On power series with positive coefficients

By RAIS SHAH KHAN in Aligarh (India)

In this note we prove:
Theorem, Let F(x) = Zakx", 4=0,0=x<1, S, = Zak, and r<1.
k=0 k=0
Then, for 1 = p = oo,
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This theorem reduces for r=0 to a theorem of Askgy [1] and for p=1 to
a theorem of HEywoobD [2]. The method of proof follows that of ASKEy.

Proof. We may assume 1<p<oo, as the two limit cases are trivial.

Necessity. We write 1 — x =y, Then by virtue of thefact that (1 — %) n=1,2,..)
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is an increasing sequence, we have for mé Y= n=2
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) For p=e one has to take the limits as p-~<, i.e. sup F(x) and sup S,.
0=a<1 1=n<eco
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where A is a positive constant not necessarily the same at each occurrence. Thus
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Sufficiency. We have
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The proof is thus completed.

I wish to express my gratitude to Dr. S. M. MAzHAR for his valuable guidance
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Added in proof. The author has recently observed that the theorem remains
true also for O<p<1.
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