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1. A function f(n) of a positive integer is said to be restrictedly additive 
(or, simply, additive) if (n,,n2) = \ implies f(ntn2)~f(

ni) +f( ni)- If this equation 
is satisfied for any pair of integers nlt n2, then we say that fin) is completely (or 
totally) additive. 

P . ERDŐS [1] has proved the following two assertions. 

(A) If f(rí) is restrictedly additive and monotonic then it is a co nstant multiple 

of log 11. 
(B) If f(n) is restrictedly additive and f(n +1) —f(n) —0 <=°) then it is , 

a constant multiple of log n. 

New proofs of these assertions have been given by several authors (for the 
references see for example [2]). Using the ideas of BESICOVITCH to the proof of ( B ) 

(see his paper [2]) the author proved in [3] the following assertion (C), which contains 
(A) and (B) as special cases and which was previously stated without proof by P. 
ERDŐS in [5]. This assertion was proved by A. MÁTÉ [4], too. 

(C) If f(n) is restrictedly additive and 

lim inf (/(« + 1) —/(«)) = 0 
n — oo 

then it is a constant multiple of log n. 

Later the author proved in [6] the following generalization of (C). 

(D) If f {rí) is restrictedly additive and lim inf A kf{n) for some integer 

k^l w'.izre A'f(n) denotes the kth difference of f(n), then f(n) is a constant multiple 

of log n. 

The following assertion, which was proved in [7], is a generalization of (A). 

(E) If f (rí) and g(n) are restrictedly additive functions and the function h(n) — 

= max ( / ( « ) , g(n)) is increasing, then the following assertions hold: 
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1) /;(«) = c log n + r(n) and r(n)— 0 as n Furthermore r(n) = 0, when all 

prime divisors of n are greater than a certain constant. 

2) Jf f{n) =g(n) for almost every n, then 

f(n) — c log n and g(n) = c log n + e(n), 

where £(/)s0 for sufficiently large prime numbers p. 

Let S = {/?!, p2, .. } be the set of irregular primes pt such that e(pf) > 0 for 

some a;. If S contains at least two elements then &(pf) = 0 for every pt 6 S and for 

P sufficiently large. 

3) If the set of lis satisfying the condition f(n) =g(n) has positive lower density, 

smaller than one, then h(n) = c log n (n = 1 , 2 , . . . ) . Furthermore f(j> a) =g(p*) = 

= c log p" (a = l , 2, . . . ) , with the exception of at most one prime. 

2. In this paper we deal with similar questions. 
Let p, py, ...,q,q\, ... denote prime numbers. 
We say that the subset P of prime numbers is the support of the additive function 

/(«), if l(p") = 0 for a = l , 2, . . . , when p$P, and /(/>*) $¿0 for at least one a, when 
piP. W e say that /(«) is a function of finite support if P contains finitely many ele-
ments only. 

Let K be a fixed natural number. Let f(n) and g(n) be restrictedly additive 
functions satisfying the condit ion 

( 2 . 1 ) g(n + K)-f(n)-» 0 ). 

We prove the fol lowing 

T h e o r e m 1. Under the assumption (2. 1) we have 

( 2 . 2 ) / ( « ) = c l o g n + ljp), 

(2. 3) g(n) = c log n + l2(n), 

where ¡¡(n), l2(n) are functions of finite support. Their support can contain only the 

prime divisors of K. 

Furthermore, if 2*\\K, then 

, a - 1 ) ; 

0 ' = 1 , 2 , - ) , 

{ / , (2") = l2 (2P) 08 = 1 , -
( 3 1 / , ( 2 0 = l2 (2"+J), l2 (2") = I, (2*+J) 

and if p^WK and p^3, then 

I ¡AP") = hip") (P = l , - , * - l ) ; 
( } U (/>*) = H (P°) = H (PX+J) = H (PX+J) U —1,2, - ) • 

From (2. 4) and (2. 5) it follows immediately, that l2(n + K) = l±(n) for « S i . Con-

versely, if f(n) and g(n) satisfy the conditions stated in (2. 2)—(2.5), then (2. 1) holds. . 
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Proof . Let H(n) =f(n)-g(n). First we deduce from (2.1) that H(n)=0 

for all n coprime to K. We distinguish the cases of K being even or odd. 
a) Let 2'\\K, a S i . From (2.1) it follows that g(2n + 2K)-f(2n) -*H(2) 

as n tends to infinity over odd n's. By (2. 1), 

g(2n + 2 K ) = f(2n + K) + o(l), f(2n) = g(2n + K) + o(l), 

and thus -H(2n + K)^H(2) as n 2 f n, i.e. 

H(4k + K+2)^-H(2) ( / c - o o ) . 

According to the cases: A"+2 = 0 (mod 4), and K + 2 = 2 (mod 4) we have 

(2.6)! H(4k) — — //(2) 

(2. 6)2 H(2k +1) -»- — 2H(2) (/c-oo). 

