
Cardinals inaccessible with respect to a function defined 
on pairs of cardinals 

By G. F O D O R and A. MATE in Szeged 

In the present paper we are going to prove a lemma based on the theory, of 
stationary classes with the aid of which a formula can be derived for the cofinality 
number of an arbitrary cardinal. Replacing the particular function occurring on 
the right hand side of this formula by a function variable we are led to a generalization 
of cofinality and thus at last we shall get a generalization of algebraic type of the 
notion of inaccessible cardinals. A simple by-product of our investigations will be 
that in a sense almost every weakly inaccessible cardinal is strongly inaccessible 
too. Our lemma might be of some interest in itself as well. 

N o t a t i o n . In the sequel Greek letters will always denote cardinal numbers 
and the class of all cardinals will be denoted by C. The least ordinal exceeding 
a class H of cardinal numbers will be denoted by sup / / . This is a cardinal number 
unless / / is a proper class; in this latter case sup H=On, On denoting the class 
of all ordinal numbers. -

1. Stationary classes1) 

Here we give a brief sketch of the most important results in the theory of 
stationary sets used below. We do not deal with the generalized form of the theory 
as given by G. FODOR and A . HAJNAL [1]; however this theory might be most illumi-
nating in the understanding of the special theory as well. 

Where the adjective "closed" if used for a subclass of C is meant in the topology 
induced by the natural ordering of C, a subclass of C is said to be stationary if it 
meets every closed proper class contained in C. One of the most important results 
for stationary classes is the following one (see [2], Hilfssatz). 

T h e o r e m 1.1. Suppose that {SJ^ea (H= C) is a sequence of non-empty 
and non-stationary classes and the class {ff,}a£H o/ their first elements, which are 

') A more detailed account of the subject presented Here will be given in the authors' forth-
coming book on stationary classes, regressive functions and their applications. 
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assumed to be mutually distinct, is not stationary either. Then the union class U Sx 
a€H 

is also non-stationary. 

However for later use it seems preferable to formulate this results in terms 
of a regressive function by which we mean a mapping / of a subclass of C into C 
statisfying / ( a ) < a . The equivalence of the next result to Theorem 1. 1 is rather 
obvious (see [2], Satz 2). 

T h e o r e m 1. 2. If the regressive function f is defined on a stationary class then 
there exists a cardinal n such that the class {£: /(£) = fi}, £ running over the domain 
of f , is stationary too. 

Now we derive from this last result a corollary which is already of special 
interest in order to achieve the proof of our main lemma mentioned below. 

C o r o l l a r y 1. 3. Let h(k, an arbitrary mapping of CXC into C. Then the class 

S= { a : 3 (X, 0 (X, £ < o c . & . h 
is not stationary, 

P r o o f . Assuming S to be stationary, by the previous theorem we obtain 
the existence of a cardinal X0 and of a stationary subclass S' of 5 such that for any 
a g . S ' w e h a v e l 0 < a and 

( b o W o , 

so by a repeated application of the preceding theorem we have that there exists 
a cardinal £0 and a stationary class S" Q S' such that a 6 S" implies < a and 
h(X, so S" is not cofinal to C in contradiction to its stationarity. . 

2. The main lemma 

In the sequel h(ct, £) denotes a mapping of C X C into C satisfying 

(2. 1) sup//(a, q) = On 
a 

whichever the cardinal ^ may be. 

We start by proving the following 

L e m m a 4. 1. Define the classes 

P{ol)= h(a, 
6(a) = {¿:£<<x. & .h(a, ^ ^ s u p A ^ , 0}, 

>/<a 

depending on the arbitrary cardinal a. Then we have P(oc) = Q(a) for almost all ocr 

meaning by this latter expression that the exceptional a's form a non-stationary class. 
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P r o o f , (i) Assume that 

Then ¿;<a and a</»(a, sup h(t] ,0, i-e. for some t j < a we have % 
t]<a 

Because of the inequality >/,<!;< a the class of a's of this kind is not stationary, 
according to Corollary 1.3. 

