Über Supplemente in endlichen Gruppen

Von LUDWIG PROHASKA in Rostock (DDR)

1. G sei eine endliche Gruppe, e ihr Einselement. $N \triangleleft G$ bedeutet, daß N Normalteiler von G ist. Die Untergruppe U von G heißt ein Supplement von N, wenn G = UN. Es gibt immer das triviale Supplement U = G, im allgemeinen interessieren Supplemente mit möglichst kleinem Durchschnitt $U \cap N$. Ist insbesondere $U \cap N = \langle e \rangle$

so heißt U ein Komplement von N. In diesem Fall ist G eine zerfallende Erweiterung

von N mit U.

Sei

$$G=\sum_{i=1}^{n}Ur_{v}$$

eine Zerlegung von G in Nebenklassen nach U mit einem festen Repräsentantensystem $R = \{r_v, v = 1, ..., n\}$. Transformiert man $r_1, ..., r_n$ mit Elementen aus U, so erhält man

$$u^{-1}r_{\nu}u = c_{\nu,u}r_{\nu u}$$
 $(\nu = 1, 2, \dots, n; u \in U),$

wo $c_{v,u} \in U$ ist und die $r_{1u}, ..., r_{nu}$ eine von u abhängige Permutation der $r_1, ..., r_n$ bilden. Die von den $c_{v,u}$ (v = 1, 2, ..., n; $u \in U$) erzeugte Untergruppe $C \subseteq U$ heißt die zum Repräsentantensystem R gehörige Koeffizientengruppe.

Es ist $C \triangleleft U$. Denn sind $u, v \in U$, so gilt

$$v^{-1}u^{-1}r_{v}uv = v^{-1}c_{v,u}v \cdot v^{-1}r_{vu}v = v^{-1}c_{v,u}v \cdot c_{vu,v}r_{vuv}.$$

Andererseits ist

$$(uv)^{-1}r_{v}(uv)=c_{v,uv}r_{vuv}$$

also

$$v^{-1}c_{v,u}v = c_{v,uv} \cdot c_{vu,v}^{-1} \in C.$$

Ist insbesondere $C = \langle e \rangle$, so heißt R ein ausgezeichnetes Repräsentantensystem für U in G [2]. Ein bekannter Satz von BURNSIDE über Komplemente [1], p. 327, läßt sich mittels dieses Begriffs folgendermaßen aussprechen [2]:

(A) Sei $G = \sum_{r_v \in R} Pr_v$, R habe die Koeffizientengruppe $C = \langle e \rangle$, und sei P abelsche Sylowgruppe von G. Dann enthält G einen Normalteiler N mit G = PN und $P \cap N = \langle e \rangle$.

Die Voraussetzung über P wurde in Sätzen von Kochendörffer [2] und ZAPPA [6] abgeschwächt.

In [3] beweist Kochendörffer für eine Untergruppe H von G:

- (B) Sei $G = \sum_{r_v \in R} Hr_v$, R habe die Koeffizientengruppe C, sei ([G:H], [H:C]) = 1,
- und sei H/C nilpotent. Dann enthält G einen Normalteiler N mit G=HN und $H\cap N\subseteq C$

Wenn $C = \langle e \rangle$ ist, kann man "H/C ist nilpotent" ersetzen durch "H/C ist Sylowturmgruppe", d.h. es gibt eine Untergruppenkette $H = H_0 \supset H_1 \supset ...$... $\supset H_{r-1} \supset H_r = C$, deren Glieder H_i sämtlich Normalteiler von H sind und deren Indizes $[H_{i-1}:H_i]$ (i=1, 2, ..., r), paarweise teilerfremde Primzahlpotenzen sind [5].

2. In [3] und [4] findet sich die Vermutung, daß in (B) auch für $C \neq \langle e \rangle$ die Voraussetzung "H/C ist nilpotent" noch abgeschwächt werden kann. Wir zeigen daß sie nicht durch "H/C ist Sylowturmgruppe" ersetzbar ist.

Beispiel. $G = S_5 =$ volle Permutationsgruppe des Grades 5. Die permutierten Elemente seien die Ziffern 1, 2, 3, 4, 5. $H = S_4 =$ Untergruppe derjenigen Permutationen, welche die 5 festlassen. Als Repräsentanten für die Nebenklassen von H in G wählen wir:

e (die identische Permutation), (12) (34) (15), (25), (35), (45). In S_4 ist bekanntlich $V = \langle (12) (34), (13) (24) \rangle$ Normalteiler. Er liegt in der alternierenden Gruppe der S_4 und es ist S_4/V Sylowturmgruppe isomorph der S_3 .

Bei Transformation mit Elementen aus H werden die Permutationen (15), (25), (35), (45) untereinander vertauscht. Da (12) (34) $\in V \triangleleft H$, geht dies Element bei Transformation mit Elementen aus H in Elemente aus V über. Das angegebene Repräsentantensystem für H in G besitzt also eine Koeffizientengruppe $\subseteq V$. V ist genau die Koeffizientengruppe, denn

(123) (25) (132) = (12) (34)·(12) (34) (15). (123) (12) (34) (15) (132) = (13) (24)·(35). Wäre der vermutete Satz richtig, so müßte
$$G$$
 einen Normalteiler N enthalten mit $G = HN$ und $H \cap N \subseteq V$. Aus $G/N \cong H/H \cap N$ ergibt sich $|N| = \frac{|G| \cdot |H \cap N|}{|H|} = 5k$ $(k = 1, 2, 4)$. Bekanntlich enthält die S_5 aber keinen Normalteiler von einer dieser

3. Es sollen nun einige Bedingungen angegeben werden, unter denen der vermutete Satz für Sylowturmgruppen gültig ist.

Bezeichnet π eine Menge von Primzahlen, so sei $u_{\pi}(G)$ das Erzeugnis aller Elemente aus G, deren Ordnung nicht durch eine Primzahl aus π teilbar ist.

