A note on the existence of derivations

By R. J. LOY*) in Clayton (Victoria, Australia)

Let K be a commutative ring with unit; $\mathfrak{A}, \mathfrak{B}$ two K-algebras, and denote by $\mathfrak{L}(\mathfrak{A}, \mathfrak{B})$ the (left) K-module of all K-linear mappings of \mathfrak{A} into \mathfrak{B} . We write $\mathfrak{L}(\mathfrak{A})$ for $\mathfrak{L}(\mathfrak{A}, \mathfrak{A})$ and note that this is a K-algebra. If $\varphi, D \in \mathfrak{L}(\mathfrak{A}, \mathfrak{B})$ and D satisfies the equation

$$D(xy) = Dx \cdot \varphi y + \varphi x \cdot Dy$$

for all $x, y \in \mathfrak{A}$, we call D a φ -derivation. If \mathfrak{A} is a subalgebra of \mathfrak{B} and $I \in \mathfrak{L}(\mathfrak{A}, \mathfrak{B})$ is the identity map on \mathfrak{A} , an *I*-derivation will be termed a derivation. We will only consider φ -derivations where φ is a homomorphism.

Note that our φ -derivations are different from the φ -derivations of AMITSUR [1] and JACOBSON [3], which are additive mappings defined on fields satisfying $D(xy) = = \varphi x \cdot Dy + Dx \cdot y$ (or $D(xy) = Dx \cdot \varphi y + x \cdot Dy$) for all x, y in the field. Our φ -derivations satisfy the defining equation for the (φ, φ) - derivations of [4], p. 177; they are closely related to the φ -derivations of order one of [5].

Now let $D \in \mathfrak{L}(\mathfrak{A}, \mathfrak{B})$ be a φ -derivation of \mathfrak{A} into \mathfrak{B} for some homomorphism $\varphi \in \mathfrak{L}$ ($\mathfrak{A}, \mathfrak{B}$). We define the 'spread' \mathfrak{S} of the D as the smallest subalgebra of \mathfrak{B} containing both the range of D and the range of φ . \mathfrak{S} is in fact the smallest subalgebra of \mathfrak{B} such that both φ and D are in $\mathfrak{L}(\mathfrak{A}, \mathfrak{S})$, that is, such that D is a φ -derivation from \mathfrak{A} into \mathfrak{S} . It is clear that \mathfrak{S} depends on the mapping φ , and if D is a φ -derivation for more than one φ it may have more than one spread. In the cases where we use this notion of spread however, it will be clear which mapping φ is being considered, and no explicit mention of it will be made.

We will denote the algebra direct sum of two K-algebras $\mathfrak{A}, \mathfrak{B}$ by $\mathfrak{A} \oplus \mathfrak{B}$, and their K-module direct sum by $\mathfrak{A} + \mathfrak{B}$. Thus $\mathfrak{A} \oplus \mathfrak{B}$ is the K-algebra of all pairs (a, b) with $a \in \mathfrak{A}, b \in \mathfrak{B}$ and componentwise operations, while $\mathfrak{A} + \mathfrak{B}$ is the K-module of all such pairs and will not be assumed to have the algebra structure of $\mathfrak{A} \oplus \mathfrak{B}$.

*) The author is a General Motors-Holden's Research Fellow.

If $\varphi \in \mathfrak{Q}(\mathfrak{A}, \mathfrak{B})$ is a homomorphism, the K-linear isomorphism Φ of \mathfrak{A} into $\mathfrak{A} \oplus \mathfrak{B}$ defined by

$$\Phi x = (x, \varphi x)$$

for all $x \in \mathfrak{A}$, will be called the φ -embedding of \mathfrak{A} in $\mathfrak{A} \oplus \mathfrak{B}$. Any isomorphism of this type will be termed an embedding of \mathfrak{A} in $\mathfrak{A} \oplus \mathfrak{B}$.

With these notations we have the following result,

Theorem 1. Let \mathfrak{A} be a K-algebra with a (K-module) direct sum decomposition $\mathfrak{A} = \mathfrak{B} + \mathfrak{J}$ where \mathfrak{J} is a proper left ideal of \mathfrak{A} and \mathfrak{B} is a subalgebra of \mathfrak{A} but not a left ideal. Then there is an embedding Φ of \mathfrak{A} in $\mathfrak{A} \oplus \mathfrak{L}(\mathfrak{A})$, such that \mathfrak{A} admits a nonzero Φ -derivation $D: \mathfrak{A} \to \mathfrak{A} \oplus \mathfrak{L}(\mathfrak{A})$ satisfying $D(\mathfrak{B}) = \{0\}$.

