x z$. Thus the condition is necessary.
(ii) Sufficiency of stated condition. If $z \in \mathfrak{I}$ then $(Q \tilde{x} P \tilde{y} P) z=0=(Q \tilde{y} Q \tilde{x} P) z$ for any $x, y \in \mathfrak{P}$ since $P z=0$. Since $\mathfrak{H}=\mathfrak{B}+\mathfrak{I}$ it thus suffices to consider $z \in \mathfrak{B}$. Thus suppose $z \in \mathfrak{B}$, and let $x, y \in \mathfrak{Z}$ have decompositions $x=u_{1}+v_{1} ; y=u_{2}+v_{2}$; $u_{i} \in \mathfrak{B}, v_{i} \in \mathfrak{I}$ for $i=1$, 2. Then the decompositions of $x z, y z, x u_{2} z$ are $u_{1} z+v_{1} z$, $u_{2} z+v_{2} z, u_{1} u_{2} z+v_{1} u_{2} z$, respectively. Thus $\quad(Q \tilde{x} P \tilde{y} P) z=(Q \tilde{x} P)\left(u_{2} z+v_{2} z\right)=$ $Q\left(x u_{2} z\right)=v_{1} u_{2} z, \quad$ and $\quad(Q \tilde{y} Q \tilde{x} P) z=(Q \tilde{y} Q)\left(u_{1} z+v_{1} z\right)=Q\left(y v_{1} z\right)=y v_{1} z$. The difference between these is $y v_{1} z-v_{1} u_{2} z=v_{1} z\left(y-u_{2}\right)=v_{1} v_{2} z=0$, since $v_{1}, v_{2} \in \mathfrak{I}$, $z \in \mathfrak{B}$. Thus the condition is sufficient.

- It follows that the extension of \mathfrak{M} in Corollary 1 may be taken to be commutative if \mathfrak{A} is commutative and $\mathfrak{J}^{2} \mathfrak{B}=0$.

Corollary 2. Let \mathfrak{N} be a commutative K-algebra with $\mathfrak{Q}^{2}=\mathfrak{M} .{ }^{2}$) Suppose that \mathfrak{M} has a direct sum decomposition $\mathfrak{H}=\mathfrak{B}+\mathfrak{R}$ where \mathfrak{B} is a subalgebra and \mathfrak{R} is a nontrivial nilpotent ideal. Then \mathfrak{H} admits a non-zero derivation into an extension algebra of \mathfrak{N} which annihilates \mathfrak{B}. If \mathfrak{R} is a zero ring or if the sum is an algebraic direct sum then the extension algebra may be taken to be commutative.

Proof. By hypothesis \mathfrak{B} is a subalgebra, so using Corollary 1 it. suffices to show that it is not an ideal. Supposing to the contrary, we have $\mathfrak{B R} \subseteq \mathfrak{B}$ and so $\mathfrak{U}^{2} \subseteq \mathfrak{B}+\mathfrak{R}^{2}$ whence $\mathfrak{R}^{2}=\mathfrak{R}$. But this is impossible since \mathfrak{R} is non-trivial and nilpotent.

The last statement is clear from Theorem 2.
Acknowledgements The idea of Theorem I stemmed from a perusal of the matrix proof of the theorem of MasChke in the theory of group representations. See, for example, Theorem 16.3:1 of [2].

The author would like to thank Professor J. B. Miller for helpful discussions concerned with this paper.

[^1]
References

[1] S. A. Amitsur, A generalization of a theorem on linear differential equations, Bull. Amer. Math. Soc., 54 (1948), 937-941.
[2] M. Hall, The theory of groups (New York, 1965).
[3] N. Jacobson, Pseudolinear transformations, Ann. of Math., 38 (1937), 484-507.
[4] - Lie algebras (New York, 1962).
[5] H. Osborn, Modules of differentials. I, Math. Annalen, 170 (1967), 221-244.
[6] I. Singer and J. Wermer, Derivations on commutative normed algebras, Math. Annalen, 129 (1955), 260-264.
(Received February 20, 1968)

MONASH UNIVERSITY
CLAYTON, VICTORIA
AUSTRALIA

[^0]: *) The author is a General Motors-Holden's Research Fellow.

[^1]: ${ }^{2}$) This is true, for instance, if 2 has an identity.

