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1. Let 1 =at < a2 < •••be a sequence of natural numbers. Let further si denote 
the set {a„}. 

Every natural number can be represented in the form 

where a^Zs/, and denotes the greatest element of si which 
does not exceed n and, in general aik denotes the greatest element of s i which does 
not exceed n — (ah H h aik _,) (k = 2, • • •, v). 

Let a(n) denote the length of this representation, i.e. a(ri) = v, a(0) = 0. 
In this paper we study the distribution of the values a(n) for some special 

set si. In the sections 2 and 3 we shall study the cases when the differences of the 
consecutive elements of si have a limiting distribution. In the section 4 we investigate 
the case when si consists of the square numbers. 

(1.1) n = aH H b au V 

2. L t . 

(2 .1)—(2. 2) 4 = ai + . , - 0 , ( 1 = 1, 2 , . . . ) ; A(x)= % 1> 

(2. 3) g
l
(x)=Z 1 ( / = 1 , 2 , . . . ) . 

a^x 
di = V 

Set 

(2.4) . Tk(x) = (¿ = 0 , 1 , 2 , . . . ) , 
. n = 0 

,V 

(2. 5)—(2. 6) S(N, u) = Z eMn); 
A f + 1 

S(N,u). 
n = 0 

We shall prove 

T h e o r e m 1. If n-lA(n)^a.(>$) for n = \,2,—,N, then h " 1 ^ « ) ^ 1 /« 
for n= 1, 2, •••, TV. 
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Let us now suppose that the limits 

(2. 7)—(2. 8) lim x ~ U ( x ) = c(>0) , l i m x " 1 ^ * ) = g, ( / = 1, 2 . . .) 
I - » X " 

exist and the relation 

(2-9) ¿ / f t = l 
i= i 

holds. 
It is known that (2. 9) is equivalent to 

( 2 . 1 0 ) H E * - 1 2 i ? / ( x ) - 0 ( > - * » ) • 
ISy 

T h e o r e m 2. Under the assumptions (2. 7), (2. 8), (2. 9) the following assertions 
hold: 

a) The sequence of the characteristic functions <pN(u) tends to a limit function 
(p(u) as uniformly in u, and the relation 

( 2 . 1 1 ) <p(u) = e i u 2 9 i - M k i 
i=i. 

holds. 
Furthermore the limits 

( 2 . 1 2 ) l i m ^ . 2 1 = T, ' ' ( / = 1 , 2 , . . . ) : 

e.v/.s7 and 
• • oo 

2 t , = 1. 
1 = 1 

b) Hi? //aw 

(2.13) U m * - 1 I i ( x ) = l + i P ) i ' r v ( / - l ) f t , 
v = l \ V / | = 1 

for /c = 1, 2, •••, the sum on the right hand side of (2. 13) being convergent. 

3. For the proof of Theorem 1 we use induction on« . Since 1 £ s / , so 7 i ( l ) / l ^ l/cc 
evidently holds. Suppose now, that m~lr,(m)sl/iz for /« = 1, •••, n — 1, where 
l < n S i V . Hence we deduce that n~iTl(n) ^ 1/a. Indeed we have 

T1(n) = 2 «(»») = i 2 «(«)+ £«(*), 

where fl,Sn<d,+ 1 . Since 
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so we get 

( 3 . 1 ) r , ( n ) = « + ¿ ' r 1 ( < / y _ 1 - l ) + 7 \ ( » - « , ) = ' 
j= 2 

= n + 2 T i ( d ~ ! ) & ( « » - 1 ) + Ti (« -
</=i 

If H _ 1 r 1 ( « ) s max m'1 T,(m), then n~1T1(n)S\/ix evidently holds. Let us mSn— 1 

n~lTAti) = max m^T^m). 1 ' i SmSn 

now suppose that 

Then from (3. 1) it follows that . 

n n n \i J 

n rl I j- = i ) 

n n n ( n ) 

, Tx(ri) A(n) , . r,(w) 1 . . . and consequently • — — 1> i .e . - holds. n n n n a 

We begin, the proof of Theorem 2. Let a v s N < a y + l . 

a) We have 

S(N,u) = e
i u* ( 0 )+ 2 2. eiu*M+ £ eiuxM = 

j~2 aj— i^n<aj av^n<N 

= 1 + e'u i £(</,._,,«) + eiuS(N—av, u) = 
J = 2 

= 1 + eiu 2 1) + e'"S(N- a v , h). 
<1=2 « 

Since the limit lim x~iA(x) = c exists, so di = o(a,) ( i -oo) , and consequently 

\S(N—a„ u)\/N-*0.. Hence it follows that 
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Let now cp(u) be defined by the relation (2. 11). Then 

( « ) - ? ( « ) ! = (1 + 0(1)) ' 2 <Pd-. («) „ , -dgd d= 2 V Qv— i + 1 
+ 0 ( D 

^ 2 2 
d=2 

dQd(a>-1) — do a + o(l). 

From (2. 8), (2. 9) it follows that the last sum tends to zero as N — independently 
from u . . 

