Some algorithms for the representation of natural numbers

By I. KÁTAI in Budapest

1. Let $1=a_{1}<a_{2}<\cdots$. be a sequence of natural numbers. Let further \mathscr{A} denote the set $\left\{a_{n}\right\}$.

Every natural number can be represented in the form

$$
\begin{equation*}
n=a_{i_{\mathrm{t}}}+\cdots+a_{i v} \tag{1.1}
\end{equation*}
$$

where $a_{i j} \in \mathscr{A}, a_{i_{1}} \geqq a_{i_{2}} \geqq \cdots \geqq a_{i v}$, and $a_{i_{1}}$ denotes the greatest element of \mathscr{A} which does not exceed n and, in general $a_{i_{k}}$ denotes the greatest element of \mathscr{A} which does not exceed $n-\left(a_{i_{1}}+\cdots+a_{i_{k-1}}\right)(k=2, \cdots, v)$.

Let $\alpha(n)$ denote the length of this representation, i.e. $\alpha(n)=v, \alpha(0)=0$.
In this paper we study the distribution of the values $\alpha(n)$ for some special set \mathscr{A}. In the sections 2 and 3 we shall study the cases when the differences of the consecutive elements of \mathscr{A} have a limiting distribution. In the section 4 we investigate the case when \mathscr{A} consists of the square numbers:
2. Lt.
(2.1)-(2.2)

$$
\begin{gathered}
d_{i}=a_{i+1}-a_{i}(i=1,2, \ldots) ; \quad A(x)=\sum_{a_{i} \leq x} 1, \\
\varrho_{l}(x)=\sum_{\substack{a_{l} \leq x \\
d_{i}=l}} 1, \quad(l=1,2, \ldots) .
\end{gathered}
$$

Set

$$
\begin{equation*}
T_{k}(x)=\sum_{n=0}^{[x]} \alpha^{k}(n) \quad(k=0,1,2, \ldots) \tag{2.4}
\end{equation*}
$$

(2.5)-(2.6)

$$
S(N, u)=\sum_{n=0}^{N} e^{i u x(n)} ; \quad \varphi_{N}(u)=\frac{1}{N+1} S(N, u)
$$

We shall prove
Theorem 1. If $n^{-1} A(n) \geqq \alpha(>0)$ for $n=1,2, \cdots, N$, then $n^{-1} T_{1}(n) \leqq 1 / \alpha$ for $n=1,2, \cdots, N$.

Let us now suppose that the limits
(2.7)-(2.8) $\quad \lim _{x \rightarrow \infty} x^{-1} A(x)=c(>0), \quad \lim _{x \rightarrow \infty} x^{-1} \varrho_{l}(x)=\varrho_{l} \quad(l=1,2 \ldots)$
exist and the relation

$$
\begin{equation*}
\sum_{t=1}^{\infty} l \varrho_{t}=1 \tag{2.9}
\end{equation*}
$$

holds.
It is known that (2.9) is equivalent to

$$
\begin{equation*}
\lim _{x \rightarrow \infty} x^{-1} \sum_{l \geqq y} \varrho_{l}(x) \rightarrow 0 \quad(y \rightarrow \infty) . \tag{2.10}
\end{equation*}
$$

Theorem 2. Under the assumptions (2. 7), (2. 8), (2.9) the following assertions hold:
a) The sequence of the characteristic functions $\varphi_{N}(u)$ tends to a limit function $\varphi(u)$ as $N \rightarrow \infty$, uniformly in u, and the relation

$$
\begin{equation*}
\varphi(u)=e^{i u} \sum_{l=1}^{\infty} \varphi_{l-1}(u) l \varrho_{l} \tag{2.11}
\end{equation*}
$$

holds.
Furthermore the limits

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{1}{N+1} \sum_{\substack{n \leq N \\ \alpha(n)=l}} 1=\tau_{l} \quad(l=1,2, \ldots) \tag{2.12}
\end{equation*}
$$

