On interpolation functions. III

By J. PEETRE in Lund (Sweden)

In several previous notes (see Peetre [8], [9], [10]; see also Goulaouic [5]) we found various conditions, both necessary and sufficient, for a function to be an interpolation function, of given power $p, 1<p<\infty-$ a notion which has its origin in the work of Foiss-Lions [4]. In particular what concerns non-exact interpolation functions our results were almost complete, while as for exact interpolation functions the problem is, up to our knowledge, still essentially open (unless $p=2$, see Donoughue [3]). This note is devoted to the observation that the methods of [8], [9], [10] are sufficiently powerful to settle the question not only in the limiting case $p=1$ (and, by a conveniently modified argument, the case $p=\infty$ too), which is fairly obvious (see [5]), but also in two additional cases of a quite different nature: $1^{\circ} 0<p<1,2^{\circ} 0<p<\infty$ and, in place of the field of real numbers R, a general local field F (e.g. the field of P-adic numbers Q_{P}, P being any (rational) prime number). In case 1° we thus have to leave the realm of Banach spaces and admit "quasi-Banach", spaces; in case 2° we encounter analogous vector spaces over the field F. The possibility of both types of extensions, when dealing with interpolation in general, was first realized by Krée [6]. In fact it is possible to treat both cases simultanously within the framework of what we call " ϱ-normed additive groups", with a given $\varrho, 0<\varrho \leqq \infty$, and p ranging in the interval $0<p \leqq \varrho$. Clearly $\varrho=1$ in case 1° and $\varrho=\infty$ in case 2°. (It should be noted that there are also other parallels between the two cases. E.g. to Day's theorem [2] to the effect that (in general) ($\left.L^{p}\right)^{\prime}=0$ if $p<1$ (case 1°) there corresponds $\left(L^{p}\right)^{\prime}=0$ if $p<\infty$ (case 2 2°): there is (in general) no integral for functions with values in F (see Monna [7]).

Let G be an additive (Abelian) group. By a ϱ-norm, where $0<\varrho \leqq \infty$, in G we mean a mapping $G \ni a \rightarrow\|a\| \in R_{+}$such that
a) $\|a\|=0 \Leftrightarrow a=0$,
b) $\|a+b\| \leqq\left(\|a\|^{e}+\|b\|^{e}\right)^{1 / e}$ (i.e. $\|a+b\| \leqq \max (\|a\|,\|b\|) \quad$ if $\left.\quad \varrho=\infty\right)$.

If $\varrho<\infty$ then $a \rightarrow\|a\|$ is a ϱ-norm if and only if $a \rightarrow\|a\|^{\circ}$ is a 1 -norm. Therefore there are really only two cases: $1^{\circ} \varrho=1$ and $2^{\circ} \varrho=\infty$. But it is, from the notational point
of view, convenient not to pretend of this fact. An additive group G in which a ϱ-norm is singled out we call a ϱ-normed additive group. The principal example is of course when G is a vector space over a " ϱ-valued" field F. If $F=R$ with its usual valuation (absolute value) we must have $\varrho \leqq 1$ (unless $G=0$) but if F is a local field (say, the field of P-adic numbers Q_{P}) the case $\varrho=\infty$ of course can occur (see [7]). If π is an endomorphism of G (i.e. $\pi(a+b)=\pi(a)+\pi(b))$ we say that π is bounded with bound M if

$$
\begin{equation*}
\|\pi a\| \leqq M\|a\| \tag{1}
\end{equation*}
$$

The additive group of bounded endomorphisms of G we denote by $\mathscr{B}(G)$.
Let X be a locally compact space provided with a positive measure μ, ζ a positive μ-measurable function on X, G a complete ϱ-normed additive group, $0<p<\infty$. Denote by $\mathscr{K}=\mathscr{K}(G)$ the space of bounded μ-measurable functions on X with values in G and compact support. If $a \in \mathscr{K}$ we set

$$
\begin{equation*}
\|a\|_{\zeta}=\|a\|_{L \xi}=\left[\int\left(\zeta(x)\|a(x)\|_{X}^{p} d \mu\right]^{1 / p}\right. \tag{2}
\end{equation*}
$$

This is clearly a ϱ_{1}-norm in \mathscr{K}, with $\varrho_{1}=\min (\varrho, p)$. The completion of \mathscr{K} in this ϱ_{1}-norm we denote by $L_{\xi}^{p}=L_{\zeta}^{p}(G)$. A great portion of the theory of L^{p} spaces with values in a Banach space E (over R), as developped e.g. in Bourbaki [1], chap. IV, can be carried over to the present case, L^{p} spaces with values in a complete ϱ-normed additive group G (and weight function ζ). But if $p<\varrho$, as we have already remarked, there is (in general) no integral (see [7]).

