On density of transitive algebras

By ERIC A. NORDGREN in Durham (N. H., U.S.A.), HEYDAR RADJAVI and PETER ROSENTHAL in Toronto (Canada)

1. Introduction

In the following an *algebra* is a weakly closed algebra (containing the identity) of bounded linear operators on a Hilbert space \mathfrak{H} . An algebra \mathscr{A} is *transitive* if the only (closed) subspaces of \mathfrak{H} invariant under every operator in \mathscr{A} are $\{0\}$ and \mathfrak{H} . If \mathfrak{H} is finite-dimensional, then the only transitive algebra on \mathfrak{H} is $\mathscr{B}(\mathfrak{H})$, the algebra of all operators on \mathfrak{H} , by BURNSIDE's Theorem. It is not known whether or not there are transitive algebras on $\mathfrak{H}(\mathfrak{H})$ if \mathfrak{H} is infinite-dimensional.

ARVESON [1] has shown that a transitive algebra which contains a maximal abelian von Neumann algebra is $\mathscr{B}(\mathfrak{H})$. In the same paper ARVESON shows that a transitive algebra which contains the unilateral shift of multiplicity one is $\mathscr{B}(\mathfrak{H})$. In this note we show that a transitive algebra containing a weighted shift of a certain type (a *Donoghue operator*, defined below) or a finite rank operator, must be $\mathscr{B}(\mathfrak{H})$. These results will follow from a more general result given below.

2. Sufficient conditions that a transitive algebra be $\mathscr{B}(\mathfrak{H})$

If A is an operator on \mathfrak{H} , let $A^{(n)}$ denote the operator $A \oplus ... \oplus A$ (n copies) on $\mathfrak{H} \oplus ... \oplus \mathfrak{H}$ (n copies). If \mathscr{A} is an algebra on \mathfrak{H} let $\mathscr{A}^{(n)} = \{A^{(n)} : A \in \mathscr{A}\}$. The following lemma is the main tool developed by ARVESON for studying transitive algebras. The proof of the lemma is implicitly contained in the proof of the main theorem of [1]; (for an alternate exposition of the proof see the proof of Theorem 1 of [5]).

Lemma. Let \mathscr{A} be a transitive algebra on \mathfrak{H} having the following property: whenever, for any n, $\{T_i\}_{i=1}^n$ is a collection of (not necessarily bounded) operators with a common dense domain \mathfrak{D} such that

$$\{(x, T_1 x, \cdots, T_n x) \colon x \in \mathfrak{D}\}$$

is an invariant subspace of $\mathcal{A}^{(n+1)}$, then the T_i are each scalar multiples of the identity operator. Then $\mathcal{A} = \mathcal{B}(\mathfrak{H})$.

This lemma can be strengthened as follows.

Theorem. Let \mathscr{A} be a transitive algebra on \mathfrak{H} having the following property: whenever, for any n, $\{T_i\}_{i=1}^n$ is a collection of (not necessarily bounded) operators with a common dense domain \mathfrak{D} such that

$$\{(x, T_1 x, \cdots, T_n x) \colon x \in \mathfrak{D}\}$$

is an invariant subspace of $\mathscr{A}^{(n+1)}$, then each T_i has an eigenvector (in \mathfrak{D}). Then $\mathscr{A} = \mathscr{B}(\mathfrak{H})$.

Proof. Let $\mathfrak{M} = \{(x, T_1x, ..., T_nx): x \in \mathfrak{D}\}$ be an invariant subspace of $\mathscr{A}^{(n+1)}$. By the above lemma it sufficies to show that each T_i is a multiple of the identity. By hypothesis there is a unit vector x_1 in \mathfrak{D} such that $T_1x_1 = \lambda_1x_1$ for some λ_1 . Let $\mathfrak{D}_1 = \{x \in \mathfrak{D}: T_1x = \lambda_1x\}$. Then \mathfrak{D}_1 is an invariant linear manifold of \mathscr{A} , since if $x \in \mathfrak{D}_1$ and $A \in \mathscr{A}$, then $T_1Ax = AT_1x$ (by the invariance of \mathfrak{M} under $\mathscr{A}^{(n+1)}$), and hence $T_1Ax = \lambda_1Ax$.

Now let $\mathfrak{M}_1 = \{(x, \lambda_1 x, T_2 x, ..., T_n x): x \in \mathfrak{D}_1\}$. Then \mathfrak{M}_1 is closed and is an invariant subspace of $\mathscr{A}^{(n+1)}$ contained in \mathfrak{M} . Also \mathfrak{D}_1 is an invariant linear manifold of \mathscr{A} and is therefore dense in \mathfrak{H} . Thus $T_2|\mathfrak{D}_1$ has an eigenvector by hypothesis. If λ_2 is the corresponding eigenvalue, let

$$\mathfrak{D}_2 = \{ x \in \mathfrak{D}_1 : T_2 x = \lambda_2 x \},\$$

and let $\mathfrak{M}_2 = \{(x, \lambda_1 x, \lambda_2 x, T_3 x, ..., T_n x): x \in \mathfrak{D}_2\}$. Then \mathfrak{M}_2 is an invariant subspace of $\mathscr{A}^{(n+1)}$.