exist and

$$
\sum_{t=1}^{\infty} \tau_{l}=1
$$

b) We have

$$
\begin{equation*}
\lim _{x \rightarrow \infty} x^{-1} T_{k}(x)=1+\sum_{v=1}^{k}\binom{k}{v} \sum_{l=1}^{\infty} T_{v}(l-1) \varrho_{l}, \tag{2.13}
\end{equation*}
$$

for $k=1,2, \cdots$, the sum on the right hand side of (2.13) being convergent.
3. For the proof of Theorem 1 we use induction on n. Since $1 \in \mathscr{A}$, so $T_{1}(1) / 1 \leqq 1 / \alpha$ evidently holds. Suppose now, that $m^{-1} T_{1}(m) \leqq 1 / \alpha$ for $m=1, \cdots, n-1$, where $1<n \leqq N$. Hence we deduce that $n^{-1} T_{1}(n) \leqq 1 / \alpha$. Indeed we have

$$
T_{1}(n)=\sum_{m \leqq n} \alpha(m)=\sum_{j=2}^{v} \sum_{a_{j-1} \leqq m<a_{j}} \alpha(m)+\sum_{a_{v} \leqq m \leqq n} \alpha(m)
$$

where $a_{v} \leqq n<a_{v+1}$. Since

$$
\sum_{a_{j-1} \leqq m<a_{j}} \alpha(m)=d_{j-1}+\sum_{v=0}^{d_{j-1}^{-1}-1} \alpha(v)=d_{j-1}+T_{1}\left(d_{j-1}-1\right)
$$

so we get

$$
\begin{align*}
T_{1}(n) & =n+\sum_{j=2}^{v} T_{1}\left(d_{j-1}-1\right)+T_{1}\left(n-a_{v}\right)= \tag{3.1}\\
& =n+\sum_{d=1}^{\infty} T_{1}(d-1) \varrho_{d}\left(a_{v-1}\right)+T_{1}\left(n-a_{v}\right)
\end{align*}
$$

If $n^{-1} T_{1}(n) \leqq \max _{m \leqq n-1} m^{-1} T_{1}(m)$, then $n^{-1} T_{1}(n) \leqq 1 / \alpha$ evidently holds. Let us now suppose that

$$
n^{-1} T_{1}(n)=\max _{1 \leqq m \leqq n} m^{-1} T_{1}(m) .
$$

Then from (3.1) it follows that .

$$
\begin{aligned}
\frac{T_{1}(n)}{n} & \leqq 1+\frac{T_{1}(n)}{n} \cdot \frac{1}{n}\left\{\sum_{d} \varrho_{d}\left(a_{v-1}\right)(d-1)+\left(n-a_{v}\right)\right\}= \\
& =1+\frac{T_{1}(n)}{n} \cdot \frac{1}{n}\left\{\sum_{j=1}^{v-1}\left(a_{j+1}-a_{j}-1\right)+\left(n-a_{v}\right)\right\}= \\
& =1+\frac{T_{1}(n)}{n} \cdot \frac{1}{n}\{n-A(n)\}=1+\frac{T_{1}(n)}{n}\left(1-\frac{A(n)}{n}\right),
\end{aligned}
$$

and consequently $\frac{T_{1}(n)}{n} \cdot \frac{A(n)}{n} \leqq 1$, i. e. $\frac{T_{1}(n)}{n} \leqq \frac{1}{\alpha}$ holds.
We begin the proof of Theorem 2. Let $a_{v} \leqq N<a_{v+1}$.
a) We have

$$
\begin{aligned}
S(N, u) & =e^{i u z(0)}+\sum_{j=2}^{v} \sum_{a_{j}-1 \leqq n<a_{j}} e^{i u \alpha(n)}+\sum_{a_{v} \leqq n<N} e^{i u \alpha(n)}= \\
& =1+e^{i u} \sum_{j=2}^{v} S\left(d_{j-1}, u\right)+e^{i u} S\left(N-a_{v}, u\right)= \\
& =1+e^{i u} \sum_{d=2}^{\infty} \frac{S(d-1, u)}{d} d \varrho_{d}\left(a_{v-1}\right)+e^{i u} S\left(N-a_{v}, u\right) .
\end{aligned}
$$

