On invertible elements in compact semigroups

By I. FABRICI in Bratislava (ČSSR)

The paper [6] investigates the structure of abstract semigroups containing invertible elements. The purpose of this paper is to study the structure of compact semigroups containing invertible elements. Throughout this paper S will denote a Hausdorff compact semigroup.

In the first place we set down some notions and statements.

An element a of S is called *totally maximal*, if SaS = S. An element a of S is called *left (right, two-sided) invertible* if Sa = S (aS = S, aSa = S).

Further, \mathscr{K} is the set of elements of a semigroup S which are neither left nor right invertible, \mathscr{L} is the set of elements of S which are left invertible but not right invertible, \mathscr{R} is the set of elements of S which are right invertible but not left invertible, and finally \mathscr{G} is the set of elements of S which are both left and right invertible. From [5] it is known that each of the sets $\mathscr{K}, \mathscr{L}, \mathscr{R}, \mathscr{G}$ is a subsemigroup of the semigroup S.

Denote by L^* the maximal proper left ideal of a semigroup S, which contains every proper left ideal of S. The maximal proper right ideal R^* and the maximal proper two-sided ideal M^* are defined similarly.

All ideals in this paper are considered in the algebraic sense.

We admit in our considerations that the ideals L^* , R^* , M^* possibly are void sets.

Lemma 1. [6] If in a semigroup S there exists at least one left invertible element, then S contains the unique maximal proper left ideal L^* and the complement of this ideal is the set of left invertible elements of S; hence $S = L^* \cup \mathcal{L} \cup \mathcal{G}$.

Remark 1. A similar statement holds if S contains at least one right invertible element.

Lemma 2. [2] Let S be a compact semigroup. If the ideal $L^*(R^*)$ exists in S, then M^* and $M^* = L^*$ ($M^* = R^*$) also exist in S.

From [6] it is known that every left invertible or right invertible element of a semigroup S is totally maximal. The converse statement does not hold.

I. Fabrici

Let \mathcal{M} denote the set of all totally maximal elements of S which are neither left nor right invertible. Then, evidently $\mathcal{M} \subseteq \mathcal{K}$.

Corollary. Let S be a compact semigroup, which contains invertible elements. Then every totally maximal element is either left invertible or right invertible.

Theorem 1a. Let S be a compact semigroup. Then $P = \mathcal{L} \cup \mathcal{G}$ is a closed subset of the compact semigroup S.

Proof. Since $P = \{a \in S: Sa = S\}$, there exists for an arbitrary $b \in S$ an $x \in S$ such that xa = b. In order to prove that P is closed it is sufficient to show that for an arbitrary $a \in \overline{P}$ (\overline{P} means the closure of P) and for an arbitrary $b \in S$ there exists an $x \in S$ such that the relation xa = b holds, since in this way it will be proved that $\overline{P} = P$. Let us assume that this is not true. This means that for some $b \in S$ the equation xa = b has no solution in S and, therefore $xa \neq b$ for every $x \in S$. Since S is a Hausdorff space, it follows from the continuity of multiplication that there exist neighbourhoods $o(x) \in O(x)$, $o_x(a) \in O(a)$ and $o_x(b) \in O(b)$ such that

$$o_x(b) \cap [o(x), o_x(a)] = \emptyset,$$

where O(x), O(a) and O(b) are complete systems of neighbourhoods of the elements x, a, b. Let us consider a system of neighbourhoods $\{o(x)\}, x \in S$. It is evident that $S = \bigcup_{x \in S} o(x)$. Since S is a compact semigroup, there exists such a finite system $o(x_1), o(x_2), ..., o(x_n)$, which also covers S. For i = 1, 2, ..., n we have

$$o_{xi}(b) \cap [o(x_i) \cdot o_{xi}(a)] = \emptyset.$$

Evidently, there exist such neighbourhoods $o(b) \in O(b)$, $o(a) \in O(a)$, that $o(b) \subset \bigcap_{i=1}^{n} o_{xi}(b)$

and $o(a) \subset \bigcap_{i=1}^{n} o_{xi}(a)$. But then we have

$$p(b) \cap [o(x_i) \cdot o(a)] = \emptyset,$$

for i=1, 2, ..., n. Since $S = \bigcup_{i=1}^{n} o(x_i)$, it follows from the preceeding relations:

 $(*) o(b) \cap [S \cdot o(a)] = \emptyset.$

We show that the last relation is not correct. Since $a \in \overline{P}$, it follows that in every neighbourhood of a there exists at least one element of P. Therefore there exists such an element $\xi \in P$ that $\xi \in o(a)$ and, since $\xi \in P$, there exists an $\eta \in S$ such that $b = \eta \cdot \xi$. But $b \in o(b)$, so $b = \eta \cdot \xi \in S \cdot o(a)$, and this contradicts relation (*).

