Some results and problems in the theory of additive functions

By I. KÁTAI in Bụdapest

1. A function $f(n)$ of a positive integer is said to be restrictedly additive (or, simply, additive) if $\left(n_{1}, n_{2}\right)=1$ implies $f\left(n_{1} n_{2}\right)=f\left(n_{1}\right)+f\left(n_{2}\right)$. If this equation is satisfied for any pair of integers n_{1}, n_{2}, then we say that $f(n)$ is completely (or totally) additive.
P. Erdős [1] has proved the following two assertions.
(A) If $f(n)$ is restrictedly additive and monotonic then it is a constant multiple. of $\log n$.
(B) If $f(n)$ is restrictedly additive and $f(n+1)-f(n) \rightarrow 0 \quad(n \rightarrow \infty)$ then it is a constant multiple of $\log n$.

New proofs of these assertions have been given by several authors (for the references see for example [2]). Using the ideas of Besicovitch to the proof of (B) (see his paper [2]) the author proved in [3] the following assertion (C), which contains (A) and (B) as special cases and which was previously stated without proof by P. Erdös in [5]. This assertion was proved by A. Máté [4], too.
(C) If $f(n)$ is restrictedly additive and

$$
\liminf _{n \rightarrow \infty}(f(n+1)-f(n)) \geqq 0
$$

then it is a constant multiple of $\log n$.
Later the author proved in [6] the following generalization of (C).
(D) If $f(n)$ is restrictedly additive and $\lim \inf \Delta^{k} f(n) \geqq 0$ for some integer $k \geqq 1$ w.irre $\Delta^{‘} f(n)$ denotes the k th difference of $f(n)$, then $f(n)$ is a constant multiple of $\log n$.

The following assertion, which was proved in [7], is a generalization of (A).
(E) If $f(n)$ and $g(n)$ are restrictedly additive functions and the function $h(n)=$ $=\max (f(n), g(n))$ is increasing, then the following assertions hold:

1) $h(n)=c \log n+r(n)$ and $r(n) \rightarrow 0$ as $n \rightarrow \infty$. Furthermore $r(n)=0$, when all prime divisors of n are greater than a certain constant.
2) If $f(n) \geqq g(n)$ for almost every n, then

$$
f(n)=c \log n \quad \text { and } \quad g(n)=c \log n+\varepsilon(n)
$$

where $\varepsilon\left(p^{\alpha}\right) \leqq 0$ for sufficiently large prime numbers p.
Let $S=\left\{p_{1}, p_{2}, \ldots\right\}$ be the set of irregular primes p_{i} such that $\varepsilon\left(p_{i}^{\alpha_{i}}\right)>0$ for some α_{i}. If S contains at least two elements then $\varepsilon\left(p_{i}^{\beta}\right) \leqq 0$ for every $p_{i} \in S$ and for β sufficiently large.
3) If the set of n's satisfying the condition $f(n) \geqq g(n)$ has positive lower density, smaller than one, then $h(n)=c \log n(n=1,2, \ldots)$. Furthermore $f\left(p^{\alpha}\right)=g\left(p^{\alpha}\right)=$ $=c \log p^{\alpha}(\alpha=1,2, \ldots)$, with the exception of at most one prime.
2. In this paper we deal with similar questions.

Let $p, p_{1}, \ldots, q, q_{i}, \ldots$ denote prime numbers.
We say that the subset P of prime numbers is the support of the additive function $l(n)$, if $l\left(p^{\alpha}\right)=0$ for $\alpha=1,2, \ldots$, when $p \notin P$, and $l\left(p^{\alpha}\right) \neq 0$ for at least one α, when $p \in P$. We say that $l(n)$ is a function of finite support if P contains finitely many elements only.

Let K be a fixed natural number. Let $f(n)$ and $g(n)$ be restrictedly additive functions satisfying the condition

$$
\begin{equation*}
g(n+K)-f(n) \rightarrow 0 \quad(n \rightarrow \infty) \tag{2.1}
\end{equation*}
$$

We prove the following
Theorem 1. Under the assumption (2.1) we have

$$
\begin{align*}
& f(n)=c \log n+l_{1}(n) \tag{2.2}\\
& g(n)=c \log n+l_{2}(n)
\end{align*}
$$

where $l_{1}(n), l_{2}(n)$ are functions of finite support. Their support can contain only the prime divisors of K.