Let m be an arbitrary odd integer and n an infinite sequence of odd integers 
coprime to K. From (2. 6)x we have 

- H( 2) = lim H(4mn) = H{m) + lim H(4n) = H(m) ~ H(2). 

n-*- 03 B ^ » 

Similarly, from (2. 6)2 

- 2H(2) = lim H(mri) = H(m) + lim H(n) = H(m) - 2H(2). 

Hence H(m) = 0. 
b) Let now K be odd. .We distinguish the subcases: 1) K= 1 (mod 4) and 

2) K = — 1 (mod 4). In the case 1) let « = l (mod4), and in the case 2) let 
n = — 1 (mod 4). Using similar arguments as in a) we have 

H(2n+K)^-g(4)+g(2)+f(2) = C, 

i.e. H(8k + 1) — C as for at least one I among 1, 3, 5, 7. Hence it follows 
that H(m) = 0 for every m in the residue class = 1 (mod 8). Indeed, if m = 1 (mod 8), 
then choosing an infinite sequence ttj, = / (mod8) , such that (ttj,K) = 1, then 
itjtn = / (mod 8) and 

C = l im H{mn}) = H(m)+ l im H(n}) = H(m) + C. 
imij nj-*<*> 

Using the additivity of H(ii) we obtain that C = 0 . 
Let now m1,m2 be coprime integers, mim2 = 1 (mod 8). Then H(mf) = 

= — H(m2). Hence it follows that H(m) is constant in every reduced residue class 
mod 8. But this is possible only if H(m) = 0 for every odd m. 
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Now we prove that 7/(2a) = 0 for a = 1,2, ... . Let n be an integer such 
that (n(n + K), 3) = 1. Then using (2. 1) and that H(3)=0 we have 

o(l) =• g(n + K)-f{n) = g(3n + 3 K)-f(3n) = [g(3n + 3 K)-f(2n + 2K)] + 

+ [f(3n + 2K) -f(3n + tf )] + [f(3n + K) - / (3k) ] = o(l) - H(3n + 2K) - H(3n + K) 

i.e. 
H(3n + K) + H(3n + 2K)-*0. 

Since (n(n+K), 3) = 1 and 2"||3w + Khold for infinitely many n, we have H(2") =0 . 
Consequently, H(n) = 0 for every n coprime to K. 

We need the following 

Lemma 1 .If 

(2.7) / ( « + * ) - / ( « ) - 0 

as n — °° over the n's coprime to K, then f(n) = c log n holds whenever (n, K) = 1. 

P r o o f . Firstly we deduce that f(n) is totally additive in the set (n,K) = 1, 
i.e. that 
(2.8) f(nm) =f(n)+f(m), 

whenever (nm, K) = \. 
For this purpose let p be a prime or a prime power, piK, and let v be a large 

integer. Let e > 0 and / be so large, that 

(2.9) \f(n + K) - / ( « ) [ < £ if n^p>. 

Then 

f(p v) = f(p v + Kp) + 0.SP = f(p) +/(//- 1 +K) + OiEp = 

= f(p)+f(p v- 1+Kp) + e2ep=-^(v-l+l)f(p'-
i+K) + vOv_,ep 

(10,1 S I, s 1). 
Hence it follows immediately that 

l i m ^ > =f(P), i. e. l i m ^ - ^ 
V~*o V ' ' v-~ logp" log/) 

Applying this relation for p = q' 1 and for p = q we have 

log q" v.«, log q" v log qv log q' 

hence f(q")=pf(q) follows. Consequently (2. 8) holds. 
Let now p be a prime. We take N large, (.N, K) = 1, and write it in the form 

N = a0p
v + alp

v- 1 + -+av, 0 ^ dj < p (J = 0 , - , v ) , ff„Sl. 
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Using the inequality (2. 9) we have 

. f(kN) = f(Ka0p
v + - + Kav) = f(KaoP

v + - +Ka,_1p) + Olea1 = 

= f(p) +f(KaoP*~
1 + ...+Kav_i) + 02ep=- = 

= (v-l+l)f(p)+f(Ka0p
l- i+-+Kal_1, + ev_lep flO^ s 1, - , |0V_,| s -1) . 

Writing 
M = max \f(m)\ 

mmKpl 
we have 

f(N) = ( v - / + l)f(p)-f(K) + 0M+ Oevp ( |0 | =g 1). 

Observing that p v S N < p v + 1 we get 

N—- eo log N log p ' 
Hence 

Jim M l = M . 