Since the limit $\lim _{x \rightarrow \infty} x^{-1} A(x)=c$ exists, so $d_{i}=o\left(a_{i}\right)(i \rightarrow \infty)$, and consequently $\left|S\left(N-a_{v}, u\right)\right| \mid N \rightarrow 0$. Hence it follows that

$$
\varphi_{N}(u)=\frac{1}{N+1} \frac{a_{v-1}+1}{N+1} e^{i u} \sum_{d=2}^{\infty} \varphi_{d-1}(u) d \frac{\varrho_{d}\left(a_{v-1}\right)}{a_{v-1}+1}+o(1) .
$$

Let now $\varphi(u)$ be defined by the relation (2.11). Then

$$
\begin{aligned}
\left|\varphi_{N}(u)-\varphi(u)\right|= & (1+o(1))\left|\sum_{d=2}^{\infty} \varphi_{d-1}(u)\left(\frac{d \varrho_{d}\left(a_{v-1}\right)}{a_{v-1}+1}-d \varrho_{d}\right)\right|+o(1) \leqq \\
& \leqq 2 \sum_{d=2}^{\infty}\left|\frac{d \varrho_{d}\left(a_{v-1}\right)}{a_{v-1}+1}-d \varrho_{d}\right|+o(1) .
\end{aligned}
$$

From (2.8), (2.9) it follows that the last sum tends to zero as $N \rightarrow \infty$, independently from u.

From (2.11) it follows that $\varphi(u)$ is a characteristic function. Since $\varphi_{N}(u)$ and consequently $\varphi(u)$ are periodic functions $\bmod 2 \pi$, so $\varphi(u)$ has a Fourier expansion

$$
\dot{\varphi}(u)=\sum_{n=-\infty}^{\infty} \delta_{n} e^{i n u}
$$

Using the uniform convergence of $\varphi_{N}(u)$ to $\varphi(u)$ we have

$$
\begin{aligned}
& \delta_{l}=\frac{1}{2 \pi} \int_{0}^{2 \pi} \varphi(u) e^{-i l u} d u=\lim _{N \rightarrow \infty} \frac{1}{2 \pi} \int_{0}^{2 \pi} \varphi_{N}(u) e^{-i l u} d u= \\
& =\left\{\begin{array}{l}
\lim _{N \rightarrow \infty} \frac{1}{N+1} \sum_{\substack{n \leq N \\
\alpha(n)=l}} 1=\tau_{l} \text { for } l=1,2, \cdots, \\
0 \text { for } l=0,-1,-2, \cdots .
\end{array}\right.
\end{aligned}
$$

Furthermore

$$
\sum \tau_{l}=\sum \delta_{l}=\varphi(0)=1
$$

b) We have

$$
T_{k}(x)=\sum_{n \leq x} \alpha^{k}(n)=\sum_{a_{i} \leq x} \sum_{j=0}^{d_{i}-1}(\alpha(j)+1)^{k}
$$

where the dash means that for $a_{i} \leqq x<a_{i+1}$ we sum over those j for which $j \leqq x-a_{i}$. Hence it follows that

$$
T_{k}(x)=\sum_{a_{i} \leq x} \sum_{j=0}^{d_{i}-1}\binom{k}{v} \alpha^{v}(j)=\sum_{v=0}^{k}\binom{k}{v} \sum_{a_{i} \leq x}^{\prime \prime} T_{v}\left(d_{i}-1\right)=\sum_{v=0}^{k}\binom{k}{v} \sum_{l=1}^{\infty} T_{v}(l-1) \varrho_{l}(x)
$$

The fulfilment of the relation (2.13) would follow from the boundedness of the sums $T_{y}(l) / l(l=1,2, \cdots ; v=1, \cdots, k)$ by (2.10) immediately. The boundedness of $T_{1}(x) / x$ follows from Theorem 1 . The proof of the general case is similar and so it can be omitted.
4. Let \mathscr{A} be the set of square numbers. Introduce the notation $\log _{2} x=\log \log x$. where the base of the logarithm is 2 .