Proof. For $a \in \mathfrak{A}$, let a = x + y be the unique decomposition of a with $x \in \mathfrak{B}$, $y \in \mathfrak{J}$, and define idempotent mappings $P, Q \in \mathfrak{L}(\mathfrak{A})$ by Pa = x, Qa = y. Then we have immediately that $P^2 = P, PQ = QP = 0, Q^2 = Q$ and P + Q = I.

For $a \in \mathfrak{A}$ denote by \tilde{a} the image of a in $\mathfrak{L}(\mathfrak{A})$ under the left regular representation and define K-linear mappings φ , Δ from \mathfrak{A} into $\mathfrak{L}(\mathfrak{A})$ by $\varphi a = P\tilde{a}P + Q\tilde{a}Q$ and $\Delta a = Q\tilde{a}P$ for all $a \in \mathfrak{A}$. Since \mathfrak{I} is a left ideal it is invariant under each \tilde{a} for $a \in \mathfrak{A}$ and so $P\tilde{a}Q = 0$ for any $a \in \mathfrak{A}$. But then if $x, y \in \mathfrak{A}$, $(xy) = \tilde{x}$ \tilde{y} and so

$$\varphi(xy) = P\tilde{x}(P+Q)\tilde{y}P + Q\tilde{x}(P+Q)\tilde{y}Q = P\tilde{x}P\tilde{y}P + Q\tilde{x}Q\tilde{y}Q =$$
$$= (P\tilde{x}P + Q\tilde{x}Q)(P\tilde{y}P + Q\tilde{y}Q) = \varphi x \cdot \varphi y.$$

Also

$$\Delta(xy) = Q\tilde{x}(P+Q)\tilde{y}P = Q\tilde{x}P\tilde{y}P + Q\tilde{x}Q\tilde{y}P =$$

$$= Q\tilde{x}P(P+Q)\tilde{y}(P+Q) + (P+Q)\tilde{x}(P+Q)Q\tilde{y}P = \Delta x \cdot \varphi y + \varphi x \cdot \Delta y.$$

Thus φ is a homomorphism and Δ is a φ -derivation, which furthermore is non-zero since \mathfrak{B} is not a left ideal.

We now make use of a construction of SINGER and WERMER [6]. Let Φ be the φ -embedding of \mathfrak{A} in $\mathfrak{A} \oplus \mathfrak{L}(\mathfrak{A})$ and define a K-linear mapping $D: \mathfrak{A} \to \mathfrak{A} \oplus \mathfrak{L}(\mathfrak{A})$ by $Da = (0, \Delta a)$ for all $a \in \mathfrak{A}$. It is easily seen that D is a Φ -derivation, non-zero since Δ is non-zero. If $x \in \mathfrak{B}$ then $(\tilde{x}P)y \in \mathfrak{B}$ for any $y \in \mathfrak{A}$, so that $(Q\tilde{x}P)y = 0$. Thus $\Delta x = 0$ if $x \in \mathfrak{B}$, that is, $D(\mathfrak{B}) = \{0\}$.

The reason for wanting Φ to be an isomorphism is that we can identify \mathfrak{A} with $\Phi(\mathfrak{A})$ to get the following result.

Corollary 1. Let \mathfrak{A} satisfy the conditions of the theorem. Then \mathfrak{A} admits a non-zero derivation D into an extension of \mathfrak{A} such that $D(\mathfrak{B}) = \{0\}$.

The spread of (the φ -derivation) D is in general non-commutative even when \mathfrak{A} is commutative¹). A necessary and sufficient condition for the spread to be commutative is given by the following result.

¹) The range of D is easily seen to be a zero ring.

Existence of derivations

Theorem 2. If \mathfrak{A} is commutative then the spread of D is commutative if and only if $\mathfrak{J}^2\mathfrak{B} = 0$.

Proof. From the definition of D, the spread of D is commutative if and only if the spread of Δ is commutative. Now the spread of Δ is the algebra generated by the set $\{\varphi a, \Delta a: a \in \mathfrak{A}\}$. Since \mathfrak{A} is commutative and φ is a homomorphism $\varphi x \cdot \varphi y = \varphi y \cdot \varphi x$ for all $x, y \in \mathfrak{A}$. Also, from the definitions, $\Delta x \cdot \Delta y = \Delta y \cdot \Delta x = 0$. Thus it suffices to consider necessary and sufficient conditions for $\Delta x \cdot \varphi y = \varphi y \cdot \Delta x$, that is, $Q\tilde{x}P\tilde{y}P = Q\tilde{y}Q\tilde{x}P$ for all $x, y \in \mathfrak{A}$.