JV-.CO log^v log/7 ' 

Let now N, M be arbitrary integers such that (N, K) = (M, K) = 1. Since 
/ ( A ° = lim f ( N k ) - lim R M k ) = f { M ) 

log N logjVk log M k log M' 

/(AO/log N is constant if (N.., K) — 1. This finishes the proof of Lemma 1. 
By this we proved that under the condition (2. 1) the functions f(n) and g(n) 

have the form (2. 2), (2. 3). 
Since c log ( n + K ) - c log 

n -*• 0, we have l2(n + K ) — /1(w)-*-0 (n Hence 
we deduce the relations (2. 4), (2. 5). 

Let 2a | |K, ) 3 i a - l . Since there exist infinitely many n satisfying the conditions 
n=2'm, (m, K) = 1, {n+K, K) = 2?, we have l2(n+K) = /2(2"), n) = l1(2"). 

Consequently /x(2") = /2(2"). Choosing n such that 2 a + J\\n (JSi) and (n, 2—K) = 1, 
we have 2*\\n + K and (n + K, 2~*K) = 1. Hence /2(2") = /1(2"+0 follows. Let 
2 X + J\\n, (n, 2~"K) = 1. Then 2'\\n + K and (n +K,2~"K) = I. Consequently 
/j(«) = [1(2

0 , + J), l2(n + K) = l2(2"). Hence we obtain that 1,(2") = l2(2"
+j) (j^l). 

This completes the proof of (2. 4). 
The proof of (2. 5) is similar and can be omitted. 
From (2. 4) and (2. 5)itfollows immediately, that l2(n +K)=li(n) for w = 1, 2, ... 

Consequently the relations (2. 2)—(2. 5) are sufficient to guarantee the fulfilment 
of (2. 1). 
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Remarks. 1) It would be interesting to prove the more general assertion: 
If f^n) (i=0, ..., k) are additive functions satisfying the condition 

k 
Z f i ( n + i)-0 (w-~), 
¡=0 

then 

fin) = c,- log n +1 in) ( i = 0 , ..., k), 

where /¡(«) have finite support. I am unable to prove this for ks 2. 
2) It seems probable that the following generalization of the conjecture of 

P. ERDŐS holds: If /(«) and g(n) are additive functions such that g{n +1) —/(«) is 

bounded, then g(n) — c log n + v(n), f{n) = c log n + u(n), and u(n), v(n) are bounded. 

3. Now we investigate the class of additive functions satisfying 

(3. 1) f(2n +1) - / ( " ) - C (C is a constant). 

T h e o r e m 2. If f(n) is a completely additive function satisfying (3. 1), then 

f(n) = c log n, c = CI log 2. 

Proof . Without loss of generality we may suppose C = 0. Then we need to 
show that / ( « ) = 0 identically. 

Let N be a large integer, which we represent in the dyadical form: 

(3.2) N = 2Vl + 2V2 - i— + 2Vfc (vi > v2 > ••• > vk). 

Let a(iV) denote the length of this representation, i.e. a ( N ) = k. 
Using (3. 1) with C = 0 and the total additivity of f(n) we have 

( 3 . 3 ) f(2n +1) —f(2ri) — —f{2) 

Hence we get 

f(N) — f(2 V k) +/(2V> ~v" + ... +2**- ' -^ + 1) = . 

= v f c / ( 2 ) - / ( 2 ) + / ( 2 v ' - ^ + - +2v*-«-^) + o(l). 

Repeating this process we obtain that 

(3. 4) f(N) = vj( 2) - kf( 2) + o{\)k (N - «,). 

Since 2V> 2V' + 1, we have Consequently, from (3. 4), 

Now we prove that / ( 2 ) = 0 . For this let N, = 2 + 2 3 +... +2 2 l + i. Then 
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3JV, = 2 + 22 + . . . + 2 2 , + 2 . Hence we obtain that oi(3N,) = 2a(N,)> a(/Vf) = 

= (1 +o( l ) ) • By (3. 5) we have 

/(3.) = f(3N,)-f(Nl) = —/(2) log 2 [a (3Nt) — <x(N,)] + o (log N ( ) = 

= -/(2)l0g2-a(Ar í) + 0(l0gAf í) = ( 1 + 0 ( 1 ) ) log AT,. 

Hence it follows immediately that / (2 )= 0. 
Thus from (3. 5), 

(3.6) l i m ^ - = 0. 
log AT 

Using (3. 6) and the total additivity of f(n) we have 

№ - l i m /(**) - n 
log Ar — log iVfe 

and hence f(N)=0. This completes the proof of Theorem 2. 

Remarks . 
1) I am unable to prove Theorem 2 for restrictedly additive functions 

/(«)• 
2) Similarly, I cannot decide whether from g(2n + l) —/(«) — C it follows 

or not that f(ri) and g(n) are constant multiples of log n. 
3) It would be interesting to give all the solutions of the relation 

f(An+B)-f(an + b)-*C («-°o) 

in additive functions/(«), for arbitrary integers A, B, a, b. 
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