From (2. 11) it follows that <p(u) is a characteristic function. Since q>N(u) and 
consequently q>(u) are periodic functions mod 2n, so q>(u) has a Fourier expansion 

(p{u)= 2 bneinu. 
71= — CO 

Using the uniform convergence of (ps/(u) to (p(u) we have 

j 2n . 2n 
b{= — f q>(u)e~H"du = lim — f (pN(u)e~""du = 

¿11 i • N-oo 277 

1 
- 2 !•= T, for / = 1 , 2 , 
1 nsN 

Furthermore 

b) We have 

¡v-~ 7V + 

0 for / = 0 , - 1 , - 2 , 

2 t , = 2^1 = <P( o) = i. 

? * ( * ) = 2 « H « ) = 2 2 ' ( * 0 ' ) + i)fc 

n̂ JC Oi^xj= 0 

where the dash means that for d j S x < f l i t l we sum over those / fo r whichy 's .v-a , - . 
Hence it follows that 

r t ( * ) = 2" " ¿ ' f t ! = i i t l W - 1 ) = 2 M ¿ ; ^ v ( / - i ) e , W . 

The fulfilment of the relation (2. 13) would follow from the boundedness of 
the sums 7^,(0// (1=1, 2, •••; v = 1, •••, k) by (2. 10) immediately. The boundedness 
of 7"i(x)/x follows from Theorem 1. The proof of the general case is similar and so 
it can be omitted. 

4. Let j / b e the set of square numbers. Introduce the notation log2 x = log logx. 
where the base of the logarithm is 2. 

It is easy to prove that 
(4. 1) cL(ri) ^ log2 « + 5. 
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Indeed, if 
A(x) = maxoc(w), 

nSx 

then from the inequality n — [ / n T S2 / /7 it follows that 

A (A*) r f l + / i ( 2 | ' . v ) . 

Iterating this inequality k times we have 

Let k be the smallest integer for which i.e. fc = [log2 x ]4- l . Since ,4(8) = 4 
we have 

A(x)^\og2 x + 5. 
Set 

Tk(x) = 2 («) and Ak(x) = 2 1«(«) - log2 x\k. 

T h e o r e m 3. We have 

(4.2) Tk(x) = x(\og2 xf + 0(*(log2 xf-% 

(4.3) Ak(x) = 0(x), 

where the constants in the O terms depend on k only. 

P r o o f . It is evident that. (4. 2) follows from (4. 3). For the proof of (4. 3) 
we use induction on k. The relation holds for k = 0. Let now suppose that (4. 3) 
holds for A: = 0, 1, •••, K— 1. Then we deduce the inequality (4. 3) for k = K: 

We have 

^ W s 2 '2 Hr,)-.iog
2
N\

K

= 2 2 H J ) + ^ - ^ g
2
N \

K

 = - 2 B
v
. 

v2SJV v 2 S n < ( v + l ) 2 v 2 S J V j = 0 . . . v s / i V 

Using the inequality 

. . \a + b \ K ^ \ a \ K + 2 i [ K
l ] \ a \ K - l \ b \ l 

and consequently that 
K ( K \ loa 2v ' 

l a 0 ) + 1 — l°g2 N\K ^ | a (y ) - log 2 2v | K 4- 2 L | a ( 7 ) - l o g 2 2 v | ^ - ' log 1 0 g Z 

we obtain 
« i i r l 

log 

log Y n 

log 2v 
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Using our assumption that 2V)<K2V for k ^ K — 1 we get 

vs/jV 
where 

^ f l ' ^ H ^ I T •• • -
Dividing the interval of summation [ l , / ]v] into subintervals of type 

we easily obtain the inequality 

N 
= 1 2l<<2^(il {i0g^ + (i0gV) l 

Hence 

( 4 . 4 ) J K ( J V ) s £ ¿ * ( 2 v ) + o i 
vsfN U o g N j 

follows. 
Introduce now the notation 

AK(N) = E(N)N. . 

We prove that E(N) is bounded; hence the inequality (4. 3) follows for K = K, and! 
this will finish the proof of our theorem. 

Let 

. h = 2 J - ^ 2 J S ( - m ) 0 = 1 . 2 , . . . ) . , 

From (4,4) 

e(JV)-s_L 2 «(2v)2v + c/log N 
N VSYW 

follows with a suitable constant c. Hence 

m a x / ? , . + j ; / ? 2 I + 1 =§ + 

Define the non-decreasing sequence of positive numbers yA, y5, ••• as follows: 
Let 

(4.5) y4 = 7s = + ; y2l = y2l+1 = max yj + y ( / = 3 , . . . ) . 

Clearly, Pj = yj for 4. So it is enough to prove that yn is bounded. Let 

B(x)= 2 yj-
j s * 

From (4. 5) it follows that • • " 

B(2x) s 2B(x) + 2 y w -f c log x. 



Representation of natural numbers 105 

Furthermore from (4. 1) we can easily see that e(N)<n(\og2N)K. Hence /?y<sc(log j)K,. 
and so 

7 w « i ? M + l o g x « ( l o g x ) K 

follows. 

B(x} (lo£r;t)K 

Set ,(p(x) = ——. Then <p(2x) g <p(x) + cl
 B ' . So the sequence 

X X 

<p(2m) (m = 1, 2, • • •) is bounded. Hence B(x) < cx follows for every x. Since {y„} is 
non-decreasing we have 

i.e. ft is bounded. 
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