Now we come to our main definition. We say that a function $H=H\left(z_{0}, z_{1}\right)$, defined, continuous, and positive for $z_{0}>0, z_{1}>0$, is an exact interpolation function, of power p, with respect to G, if for any $X, \mu, \zeta_{0}, \zeta_{1}$ it follows from $\pi \in \mathscr{B}\left(L_{\zeta_{0}}^{p}\right) \cap \mathscr{B}\left(L_{\zeta_{1}}^{p}\right)$ that $\pi \in \mathscr{B}\left(L_{\zeta}^{p}\right)$, with $\zeta=H\left(\zeta_{0}, \zeta_{1}\right)$ and

$$
\begin{equation*}
M \leqq \max \left(M_{0}, M_{1}\right) \tag{3}
\end{equation*}
$$

for the three bounds M_{0}, M_{1}, M involved. We consider here only functions H which moreover are homogeneous of degree 1 . We can thus write

$$
H\left(z_{0}, z_{1}\right)=z_{0} h\left(z_{1} / z_{0}\right)
$$

where h is uniquely determined by H.
Our main result now reads:
Theorem. Assume that H is an exact interpolation function of power p, with respect to a complete ϱ-normed additive group G satisfying the condition:
(*) For every $\varepsilon>0$ there exists a positive number $\lambda<\varepsilon$ and an endomorphism χ of G such that $\|\chi(a)\|=\lambda\|a\|$.
Then $\varphi(\sigma)=\left(h\left(\sigma^{1 / p}\right)\right)^{p}$ is concave. If $p \leqq \varrho$ this condition is also sufficient for H to be an exact interpolation function of power p, with respect to any. G.

Remark. If G is a vector space over a field F one can take χ in (*) to be multiplication with a suitable $c \in F$. E.g. if $F=Q_{P}$ we may take c to be a power of P.

Proof (necessity). As in [9], p. 170, we take X to be the set of $n+1$ points x, x_{1}, \ldots, x_{n} and assume that μ to each of these points assigns the mass 1. Furthermore we take $\zeta_{0} \equiv 1$ and $\zeta_{1}(x)=z, \zeta_{1}\left(x_{i}\right)=z_{i}(i=1, \ldots, n)$ where

$$
\begin{equation*}
z^{p}=\frac{1}{n}\left(z_{1}^{p}+\cdots+z_{n}^{p}\right) \tag{4}
\end{equation*}
$$

For a given $\varepsilon>0$ we choose λ and χ as in (*) and take n to be the integer part of $1 / \lambda^{p}$, i.e. $n \leqq 1 / \lambda^{p}<n+1$ or

$$
\begin{equation*}
1-\varepsilon^{p}<1-\lambda^{p}<n \lambda^{p} \leqq 1 \tag{5}
\end{equation*}
$$

We define π by

$$
\pi a(x)=0, \pi a\left(x_{i}\right)=\chi(a(x)) \quad(i=1, \ldots, n)
$$

For the three bounds of π we have then (using the condition on χ in (*))
$M_{0}=\lambda n^{1 / p}, \quad M_{1}=\lambda \frac{1}{z}\left[z_{1}^{p}+\cdots+z_{n}^{p}\right]^{1 / p}, \quad M=\lambda \frac{1}{h(z)}\left[\left(h\left(z_{1}\right)\right)^{p}+\cdots+\left(h\left(z_{n}\right)\right)^{p}\right]^{1 / p}$ or, in view of (4) and (5),

$$
M_{0} \leqq 1, \quad M_{1} \leqq 1, \quad M>\left(1-\varepsilon^{p}\right)^{1 / p} \frac{1}{h(z)}\left\{\frac{1}{n}\left[\left(h\left(z_{1}\right)\right)^{p}+\cdots+\left(h\left(z_{n}\right)\right)^{p}\right]\right\}^{1 / p}
$$