We can continue this procedure and get a linear manifold $\mathfrak{D}_n \subset \mathfrak{D}$ and complex numbers $\lambda_1, \ldots, \lambda_n$ such that the subspace

$$\mathfrak{M}_n = \{(x, \lambda_1 x, \cdots, \lambda_n x) \colon x \in \mathfrak{D}_n\}$$

is an invariant subspace of $\mathscr{A}^{(n+1)}$ other than $\{0\}$. Then \mathfrak{D}_n is an invariant linear manifold of \mathscr{A} and therefore is dense in \mathfrak{H} . Also

$$\mathfrak{D}_n = \{x : (x, \lambda_1 x, \cdots, \lambda_n x) \in \mathfrak{M}\}$$

and is therefore closed. Hence $\mathfrak{D}_n = \mathfrak{H}$ and, since $\mathfrak{D} \supset \mathfrak{D}_n$, $\mathfrak{D} = \mathfrak{H}$ and $T_i = \lambda_i I$ on \mathfrak{H} .

Corollary 1. Let \mathcal{A} be a transitive algebra. If there is an operator A in \mathcal{A} such that:

(i) every eigenspace of A is one dimensional, and

(ii) for each n, every non-zero invariant subspace of $A^{(n)}$ contains an eigenvector of $A^{(n)}$,

then $\mathcal{A} = \mathcal{B}(\mathfrak{H})$.

Transitive algebras

Proof. We use the above theorem. Let

$$\mathfrak{M} = \{(x, T_1 x, \cdots, T_n x) \colon x \in \mathfrak{D}\}$$

be an invariant subspace of $\mathcal{A}^{(n+1)}$.

By hypothesis there is a vector x_0 in \mathfrak{D} such that $(x_0, T_1x_0, ..., T_nx_0)$ is an eigenvector of $A^{(n+1)}$. Then x_0 is an eigenvector of A; suppose that $Ax_0 = \lambda x_0$. Then for each *i*, $AT_ix_0 = \lambda T_ix_0$. The fact that the eigenspace of A is one-dimensional implies that for each *i* there is a λ_i such that $T_ix_0 = \lambda_i x_0$.

Corollary 2. The only transitive algebra which contains a non-zero finite rank operator is $\mathcal{B}(\mathfrak{H})$.

Proof. Let \mathscr{A} be a transitive algebra containing a non-zero finite rank operator A. We use the above theorem again.

Let $\mathfrak{M} = \{(x, T_1x, ..., T_nx): x \in \mathfrak{D}\}$ be an invariant subspace of $\mathscr{A}^{(n+1)}$. We first show that the range of A is contained in \mathfrak{D} . For this let y = Ax. Since \mathfrak{D} is dense in \mathfrak{H} , we can choose a sequence $\{x_k\} \subset \mathfrak{D}$ such that $x_k \rightarrow x$. Then Ax_k is in the range of A and in \mathfrak{D} for each k. But the intersection of the range of A and \mathfrak{D} is a finite-dimensional subspace and therefore $Ax = \lim_{k \to \infty} Ax_k$ is in \mathfrak{D} .

Now the fact that $AT_i = T_i A$ for each *i* implies that the range of A is invariant under each T_i . Hence each T_i has a finite-dimensional invariant subspace and therefore has an eigenvector.

3. Algebras containing Donoghue operators

The above has an interesting application to a special case. A Donoghue operator is an operator A such that there is an orthonormal basis $\{e_i\}_{i=0}^{\infty}$ for \mathfrak{H} and a squaresummable sequence $\{a_n\}_{n=1}^{\infty}$ of monotone decreasing positive numbers such that $Ae_0 = 0$ and $Ae_i = a_ie_{i-1}$ for i > 0. It is well known (see [3], for example) that the non-trivial invariant subspaces of a Donoghue operator are the subspaces $\mathfrak{M}_i = \bigvee_{j=0}^{i} \{e_j\}$ for non-negative integers *i*.

Corollary 3. If \mathscr{A} is a transitive algebra containing a Donoghue operator then $\mathscr{A} = \mathscr{B}(\mathfrak{H})$.

Proof. Let A be the Donoghue operator in \mathscr{A} . To apply Corollary 1 we need only show that A satisfies conditions (i) and (ii) of the hypothesis. It is trivial to see that A satisfies (i); 0 is the only eigenvalue of A, and the corresponding eigenvectors are all multiplies of e_0 . The proof that A satisfies (ii) was given in [6]; it involves a computation which we outline below. (A stronger result, that every

2 A .

invariant subspace of $A^{(n)}$ is spanned by the finite-dimensional invariant subspaces that it contains, has been proven in [4].)