(i) Necessity of stated condition. Let $x, y \in \mathfrak{J}, z \in \mathfrak{B}$. Then $(Q\tilde{x}P\tilde{y}P)z = (Q\tilde{x}P\tilde{y})z = 0$ since $\tilde{y}(z) = yz \in \mathfrak{J}$ and $P(\mathfrak{J}) = \{0\}$. On the other hand, $(Q\tilde{y}Q\tilde{x}P)z = (Q\tilde{y}Q\tilde{x})z = (Q\tilde{y}Q)xz = Q(yxz) = yxz$. Thus the condition is necessary.

(ii) Sufficiency of stated condition. If $z \in \mathfrak{J}$ then $(Q\tilde{x}P\tilde{y}P)z = 0 = (Q\tilde{y}Q\tilde{x}P)z$ for any $x, y \in \mathfrak{A}$ since Pz = 0. Since $\mathfrak{A} = \mathfrak{B} + \mathfrak{J}$ it thus suffices to consider $z \in \mathfrak{B}$. Thus suppose $z \in \mathfrak{B}$, and let $x, y \in \mathfrak{A}$ have decompositions $x = u_1 + v_1, y = u_2 + v_2;$ $u_i \in \mathfrak{B}, v_i \in \mathfrak{J}$ for i = 1, 2. Then the decompositions of xz, yz, xu_2z are $u_1z + v_1z,$ $u_2z + v_2z, u_1u_2z + v_1u_2z$, respectively. Thus $(Q\tilde{x}P\tilde{y}P)z = (Q\tilde{x}P)(u_2z + v_2z) =$ $Q(xu_2z) = v_1u_2z$, and $(Q\tilde{y}Q\tilde{x}P)z = (Q\tilde{y}Q)(u_1z + v_1z) = Q(yv_1z) = yv_1z$. The difference between these is $yv_1z - v_1u_2z = v_1z(y - u_2) = v_1v_2z = 0$, since $v_1, v_2 \in \mathfrak{J}$, $z \in \mathfrak{B}$. Thus the condition is sufficient.

It follows that the extension of \mathfrak{A} in Corollary 1 may be taken to be commutative if \mathfrak{A} is commutative and $\mathfrak{J}^2\mathfrak{B} = 0$.

Corollary 2. Let \mathfrak{A} be a commutative K-algebra with $\mathfrak{A}^2 = \mathfrak{A}$.²) Suppose that \mathfrak{A} has a direct sum decomposition $\mathfrak{A} = \mathfrak{B} + \mathfrak{R}$ where \mathfrak{B} is a subalgebra and \mathfrak{R} is a nontrivial nilpotent ideal. Then \mathfrak{A} admits a non-zero derivation into an extension algebra of \mathfrak{A} which annihilates \mathfrak{B} . If \mathfrak{R} is a zero ring or if the sum is an algebraic direct sum then the extension algebra may be taken to be commutative.

Proof. By hypothesis \mathfrak{B} is a subalgebra, so using Corollary 1 it suffices to show that it is not an ideal. Supposing to the contrary, we have $\mathfrak{BR}\subseteq\mathfrak{B}$ and so $\mathfrak{A}^2\subseteq\mathfrak{B}+\mathfrak{R}^2$ whence $\mathfrak{R}^2=\mathfrak{R}$. But this is impossible since \mathfrak{R} is non-trivial and nilpotent.

The last statement is clear from Theorem 2.

Acknowledgements The idea of Theorem I stemmed from a perusal of the matrix proof of the theorem of MASCHKE in the theory of group representations. See, for example, Theorem 16. 3. 1 of [2].

The author would like to thank Professor J. B. MILLER for helpful discussions concerned with this paper.

2) This is true, for instance, if \mathfrak{A} has an identity.

References

- S. A. AMITSUR, A generalization of a theorem on linear differential equations, Bull. Amer. Math. Soc., 54 (1948), 937-941.
- [2] M. HALL, The theory of groups (New York, 1965).
- [3] N. JACOBSON, Pseudolinear transformations, Ann. of Math., 38 (1937), 484-507.
- [4] ——— Lie algebras (New York, 1962).
- [5] H. OSBORN, Modules of differentials. I, Math. Annalen, 170 (1967), 221-244.
- [6] I. SINGER and J. WERMER, Derivations on commutative normed algebras, Math. Annalen, 129 (1955), 260-264.

(Received February 20, 1968)

MONASH UNIVERSITY CLAYTON, VICTORIA AUSTRALIA