From (3) it follows now

$$
\left(1-\varepsilon^{p}\right) \frac{1}{n}\left[\left(h\left(z_{1}\right)\right)^{p}+\cdots+\left(h\left(z_{n}\right)\right)^{p}\right]<(h(z))^{p}
$$

or if we set $\sigma_{i}=z_{i}^{p}(i=1, \ldots, n)$ and use (4) again

$$
\left(1-\varepsilon^{p}\right) \frac{\varphi\left(\sigma_{1}\right)+\cdots+\varphi\left(\sigma_{n}\right)}{n}<\Phi\left(\frac{\sigma_{1}+\cdots+\sigma_{n}}{n}\right)
$$

Assume for simplicity that n is even, say $n=2 m$. Then we may take $\sigma_{i}=\sigma$ if $i=1, \ldots, m$ and $\sigma_{i}=\tau$ if $i=m+1, \ldots, n$. It follows that

$$
\left(1-\varepsilon^{p}\right) \frac{\Phi(\sigma)+\Phi(\tau)}{2}<\Phi\left(\frac{\sigma+\tau}{2}\right)
$$

or, since $\varepsilon>0$ was arbitrary,

$$
\frac{\Phi(\sigma)+\Phi(\tau)}{2} \leqq \Phi\left(\frac{\sigma+\tau}{2}\right)
$$

This proves the concavity of φ.
Proof (sufficiency). Let us set (see [8])

$$
K_{p}(t, a)=\inf _{a=a_{0}+a_{1}}\left(\left\|a_{0}\right\|_{\xi_{0}}^{p}+t^{p}\left\|a_{1}\right\|_{\xi_{1}}^{p}\right)^{1 / p}
$$

where $0<t<\infty$ and $a \in L_{\xi_{0}}^{p}+L_{\xi_{1}}^{p}$. It is readily seen, using (1), that

$$
K_{p}(t, \pi a) \leqq \max \left(M_{0}, M_{1}\right) K_{p}(t, a) .
$$

Thus if we can find a representation of the form

$$
\begin{equation*}
\|a\|_{\xi}=\Phi\left[K_{p}(t, a)\right] \tag{6}
\end{equation*}
$$

with a functional $\Phi[\varphi]$ which is monotone and homogeneous of degree 1 , we are through, because we then get

$$
\|\pi a\|_{\zeta}=\Phi\left[K_{p}(t, \pi a)\right] \leqq \max \left(M_{0}, M_{1}\right) \Phi\left[K_{p}(t, a)\right]=\max \left(M_{0}, M_{1}\right)\|a\|_{\zeta}
$$

which leads to (3). By (2) we obtain

$$
\begin{gather*}
{\left[K_{p}(t, a)\right]^{p}=\inf \int_{X}\left[\left(\zeta_{0}(x)\left\|a_{0}(x)\right\|\right)^{p}+\left(t \zeta_{1}(x)\left\|a_{1}(x)\right\|\right)^{p}\right] d \mu=} \tag{7}\\
\quad=\int_{X} \inf \left[\left(\zeta_{0}(x)\left\|a_{0}(x)\right\|\right)^{p}+\left(t \zeta_{1}(x)\left\|a_{1}(x)\right\|\right)^{p}\right] d \mu .
\end{gather*}
$$

We claim that (if $p \leqq \varrho$)

$$
\begin{equation*}
\inf \left[\left(\zeta_{0}(x)\left\|a_{0}(x)\right\|\right)^{p}+\left(t \zeta_{1}(x)\left\|a_{1}(x)\right\|\right)^{p}\right]=\left[\min \left(\zeta_{0}(x), t \zeta_{1}(x)\right)\|a(x)\|\right]^{p} . \tag{8}
\end{equation*}
$$

Indeed we have, by the " ϱ-triangle inequality" and using the fact that $p \leqq \varrho$,

$$
\begin{gathered}
\min \left(\zeta_{0}(x), t \zeta_{1}(x)\right)\|a(x)\| \leqq\left[\left(\zeta_{0}(x)\left\|a_{0}(x)\right\|\right)^{e}+\left(t \zeta_{1}(x)\left\|a_{1}(x)\right\|\right)^{e}\right]^{1 / e} \leqq \\
\leqq\left[\left(\zeta_{0}(x)\left\|a_{0}(x)\right\|\right)^{p}+\left(t \zeta_{1}(x)\left\|a_{1}(x)\right\|^{p}\right)\right]^{1 / p} .
\end{gathered}
$$

