On semigroups which are semilattices of groups

By SÁNDOR LAJOS in Budapest

Let S be a semigroup. 1) We shall say that S has property (M) if the relation

$$(1) L \cap R = LR$$

holds for each left ideal L and for each right ideal R of S. Furthermore we say that S has property (L) resp. (R) if the relation

$$(2) L_1 \cap L_2 = L_1 L_2$$

resp.

$$(3) R_1 \cap R_2 = R_1 R_2$$

holds for every pair of left and right ideals of S, respectively.

Recently the author proved that a semigroup S having both properties (L) and (R) is a disjoint union of groups. In this note we prove that a semigroup S with property (M) is a semilattice of groups. It may also be proved that a semigroup having both properties (L) and (R) is a semilattice of groups.

First we prove some results concerning a semigroup having the property (M).

Theorem 1. In a semigroup S having property (M) every one-sided ideal is a two-sided ideal.

Proof. Let S be a semigroup with property (M), and suppose that L is an arbitrary left ideal of S. Then by (1) we have

$$L = L \cap S = LS$$

that is, L is also a right ideal of S. Therefore L is a two-sided ideal of S, as we stated. Similarly, any right ideal R of S is also a two-sided ideal, because of

$$R = S \cap R = SR$$
.

Theorem 2. Any semigroup with property (M) is a normal semigroup.

¹⁾ We adopt the terminology of CLIFFORD and PRESTON [2]. See also LIAPIN [6] and SZÁSZ [8].

134 S. Lajos

Proof. Let S be a semigroup having the property (M), and a be an arbitrary element of S. Then (1) implies that

$$aS = S \cap aS = SaS.$$

Similarly,

$$Sa = Sa \cap S = SaS.$$

The relations (4) and (5) imply

$$aS = Sa$$

for each element a in S, i.e., S is a normal semigroup. (See [7]).

Theorem 3. Any semigroup S having property (M) is regular. 2

Proof. Let S be a semigroup with property (M). In a recent note [4] the author proved that a normal semigroup is regular if and only if every left ideal L of S is idempotent, i.e. $L^2 = L$. By Theorem 2, S is normal. If A is a left ideal of S then by Theorem 1, A is a two-sided ideal of S, and the relation (1) implies that

$$A = AA$$

in case of L=R=A. Therefore any ideal of S is idempotent, which proves the regularity of S.

Now we are ready to prove the following result:

Theorem 4. Any semigroup S with property (M) is a semilattice of groups.

Proof. Let S be a semigroup having the property (M). First we show that for every element a of S

$$(7) a \in Sa^2 \cap a^2 S$$

holds. By Theorem 3 we have $a \in aSa$. But by Theorem 2, the semigroup S is normal, i.e. aS = Sa for each element a in S. Hence $aSa = a^2S = Sa^2$. Therefore the inclusion (7) follows.

Secondly we show that the idempotent elements of S commute, that is, if e and f are idempotent elements of S, then

$$ef = fe$$

holds. But this is an easy consequence of a result due to SCHWARZ [7] in virtue of which the idempotent elements of a normal semigroup lie in the center.

Now (7) and (8) imply that S is a semilattice of groups, by a result of CROISOT [3] (see also CLIFFORD [1], Theorem 8).

The following result may be proved analogously:

²) More generally, a semigroup S having property (M) is an inverse semigroup. This follows from Theorems 2 and 3.

Theorem 5. Suppose that the semigroup S has properties (L) and (R). Then S is a semilattice of groups.

Corollary. If S is a semigroup having both properties (L) and (R) then S is a union of disjoint groups.

This is an easy consequence of Theorem 5, and was recently proved by the author in [5].

References

- [1] A. H. CLIFFORD, Bands of semigroups, Proc. Amer. Math. Soc., 5 (1954), 499-504.
- [2] A. H. CLIFFORD and G. B. Preston, *The algebraic theory of semigroups*. I—II (Providence, 1961; 1967).
- [3] R. Croisot, Demi-groupes inversifs et demi-groupes réunions de demi-groupes simples, Ann. Sci. École Norm. Sup., 70 (1953), 361—379.
- [4] S. LAJOS, A criterion for Neumann regularity of normal semigroups, *Acta Sci. Math.*, **25** (1964), 172—173.
- [5] S. Lajos, A note on completely regular semigroups, Acta Sci. Math., 28 (1967), 261-265.
- [6] Е. С. Ляпин, Полугруппы (Москва, 1960).
- [7] Š. Schwarz, A theorem on normal semigroups, Czechosl. Math. J., 10 (85), (1960), 197-200.
- [8] G. Szász, Introduction to lattice theory (Budapest, 1963).

(Received January 29, 1968)