To see that A satisfies (ii), fix n and let $S = A^{(n)}$. Let \mathfrak{M} be any invariant subspace of S other than $\{0\}$ and let $(x_1, ..., x_n)$ be a non-zero vector in \mathfrak{M} . Let $x_j = \sum_{i=0}^{\infty} \alpha_{i,j} e_i$ for j = 1, ..., n. If the sequence $\{\alpha_{i,j}\}_{i=0}^{\infty}$ has only finitely many non-zero terms for every j, then the invariant subspace of S generated by $(x_1, ..., x_n)$ is finite-dimensional and thus contains an eigenvector. We therefore can assume that, for each N, the number

$$\alpha_N = \max\{|\alpha_{i,j}|: i \ge N; j = 1, \dots, n\}$$

is greater than 0. Then for each N there is an i(N) greater than or equal to N and a j(N) such that

$$\alpha_N = |\alpha_{i(N), j(N)}|$$

For each fixed N

$$\frac{1}{\alpha_{i(N),j(N)}a_{i(N)}\cdots a_1}S^{i(N)}(x_1,\cdots,x_n)$$

is equal to

$$\left(\frac{\alpha_{i(N),1}}{\alpha_{i(N),j(N)}}e_{0}, \frac{\alpha_{i(N),2}}{\alpha_{i(N),j(N)}}e_{0}, \cdots, \frac{\alpha_{i(N),n}}{\alpha_{i(N),j(N)}}e_{0}\right) + (h_{N,1}, \cdots, h_{N,n})$$

where

$$h_{N,j} = \sum_{i=i(N)+1}^{\infty} \frac{\alpha_{i,j}a_i \cdots a_{i-i(N)+1}}{\alpha_{i(N),j(N)}a_{i(N)} \cdots a_1} e_{i-i(N)}.$$

It is easily shown that, for each *j*, $h_{N,j}$ approaches 0 as *N* approaches infinity (cf. [3], p. 304). Some number j_0 between 1 and *n* must occur infinitely often as a value j(N). Also for each fixed *j* the sequence $\left\{\frac{\alpha_{i(N), j}}{\alpha_{i(N), j(N)}}\right\}_{N=1}^{\infty}$ is contained in the unit disk, and hence has a subsequence converging to a number β_j . Choosing an appropriate subsequence of $\{N\}$ we see that the eigenvector $(\beta_1 e_0, \beta_2 e_0, ..., \beta_n e_0)$ of *S* (with $\beta_{i_0} = 1$) lies in \mathfrak{M} .

The following corollary seems surprising.

Corollary 4. If A is a Donoghue operator and B is any operator without point spectrum, then the algebra generated by A and B is $\mathcal{B}(\mathfrak{H})$.

Proof. If B has no point spectrum, then A and B have no common invariant subspaces since every invariant subspace of A is finite-dimensional. Hence the algebra generated by A and B satisfies the hypotheses of Corollary 3.

Transitive algebras

4. Remarks

The results of section 3 remain valid if the definition of a Donoghue operator is extended to mean any unilateral weighted shift operator whose sequence of weights (the sequence $\{a_j\}$) is monotone decreasing in absolute value, non-zero, and *p*summable for some p > 0. The proof of Corollary 3 remains essentially the same for this case.

Another application of the theorem is to transitive algebras containing operators of the form $A \oplus (A + \lambda)$ where A is a Donoghue operator and λ is a non-zero complex number. Property (ii) for such an operator follows from the fact that the spectra of A and $A + \lambda$ are "sufficiently disjoint" to imply that every invariant subspace of $A \oplus (A + \lambda)$ is the direct sum of an invariant subspace of A and an invariant subspace of $A + \lambda$ (see [2]).

In view of Corollary 3 and ARVESON's result about the unilateral shift it seems likely that the following is true.

Conjecture. A transitive algebra containing a weighted shift with non-zero weights is $\mathcal{B}(\mathfrak{H})$.

Corollary 2 suggests that one might be able to show that a transitive algebra which contains a non-zero compact operator must be $\mathscr{B}(\mathfrak{H})$. Such a theorem would undoubtedly be extremely difficult to prove however. The corollaries of such a theorem would be striking: for example, one corollary would be the result that if A is a compact operator and B is any operator that commutes with A, then A and B have a common non-trivial invariant subspace. In particular this would prove that every operator which commutes with a compact operator has a non-trivial invariant subspace.

Note that ARVESON's lemma, the above Theorem, and Corollaries 1 and 2 remain valid if \mathfrak{H} is a Banach space and the algebras considered are strongly closed. It can then be shown that Corollaries 3 and 4 hold for Donoghue operators on l^p for 1 .

References

[1] W. B. ARVESON, A density theorem for operator algebras, Duke Math. J., 34 (1967), 635-647.

- [2] T. CRIMMINS and P. ROSENTHAL, On the decomposition of invariant subspaces, Bull. A. M. S., 73 (1967), 97–99.
- [3] P. R. HALMOS, A Hilbert space problem book (Princeton, 1967).
- [4] E. A. NORDGREN, Invariant subspaces of a direct sum of weighted shifts, Pac. J. Math., 27 (1968), 589-598.
- [5] H. RADJAVI and P. ROSENTHAL, On invariant subspaces and reflexive algebras (to appear in Amer. J. Math.).

[6] P. ROSENTHAL, On lattices of invariant subspaces, Dissertation, University of Michigan (1967).

UNIVERSITY OF NEW HAMPSHIRE, UNIVERSITY OF TORONTO

(Received Aug. 21, 1968)

2*