This leads to " \geqq " in (8). But by considering the special decomposition $a_{0}=a$, $a_{1}=0$ or $a_{0}=0, a_{1}=a$, depending on the value of t, we see that the corresponding lower bound is attained. Thus we get effectively " $="$ in (8). Inserting next (8) in (7) we arrive at the formula

$$
\begin{equation*}
K_{p}(t, a)=\|a\|_{\min \left(50, t_{1}\right)} . \tag{9}
\end{equation*}
$$

Now every concave function φ admits the representation (see [9])

$$
\varphi(\sigma)=C_{0}+C_{1} \sigma+\int_{0}^{\infty} \min (1, \tau \sigma) d \xi(\tau)
$$

where C_{0} and C_{1} are positive constants and ξ is a positive measure on $(0, \infty)$. It follows that

$$
\left(H\left(\zeta_{0}, \zeta_{1}\right)\right)^{p}=C_{0} \zeta_{0}^{p}+C_{1} \zeta_{1}^{p}+\int_{0}^{\infty}\left(\min \left(\zeta_{0}, t \zeta_{1}\right)\right)^{\dot{p}} d \xi^{p}\left(t^{p}\right)
$$

or, by (9), with $d \alpha(t)=d \xi\left(t^{p}\right)$,

$$
\begin{equation*}
\|a\|_{5}=\left[C_{0}\|a\|_{\xi_{0}}^{p}+C_{1}\|a\|_{\xi_{1}}^{p}+\int_{0}^{\infty}\left(K_{p}(t, a)\right)^{p} d \alpha(t)\right]^{1 / p} \tag{10}
\end{equation*}
$$

Since, by (9),

$$
\|a\|_{\zeta_{0}}=\lim _{t \rightarrow \infty} K_{p}(t, a), \quad\|a\|_{\zeta_{1}}=\lim _{t \rightarrow 0} \frac{1}{t} K_{p}(t, a)
$$

(10) is a representation of the desired type (6).

Remark. In conclusion we remark that the above result probably also can be extended to the case when not only the weight function ζ but also p is a varied, à la STEIN—Weiss [12] (i.e. we have spaces $L_{\zeta_{0}}^{p_{0}}$ and $L_{\zeta_{1}}^{p_{1}}$ in place of just $L_{\zeta_{0}}^{p}$ and $L_{\zeta_{1}}^{p}$), by making use of the corresponding ideas in Peetre [11].

References

[1] N. Bourbaki, Intégration (Paris, 1952).
[2] M. M. Day, The spaces L^{p} with $0<p<1$, Bull. Amer. Math. Soc, 46 (1940), 816-823.
[3] W. Donoghue, The interpolation of quadratic norms, Acta Math., 118 (1967), 251-270.
[4] C. Foiaş-J. L. Lio ns, Sur certains théorèmes d'interpolation, Acta Sci. Math., 22 (1961), 269-2821.
[5] C. Goulaouic, Prol ongements de foncteurs d'interpolation et applications, Ann. Inst. Fourier, 18 (1968), 1-98.
[6] P. Krée, Interpolation d'espaces qui ne sont ni normés, ni complets. Applications, Am. Inst. Fourier, 17 (1968), 137-174.
[7] A. Monna, Linear topological spaces over non-Archimedean valued fields, Proceedings of a Conference on Local Fields, Driebergen, 1967 (Berlin-Heidelberg-New York, 1967).
[8] J. Peetre, On an interpolation theorem of Foiaş and Lions, Acta Sci. Math., 25 (1964), 255-261.
[9] ——— On interpolation functions, Acta Sci. Math., 27 (1966), 167-171.
[10]- On interpolation functions. II, Acta Sci. Math., 29 (1968), 91-92.
[11] ——_ A new approach in interpolation spaces (to appear in Studia Math.).
[12] E. M. Stein-G. Weiss, Interpolation of operators with change of measures, Trans. Amer. Math. Soc., 87 (1958), 159-172.
(Received Nov. 16, 1968)