Analogously, one proves the following

Theorem 1b. Let S be a compact semigroup. Then $Q = \Re \cup \mathscr{G}$ is a closed subset of S.

Corollary. P and Q are compact subsets of S.

We say that a semigroup S is left simple (right simple, simple) if S contains no proper left (right, two-sided) ideal of S, distinct of S and the void set.

Theorem 2a. Let S be a compact semigroup. Then $P = \mathcal{L} \cup \mathcal{G}$ is a left simple compact subsemigroup of S.

Proof. Let $a, b \in P$. Then Sa = S, Sb = S, S(ab) = (Sa)b = Sb = S. This means that $ab \in P$ and P is a subsemigroup of S. Assume that $L' \subset S - L^*$ is a proper left ideal of $S - L^*$. Then Lemma 2 implies: $S(L' \cup L^*) = SL' \cup SL^* = (S - L^*)L' \cup UL^*L' \cup SL^* \subset L' \cup L^*$ and this is a contradiction with the assumption that L^* contains every proper left ideal of S.

The proof of the following statement is analogous.

Theorem 2b. Let S be a compact semigroup. Then $Q = \Re \cup \mathscr{G}$ is a right simple compact subsemigroup of S.

Let e be an idempotent of a compact semigroup S. We say that an element $a \in S$ belongs to the idempotent e, if e is the unique idempotent of the closure \overline{A} of the semigroup $A = \{a, a^2, ...\}$.

Let us denote by K_{α} the set of all elements of a semigroup S, which belongs to the idempotent e_{α} ; we shall call it a K-class. From [1] it is known that any compact semigroup S can be written as the union of disjoint K-classes.

We say that a group G_{α} is a maximal group belonging to the idempotent e_{α} , if G_{α} contains e_{α} and if there exists no group $G' \neq G_{\alpha}$ such that $G_{\alpha} \subset G' \subset K_{\alpha}$.

Theorem 3a. Either of the subsemigroups L^* , P of a compact semigroup S is the union of some K-classes of S.

Proof. To prove our statement it is sufficient to show that no K-class can have a non-void intersection with both subsemigroups.

Let us assume that $K_{\alpha} \cap L^* \neq \emptyset$ and $K_{\alpha} \cap P \neq \emptyset$ holds for some K-class K_{α} . Let $a \in K_{\alpha} \cap L^*$. $a \in K_{\alpha}$ means that a belongs to the idempotent e_{α} . But also $a \in L^*$. Let us consider the principal left ideal generated by $a: (a)_L = a \cup Sa$. $(a)_L \subset L^*$ and $(a)_L$ is a closed subsemigroup of a compact semigroup S, therefore $(a)_L$ is also a compact subsemigroup. So we have $\overline{A} \subseteq (a)_L$ where $A = \{a, a^2, \ldots\}$. The subsemigroup \overline{A} contains the unique idempotent and since $a \in K_{\alpha}$ this idempotent must be e_{α} . We have obtained that $e_{\alpha} \in \overline{A} \subset (a)_L \subset L^*$. Let now $b \in K_{\alpha} \cap P$. The element b also belongs to the idempotent e_{α} . But since $b \in P$ and P is a compact subsemigroup of the semigroup S, we have $e_{\alpha} \in \overline{B} \subset P$ for $B = \{b, b^2, \ldots\}$. We have obtained that $e_{\alpha} \in L^*$ and at the same time $e_{\alpha} \in P$. But this is impossible, since $L^* \cap P = \emptyset$.

8 A

I. Fabrici

Analogously, we can prove

Theorem 3b. Either of the subsemigroups R^* , Q of a compact semigroup S is the union of some K-classes of S.

Remark 2. In [3] it is proved that a left (right) simple semigroup having at least one idempotent is a disjoint union of algebraically isomorphic groups G_{α} . But P is a left simple subsemigroup, Q is a right simple subsemigroup. Moreover, either of P, Q is a compact subsemigroup, so they contain at least one idempotent. From this we have

Theorem 4. Either of the subsemigroups P, Q of a compact semigroup S is a disjoint union of topologically isomorphic maximal groups G_{α} .