(ii) Suppose that for a stationary class S of a's we have 

Since £ a < a , by Theorem 3.4 we obtain the existence of a cardinal ¿;0 and of a 
stationary class S'QS such that for a w e h a v e = So 

sup/*(>/, f 0 )<A(a , £0) =£ a. 
t]<a • 

Thus there exists a ß0 and a stationary subclass S" of S' such that for a € 5" we have 

supAfa, £0) = ß0-
tj<ac 

Since S" is stationary it is cofinal to C, so our latest equality implieso 

supA(f j , f 0 ) -= j3o<0M, 

contradicting (2. 1). 
Below the notation m i n / / will indicate the first element of the class H. 

In case the class H is empty, then in a natural way we put min H=On. The next 
lemma, which we might call our main lemma, can be easily derived from our preceding 
lemma, so the proof will not be carried out. 

L e m m a 2. 2. Let 
p(a) = min {£:/?(a, 

qr(a) = min {£:/i(a, £)>sup/;(/ j , a)}. 
¡l<a 

Then for almost all a either p (a) = q(i) or p(a), q(a) ^ a holds. 

C o r o l l a r y 2. 3. If a* denotes the least cardinal cofinal to a, then 

a* = min {<!;: of5 > a} 
holds for almost all a. 

P r o o f . As is easy to derive from a classical result of J . K Ö N I G [3], we have 
Thus putting A(a, £) = a4, we obtain 

<2.2) p(a) S a*. 
On the other hand we have 
<2.3) q(x) S a*. -
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as a consequence of the almost obvious equality 

a s = sup 
n<x* 

being valid for every £ <a* . 
Making use of Lemma 2. 2 and the inequalities (2. 2) and (2. 3) we obtain 

that p(a) = a* holds for almost all a, which was to be proved. 

« 3. Inaccessible cardinals 

Now we recall two well-known definitions and will indicate heuristically the 
way which leads us to their generalizations. 

D e f i n i t i o n 3.1. The cardinal number a is weakly inaccessible if it is regular 
(i. e. a* = a) and moreover £ + < a for each £ < a, £ + denoting the least cardinal num-
ber exceeding Thus denoting by / the class of all weakly inaccessible cardinals, 

our definition may be written in a more formal way: 
6 

D e f i n i t i o n 3.2. The cardinal number a is strongly inaccessible, otherwise 
said a £ J , if a £ l and for any I , £ < a the inequality holds. Formally 

According to Corollaiy 2. 3 we can replace a* by min {£,: a ^ ^ a } for almost 
all a. Then the condition a* = a in Definition 3. 1 turns into the one 

(V'c) (Ç -Of . —- . 3T- z). 
So if we define the class 

7 = { a : ( V £ ) . a « + = § a } , 

it is easily seen that the classes / ' and I are almost equal, i. e. their symmetrical 
difference / ' A / is not stationary. Thus it is obvious that for 

J' = = a)} 

the class / ' A J is n o t s ta t ionary ei ther . 
As seen in the definitions of I ' and 7 ' the function is crucial there which, 

replaced by an arbitrary mapping h(X, £) of CxC into C, allows us to generalize, 
the above concepts in a suitable way: 

D e f i n i t i o n 3.3. a £ l h i .e . a is weakly ¿-inaccessible if h( a, for each 
Formally Ih = { a : ( V O ( ^ < Q t - £ )S a )} -

D e f i n i t i o n 3. 4. u£Jh i. e. a is strongly //-inaccessible, if a£lh and for each 
we have Formally J„ = {ct£lk:(VX, £)(A, .h(X, £)<«)}-
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These two definitions make it clear that there is no essential difference between 
weakly and strongly inaccessible cardinals. More precisely, on account of Corollary 
1. 3 we have 

T h e o r e m 3. 5. The class Ih — Jh is not stationary. 

Restating this result in the particular case h(a, = and taking into con-
sideration that the symmetrical differences / ' A / and / ' A / a r e non-stationary, we get 
that the class I—J is not so either, i; e. almost all weakly inaccessible cardinals are 
strongly inaccessible too. 
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