It is easy to prove that

$$
\begin{equation*}
\alpha(n) \leqq \log _{2} n+5 \tag{4.1}
\end{equation*}
$$

Indeed, if

$$
A(x)=\max _{n \leqq x} \alpha(n),
$$

then from the inequality $n-[\sqrt{n}]^{2} \leqq 2 \sqrt{n}$ it follows that

$$
A(x) \leqq 1+A(2 \sqrt{x})
$$

Iterating this inequality k times we have

$$
A(x) \leqq k+A\left(2^{1+\frac{1}{2}+\ldots+1 / 2^{k-1}} x^{\frac{1}{2} k}\right) \leqq k+A\left(4 x^{\frac{1}{2} k}\right) .
$$

Let k be the smallest integer for which $x^{\frac{1}{2} k} \leqq 2$, i.e. $k=\left[\log _{2} x\right]+1$. Since $A(8)=4$ we have

$$
A(x) \leqq \log _{2} x+5
$$

Set

$$
T_{k}(x)=\sum_{n \leqq x} \alpha^{k}(n) \quad \text { and } \quad \Delta_{k}(x)=\sum_{n \leqq x}\left|\alpha(n)-\log _{2} x\right|^{k}
$$

Theorem 3. We have

$$
\begin{gather*}
T_{k}(x)=x\left(\log _{2} x\right)^{k}+O\left(x\left(\log _{2} x\right)^{k-1}\right) \tag{4.2}\\
\Delta_{k}(x)=O(x)
\end{gather*}
$$

where the constants in the O termis depend on k only.
Proof. It is evident that. (4. 2) follows from (4.3). For the proof of (4.3) we use induction on k. The relation holds for $k=0$. Let now suppose that (4. 3) holds for $k=0,1, \cdots, K-1$. Then we deduce the inequality (4.3) for $k=K$.

We have

$$
\Delta_{K}(N) \leqq \sum_{v^{2} \leqq N} \sum_{v^{2} \leqq n<(v+1)^{2}}\left|\alpha(n)-\log _{2} N\right|^{K}=\sum_{v^{2} \leqq N} \sum_{j=0}^{2 v}\left|\alpha(j)+1-\log _{2} N\right|^{K}=\cdot \sum_{v \leqq \sqrt{N}} B_{v} .
$$

Using the inequality

$$
|a+b|^{K} \leqq|a|^{K}+\sum_{l=1}^{K}\binom{K}{l}|a|^{K-l}|b|^{l}
$$

and consequently that

$$
\left|\alpha(j)+1-\log _{2} N\right|^{K} \leqq\left|\alpha(j)-\log _{2} 2 v\right|^{K}+\sum_{t=1}^{K}\binom{K}{l}\left|\alpha(j)-\log _{2} 2 v\right|^{K-l}\left|\log \frac{\log 2 v}{\log \sqrt{N}}\right|^{l}
$$

we obtain

$$
B_{v} \leqq \Delta_{K}(2 v)+\sum_{l=1}^{K}\binom{K}{l} \Delta_{K-l}(2 v)\left|\log \frac{\log \sqrt{N}}{\log 2 v}\right|^{l}
$$

