On power series with positive coefficients

By RAIS SHAH KHAN in Aligarh (India)

In this note we prove:

Theorem. Let
$$F(x) = \sum_{k=0}^{\infty} a_k x^k$$
, $a_k \ge 0$, $0 \le x < 1$, $S_n = \sum_{k=0}^{n} a_k$, and $r < 1$.

Then, for $1 \le p \le \infty$,

$$\left(\int_{0}^{1} (1-x)^{-r} (F(x))^{p} dx\right)^{1/p} < \infty$$

if and only if

$$\left(\sum_{n=1}^{\infty} n^{r-2} S_n^p\right)^{1/p} < \infty.$$

This theorem reduces for r=0 to a theorem of Askey [1] and for p=1 to a theorem of Heywood [2]. The method of proof follows that of Askey.

Proof. We may assume 1 , as the two limit cases are trivial.

Necessity. We write 1-x=y. Then by virtue of the fact that $\left(1-\frac{1}{n}\right)^n (n=1,2,...)$

is an increasing sequence, we have for $\frac{1}{n+1} \le y \le \frac{1}{n}$, $n \ge 2$

$$F(1-y) \ge \sum_{k=0}^{n} a_k (1-y)^k \ge \left(1 - \frac{1}{n}\right)^n \sum_{k=0}^{n} a_k$$

i.e.

$$F(1-y) \ge AS_n$$
 for $\frac{1}{n+1} \le y \le \frac{1}{n}$ $(n=2, 3, ...),$

For $p = \infty$ one has to take the limits as $p \to \infty$, i.e. $\sup_{0 \le x < 1} F(x)$ and $\sup_{1 \le n < \infty} S_n$.

256 R. S. Khan

where A is a positive constant not necessarily the same at each occurrence. Thus

$$\sum_{n=1}^{\infty} n^{r-2} S_n^p \le A \sum_{n=1}^{\infty} \int_{\frac{1}{n+1}}^{\frac{1}{n}} y^{-r} S_n^p \, dy = A \int_{\frac{1}{2}}^{1} y^{-r} S_1^p \, dy + A \sum_{n=2}^{\infty} \int_{\frac{1}{n+1}}^{\frac{1}{n}} y^{-r} S_n^p \, dy \le A + A \int_{0}^{\frac{1}{2}} (1-x)^{-r} (F(x))^p \, dx < \infty.$$

Sufficiency. We have

$$\int_{0}^{1} (1-x)^{-r} (F(x))^{p} dx = \sum_{n=1}^{\infty} \int_{\frac{1}{n+1}}^{\frac{1}{n}} y^{-r} (F(1-y))^{p} dy =$$

$$= \sum_{n=1}^{\infty} \int_{\frac{1}{n+1}}^{\frac{1}{n}} y^{-r} \left(\sum_{k=0}^{\infty} a_{k} (1-y)^{k} \right)^{p} dy \le A \sum_{n=1}^{\infty} \int_{\frac{1}{n+1}}^{\frac{1}{n}} y^{-r} \left(\sum_{k=0}^{\infty} a_{k} \left(1 - \frac{1}{n+1} \right)^{k} \right)^{p} dy \le$$

$$\le A \sum_{n=1}^{\infty} n^{r-2} \left(\sum_{k=0}^{\infty} a_{k} \left(1 - \frac{1}{n+1} \right)^{k} \right)^{p} \le A \sum_{n=1}^{\infty} n^{r-2} \left(\sum_{j=0}^{\infty} \sum_{k=n_{j}}^{n(j+1)} a_{k} \left(1 - \frac{1}{n+1} \right)^{k} \right)^{p} \le$$

$$\le A \sum_{n=1}^{\infty} n^{r-2} \left(\sum_{j=0}^{\infty} \left(1 - \frac{1}{n+1} \right)^{n_{j}} \sum_{k=n_{j}}^{n(j+1)} a_{k} \right)^{p} = \Sigma_{1}.$$
Since $\frac{1}{2} \ge \left(1 - \frac{1}{n+1} \right)^{n} \ge \left(1 - \frac{1}{n+2} \right)^{n+1}$ for $n = 1, 2, ...$; we obtain that
$$\Sigma_{1} \le A \sum_{n=1}^{\infty} n^{r-2} \left(\sum_{j=0}^{\infty} 2^{-j} \sum_{k=0}^{n(j+1)} a_{k} \right)^{p} \le A \sum_{n=1}^{\infty} n^{r-2} \left(\sum_{i=1}^{\infty} 2^{-\frac{i}{2}} \cdot 2^{-\frac{i}{2}} \sum_{k=0}^{ni} a_{k} \right)^{p} \le$$

$$\le A \sum_{n=1}^{\infty} n^{r-2} \left(\sum_{i=1}^{\infty} 2^{-\frac{ip'}{2}} \right)^{\frac{p}{p'}} \left(\sum_{i=1}^{\infty} 2^{-\frac{ip}{2}} S_{ni}^{p_{i}} \right) \le A \sum_{n=1}^{\infty} n^{r-2} \sum_{i=1}^{\infty} 2^{-\frac{ip}{2}} S_{ni}^{p_{i}} =$$

$$= A \sum_{i=1}^{\infty} 2^{-\frac{ip}{2}} \sum_{i=1}^{\infty} n^{r-2} S_{ni}^{p_{i}} = A \sum_{i=1}^{\infty} 2^{-\frac{ip}{2}} \cdot i^{-r+2} \sum_{i=1}^{\infty} (in)^{r-2} S_{ni}^{p_{i}} \le A \sum_{i=1}^{\infty} n^{r-2} S_{ni}^{p_{i}} < \infty.$$

The proof is thus completed.

I wish to express my gratitude to Dr. S. M. MAZHAR for his valuable guidance.

Added in proof. The author has recently observed that the theorem remains true also for 0 .

References

- [1] R. Askey, L^p behavior of power series with positive coefficients, *Proc. Amer. Math. Soc.*, 19 (1968), 303-305.
- [2] P. Heywood, Integrability theorems for power series and Laplace transforms. I, J. London Math. Soc., 30 (1955), 302-310.

DEPARTMENT OF MATHEMATICS ALIGARH MUSLIM UNIVERSITY ALIGARH (INDIA)

(Received July 1, 1968)