Proof. The statement that P(Q) is a disjoint union of maximal algebraically isomorphic groups G_{α} follows from Remark 2 and Theorems 3a and 3b. It is only necessary to show that these groups are isomorphic also topologically. It is known from [3] that if $e_{\alpha} \in P$ then $G_{\alpha} = e_{\alpha}P$ and for $x \in G_{\alpha}$

(1)

$$x \rightarrow e_{\theta} x$$

is an isomorphic mapping of the group G_{α} onto G_{β} and for $y \in G_{\beta}$

(2)

$$y \rightarrow e_{\alpha} y$$

is the inverse mapping.

But according to the assumption, the multiplication in S is continuous. This means that the transformation (1) is a continuous transformation of a topological group G_{α} onto the topological group G_{β} , and the inverse transformation (2) is a continuous transformation of G_{β} onto G_{α} . Hence, G_{α} and G_{β} are topologically isomorphic.

Corollary. If in a compact semigroup S, $\mathcal{L} \neq \emptyset$ ($\mathcal{R} \neq \emptyset$) then the semigroup $\mathcal{L}(\mathcal{R})$ contains at least one idempotent.

Theorem 5a. If a compact semigroup S contains at least one left invertible element, then S contains at least one right unit.

Proof. From Theorem 2a. we know that P contains at least one idempotent. Let $e_1 \in P$. Then, evidently, $Se_1 = S$. Let $x \in S$ be an arbitrary element. $Se_1 = S$ implies $ye_1 = x$ for some $y \in S$. Hence, $xe_1 = (ye_1)e_1 = ye_1^2 = ye_1 = x$. This means that e_1 is a right unit of S.

Analogously we can prove

Theorem 5b. If a compact semigroup S contains at least one right invertible element, then S contains at least one left unit.

Theorem 6. Let S be a compact semigroup. Then only one of \mathcal{L}, \mathcal{R} , and \mathcal{G} can be non-empty.

Proof. Let $\mathscr{L} \neq \emptyset$, $\mathscr{G} \neq \emptyset$. From [5] we know that \mathscr{G} is a subgroup of S and its unit is the unit of S, and Corollary of Theorem 4 implies that \mathscr{L} contains at least one idempotent which is a right unit of S, this is a contradiction.

Corollary 1. If S is a compact semigroup, then only the following cases are possible: 1) $S = \mathcal{K}, 2$ $S = \mathcal{L}, 3$ $S = \mathcal{R}, 4$ $S = \mathcal{G}, 5$ $S = \mathcal{K} \cup \mathcal{L}, 6$ $S = \mathcal{K} \cup \mathcal{R},$ and 7) $S = \mathcal{K} \cup \mathcal{G}$.

Theorems 1a, 1b, and 6 imply

Corollary 2. The subsemigroups \mathcal{L} , \mathcal{R} , and \mathcal{G} of a compact semigroup S are compact subsemigroups.

Theorems 2a, 2b, 4 and 6 imply

Corollary 3. The subsemigroup $\mathscr{L}(\mathscr{R})$ is left simple (right simple) and both are disjoint unions of topologically isomorphic maximal groups G_{α} .

References

- [1] Ш. Шварц, К теории хаусдорфовых полугрупп, Чехослов. мат. эсурнал, 5 (1955), 1—23.
- [2] Ш. Шварц, О топологических полугруппах с односторонними единицами, Чехослов. мат. журнал, 5 (1955), 153—162.
- [3] Ш. Шварц, Структура простых полугрупп без нуля, Чехослов. мат. эсурнал, 1 (1951), 51-65.
- [4] Ш. Шварц, Об увеличительных элементах в теории полугрупп, Доклады Акад. Наук СССР, 4 (1955), 697—698.
- [5] Е. С. Ляпин, Полугруппы (Москва, 1960).
- [6] И. Фабрици, Об обратимых элементах полугруппы и их отношении к увеличительным элементам полугруппы, *Mat.-fyz. časopis*, 15 (1965), 177—185.
- [7] I. FABRICI, O uplne maximálnych prvkoch v pologrupách, Mat.-fyz. časopis, 13 (1963), 16-19.
- [8] A. H. CLIFFORD-G. B. PRESTON, The algebraic theory of semigroups. I (Providence, 1961).

(Received Aug. 28, 1968)