Using our assumption that $\Delta_{k}(2 v) \ll 2 v$ for $k \leqq K-1$ we get

$$
\Delta_{K}(N) \leqq \sum_{v \leqq \sqrt{N}} \Delta_{K}(2 v)+O\left(\sum_{1}\right)
$$

where

$$
\sum_{1} \ll \sum_{v \leq \sqrt{N}} v\left\{\left|\log \frac{\log \sqrt{N}}{\log 2 v}\right|+\left|\log \frac{\log \sqrt{N}}{\log 2 v}\right|^{K}\right\}
$$

Dividing the interval of summation $[1, \sqrt{N}]$ into subintervals of type $\left[\frac{\sqrt{N}}{2^{j+1}}, \frac{\sqrt{N}}{2^{j}}\right]$ we easily obtain the inequality

$$
\sum_{1} \ll \sum_{2 \leqq \sqrt{N}}\left(\frac{\sqrt{N}}{2^{j}}\right)^{2}\left\{\frac{j}{\log \sqrt{N}}+\left(\frac{j}{\log \sqrt{N}}\right)^{K}\right\} \ll \frac{N}{\log N}
$$

Hence

$$
\begin{equation*}
\Delta_{K}(N) \leqq \sum_{v \leqq \sqrt{N}} \Delta_{K}(2 v)+O\left(\frac{N}{\log N}\right) \tag{4,4}
\end{equation*}
$$

follows.
Introduce now the notation

$$
\Delta_{K}(N)=\varepsilon(N) N .
$$

We prove that $\varepsilon(N)$ is bounded; hence the inequality (4.3) follows for $k=K$, and this will finish the proof of our theorem.

Let

$$
\beta_{j}=\max _{2^{j-1} m \leqq \sum^{j}} \varepsilon(m) \quad(j=1,2, \ldots) .
$$

From (4.4)

$$
\varepsilon(N) \leqq \frac{1}{N} \sum_{v \leqq \sqrt{N}} \varepsilon(2 v) 2 v+c / \log N
$$

follows with a suitable constant c. Hence

$$
\beta_{2 l} \leqq \max _{j \leqq l+2} \beta_{j}+\frac{c}{l} ; \quad \beta_{2 l+1} \leqq \max _{j \leq l+2} \beta_{j}+\frac{c}{l}
$$

Define the non-decreasing sequence of positive numbers $\gamma_{4}, \gamma_{5}, \cdots$ as follows:
Let

$$
\begin{equation*}
\gamma_{4}=\gamma_{5}=\max \left(\beta_{1}, \beta_{2}\right)+\frac{c}{2} ; \quad \gamma_{2 l}=\gamma_{2 l+1}=\max _{j \leqq l+2} \gamma_{j}+\frac{c}{l} \quad(l=3, \ldots) \tag{4.5}
\end{equation*}
$$

Clearly, $\beta_{j} \leqq \gamma_{j}$ for $j \geqq 4$. So it is enough to prove that γ_{n} is bounded. Let

$$
B(x)=\sum_{j \leq x} \gamma_{j}
$$

From (4. 5) it follows that

$$
B(2 x) \leqq 2 B(x)+2 \gamma_{[x]}+c \log x
$$

Furthermore from (4.1) we can easily see that $\varepsilon(N) \ll\left(\log _{2} N\right)^{K}$. Hence $\beta_{j} \ll(\log j)^{K}$, and so
follows.

$$
\gamma_{[x]} \ll \beta_{[x]}+\log x \ll(\log x)^{K}
$$

Set $\varphi(x)=\frac{B(x)}{x}$. Then $\varphi(2 x) \leqq \varphi(x)+c_{1} \frac{(\log x)^{K}}{x}$. So the sequence $\varphi\left(2^{m}\right)(m=1,2, \cdots)$ is bounded. Hence $B(x)<c x$ follows for every x. Since $\left\{\gamma_{n}\right\}$ is. non-decreasing we have

$$
\gamma_{l} \leqq \frac{\gamma_{l+1}+\cdots+\gamma_{2 l}}{l} \leqq \frac{B_{2 l}}{l}<2 c
$$

i.e. γ_{1} is bounded.

