
On a problem of P. Erdős 
By EÖRS MÁTÉ in Szeged 

In this note we are going to prove the following 

T h e o r e m . Suppose that for an additive number theoretic function 1) f(n) 

the difference f(n +1) — f{n) is bounded. Then there exists a decomposition g(n) + h(n) 

of /(«) wherein g(n) is completely additive  2) and h(n) is bounded. 

The uniqueness of this decomposition is most obvious. In fact, assuming its 
existence we have 

g(n) = lim and h(n) =f(-n)-g(n). 
t 

The above theorem was conjectured by P. ERDŐS [1], p. 3 , in a stronger 
form where he asserts that in the above decomposition g(n) must be a constant 
multiple of log«. (For the restating of the problem see [2], p. 6 and [3], p. 162.) 
As yet we have not been able to overcome the difficulties in deciding whether or not 
this latter assertion is true. 

In order to prove the above theorem we show the existence of the limit 
f(n') 

g(n) = lim and prove its coincidence with f(n) apart from a bounded term. 

First we prove three lemmas in which M will be a. bound for the expression 
! / ( « + ! ) - / ( « ) ; . 

L e m m a 1. If s is prime to n — \ then 

\f(n°)-sf(n)\^2sM. 

Proof. As is easily seen 
S— 1 5 — 1 

s— 2 1 = 2 «'(modn — 1); 
¡=o >=o 

') I.e. for a function defined on the set of . positive integers satisfying the relation f(ab) = 
= f(a)+f(b) whenever a is prime to b. 

2) I.e. g(ab) = g(a)+g(b) for any two positive integers a and b. 
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s - 1 
thus by the assumptions of the lemma we have that 2 n ' ' s prime to n — 1 as well. 

So an easy calculation shows (note / (1) = 0): 

\f(n s)-sf(n)\ \f(n s-\)-sf(n)\+M = 

s— 1 
f\{n-\) Zri\-sf{n) + M ^ M + \f(n— !)—/(«)| + / 

s - I 
2 ' A - i s - \ ) f { n ) 

U=o 

2 M + z l Á Í Á - Á ' z A - M 
j= i U=o ) U=o 

2M+ 2 f\2rA-f\2n i-1 s ( i + l ) M s 2 s ¥ . Q . E . D . 

L e m m a 2. For any two integers k^O and n > 0 we have 

\JW k)-2 kf(n)\ S 4 - 2 k M . 

Proof . If n is even, then the previous lemma involves this estimation with 
2 - 2 kM on the right-hand side. The case if n is odd is easily derived from this latter 
result as follows: 

\f(n 2«)-2 kf(n)\ = \f((2n) 2 k) —f(2 2 k) — 2 kf(2n) + 2 kf(2)\ S 

S \f((2n) 2 k)-2 kf(2n)\ + \f(2 2 k)-2 kf(2)\ =s 2-2 kM + 2-2 kM = 4 - 2 k M . 

L e m m a 3. For any two positive integers s and t we have 

\f{n')-f(n s) s= 4\t-s\nM. • 

P r o o f . Suppose that e.g. t > s ; then 

| / ( / j ' ) - / (« s ) l ^ 2M + \f(n<- !)-/(«'- 1)| == 

^ 2M + 2 I/O»' - 1 ) - / ( « ' - 1 - I) - / ( n ) l +U-S) |/(n)| = 

;=s+1 
r 

= 2M+ 2 l/(«'-1)-/(«'-")| :+('-J)l/(«)l ^ 2M+2(t-s)(n-\)M^ i = s+ ! 
^4 (t-s)nM. 

Here we made use of the trivial estimation 

J/(»)L ^ 2 !/('•+ 0 - / ( 0 N (n-i)M. 
i= 1 

Thus the lemma is proved. 
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As an easy consequence of the above lemmas we have the existence of the limit 

lim 
f — CO t 

Indeed, this is simple if t runs only over numbers of form 2 k since by Lemma 2 we 
have for k 1 , k 2 - * ^ : 

/(»2I) f(n22) 
2kl 

r, 7k2*kl 

= 

_1 

2*2 + nk? 

thus writing 

f(n2 2 ') 
2ki -f(n2 2) 

we have in particular 

(1) 
/ T ) 

2k ~g(n) 
AM 

Now putting A: large and fixed we have, if 5 runs over the primes to n 2" — 1, 
by Lemma 2 and Lemma 1 and by (1): 

f(ns) 

№-^f(rf 2 k) + 2k 

-g{n) 

^.f(n* 2")~f{n 2 k) 2 k f ( n 2 ) ~ S ( n ) 

AM 2 M AM 
— + 2k + 2k ' 

thus, for s running over the primes to n 2" — 1, we have 

' f{ns) 
(2) lim sup ~g(n) 

6 M 

2" ' 

Now if t — arbitrarily, s — as above, and j S ( < j + n2k, then we have 
by Lemma 3: 

/(«') * f(ns) 
? / i 

thus if we make use of (2) and take into account that — -*• 1 we have 

lim sup ~g(n) 
6M 

2" " 
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The left-hand side, however, does not depend on k. So by making k — <» we obtain 

An') lim sup 
t 

-8(n) = 0, i. e. Hm ^ = ,(»). 

Here t tends to infinity arbitrarily. 
It is obvious that here g(n) is completely additive. In fact, we have 

g(tO = l im « = r l i m ^ = r l i m M - = rg(n), 
rt t — OO * 

which combined with the additivity of g(n) implies complete additivity. On the other 
hand h(ri)=f(n)— g(n) is bounded; actually \h(n)\s4M, as inequality (1) 
shows with & = Thus the theorem is proved. 
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