Satz. Sei

Ordnungen.

(a) $G \supset H \triangleright C$, C umfasse die Koeffizientengruppe eines Repräsentantensystems R von H in G,

(b) ([G:H], [H:C]) = 1, H/C Sylowturmgruppe. Ferner gelte eine der Bedingungen

$$(c_1) ([H:C], [C:\langle e \rangle]) = 1,$$

 (c_2) $H \triangleleft G$,

(c₃) $[C:\langle e \rangle]$ enthalte nur Primteiler von [H:C], H sei subnormal in G, d.h. es gibt eine Untergruppenkette $G=K_s \triangleright K_{s-1} \triangleright ... \triangleright K_1 \triangleright K_0 = H$.

Bezeichnet π die Menge der Primteiler von [H:C], so ist

$$G = Hu_{\pi}(G)$$
 und $H \cap u_{\pi}(G) \subseteq C$.

Anmerkung: Unter der Bedingung (c_1) ist $H \cap u_n(G) = C$.

Beweis. (c₁): Nach einem Satz von SCHUR [7], p. 162, besitzt C in H ein Komplement \overline{H} , d.h. $H = \overline{H}C$ und $\overline{H} \cap C = \langle e \rangle$. Da $H/C \cong \overline{H}$, ist \overline{H} Sylowturmgruppe. Der Komplex CR ist ein Repräsentantensystem für \overline{H} in G. Weil für alle $h \in H$ gilt $h^{-1}CRh = CR$, ist CR ein ausgezeichnetes Repräsentantensystem für \overline{H} in G. Es ist $[G:\overline{H}] = [G:H][C:\langle e \rangle]$, $[\overline{H}:\langle e \rangle] = [H:C]$, also $([G:\overline{H}], [\overline{H}:\langle e \rangle]) = 1$. Nach [5] ist dann $G = \overline{H}u_{\pi}(G)$ und $\overline{H} \cap u_{\pi}(G) = \langle e \rangle$, woraus folgt $G = Hu_{\pi}(G)$ und $H \cap u_{\pi}(G) = C$.

(c₂): C ist Normalteiler im Normalisator $N_G(H)$ von H in G, denn ist $x^{-1} = hr_v \in N_G(H)$ ($h \in H$, $r_v \in R$), so gilt für $c \in C$ $x^{-1}cx = hr_v cr_v^{-1}h^{-1} = hcc_{v,c}r_{vc}r_v^{-1}h^{-1} \in H$. D.i. gleichbedeutend mit $r_{vc} = r_v$ und wegen $C \triangleleft H$ folgt $x^{-1}cx \in C$. Die Voraussetzung (c₂) ergibt dann $C \triangleleft G$. Es ist

$$G/C = \sum_{r_v \in R} (H/C)(Cr_v)$$

und für alle $h \in H$, $r_v \in R$ gilt mit geeigneten $r_{\mu} \in R$

$$(Ch)^{-1}(Cr_{\nu})(Ch) = (Cr_{\mu}).$$

Da ferner ([G/C:H/C], |H/C|) = 1 und H/C Sylowturmgruppe, gibt es nach [5] einen Normalteiler N/C von G/C mit

$$G/C = H/C \cdot N/C$$
 und $H/C \cap N/C = \langle e \rangle$,

also G = HN und $H \cap N = C$. Es ist $N \supseteq u_{\pi}(G)$ und $G = Hu_{\pi}(G)$ mit $H \cap u_{\pi}(G) \subseteq C$.

(c₃): Da $H \triangleleft K_1$, ist H das Erzeugnis aller Elemente von K_1 , deren Ordnung nur durch Primzahlen aus π teilbar ist. Daher ist H charakteristische Untergruppe von K_1 und also Normalteiler von K_2 . Wie eben erhält man, daß H dann sogar charakteristische Untergruppe von K_2 und also Normalteiler von K_3 ist usw. Schließlich: $H \triangleleft K_s = G$, d.h. Bedingung (c₂) ist erfüllt.

Literatur

- [1] W. Burnside, Theory of groups of finite order, 2. ed. (1911).
- [2] R. Kochendörffer, Ein Satz über Sylowgruppen, Math. Nachr., 17 (1959), 189-194.
- [3] On supplements in finite groups, J. Austr. Math. Soc., 3 (1963), 63—67.
- [4] F. MIGLIORINI, Rappresentanti di laterali e supplementi in un gruppo finito, *Matematiche*, *Catania* 21 (1966), 11—17.
- [5] L. PROHASKA, Über die Existenz normaler Komplemente zu gewissen Hallgruppen, Acta Sci. Math., 26 (1965), 159—162.
- [6] G. ZAPPA, Generalizzazione di un teorema di Kochendörffer, *Matematiche, Catania*, 13 (1958), 61-64
- [7] H. ZASSENHAUS, The theory of groups. 2. ed. (1949).

(Eingegangen am 22. Juni 1968)