Furthermore, if $2^{\alpha} \| K$, then

$$
\left\{\begin{array}{c}
l_{1}\left(2^{\beta}\right)=l_{2}\left(2^{\beta}\right) \quad(\beta=1, \cdots, \alpha-1) ; \tag{2.4}\\
l_{1}\left(2^{\alpha}\right)=l_{2}\left(2^{\alpha+j}\right), \quad l_{2}\left(2^{\alpha}\right)=l_{1}\left(2^{\alpha+j}\right) \quad(j=1,2, \cdots),
\end{array}\right.
$$

and if $p^{\alpha} \| K$ and $p \geqq 3$, then

$$
\left\{\begin{align*}
l_{1}\left(p^{\beta}\right) & =l_{2}\left(p^{\beta}\right) \quad(\beta=1, \cdots, \alpha-1) \tag{2.5}\\
l_{1}\left(p^{\alpha}\right)=l_{2}\left(p^{\alpha}\right) & =l_{1}\left(p^{\alpha+j}\right)=l_{2}\left(p^{\alpha+j}\right) \quad(j=1,2, \cdots) .
\end{align*}\right.
$$

From (2.4) and (2.5) it follows immediately, that $l_{2}(n+K)=l_{1}(n)$ for $n \geqq 1$. Conversely, if $f(n)$ and $g(n)$ satisfy the conditions stated in (2.2)-(2.5), then (2.1) holds.

Proof. Let $H(n)=f(n)-g(n)$. First we deduce from (2.1) that $H(n)=0$ for all n coprime to K. We distinguish the cases of K being even or odd.
a) Let $2^{\alpha} \| K, \alpha \geqq 1$. From (2.1) it follows that $g(2 n+2 K)-f(2 n) \rightarrow H(2)$ as n tends to infinity over odd n 's. By (2.1),

$$
g(2 n+2 K)=f(2 n+K)+o(1), f(2 n)=g(2 n+K)+o(1)
$$

and thus $-H(2 n+K) \rightarrow H(2)$ as $n \rightarrow \infty, 2 \nmid n$, i.e:

$$
H(4 k+K+2) \rightarrow-H(2) \quad(k \rightarrow \infty) .
$$

According to the cases: $K+2 \equiv 0(\bmod 4)$, and $K+2 \equiv 2(\bmod 4)$ we have

$$
\begin{equation*}
H(4 k) \rightarrow-H(2) \quad(k \rightarrow \infty), \tag{2.6}
\end{equation*}
$$

$$
\begin{equation*}
H(2 k+1) \rightarrow-2 H(2) \quad(k \rightarrow \infty) . \tag{2.6}
\end{equation*}
$$

Let m be an arbitrary odd integer and n an infinite sequence of odd integers coprime to K. From (2.6) ${ }_{1}$ we have

$$
-H(2)=\lim _{n \rightarrow \infty} H(4 m n)=H(m)+\lim _{n \rightarrow \infty} H(4 n)=H(m)-H(2) .
$$

Similarly, from (2.6) ${ }_{2}$

$$
-2 H(2)=\lim _{n \rightarrow \infty} H(m n)=H(m)+\lim _{n \rightarrow \infty} H(n)=H(m)-2 H(2) .
$$

Hence $H(m)=0$.
b) Let now K be odd. We distinguish the subcases: 1) $K \equiv 1(\bmod 4)$ and 2) $K \equiv-1(\bmod 4)$. In the case 1$)$ let $n \equiv 1(\bmod 4)$, and in the case 2$)$ let $n \equiv-1(\bmod 4)$. Using similar arguments as in a) we have

$$
H(2 n+K) \rightarrow-g(4)+g(2)+f(2)=C,
$$

i.e. $H(8 k+l) \rightarrow C$ as $k \rightarrow \infty$ for at least one l among $1,3,5,7$. Hence it follows that $H(m)=0$ for every m in the residue class $\equiv 1(\bmod 8)$. Indeed, if $m \equiv 1(\bmod 8)$, then choosing an infinite sequence $n_{j}, \equiv l(\bmod 8)$, such that $\left(n_{j}, K\right)=1$, then $n_{j} m \equiv l(\bmod 8)$ and

$$
C=\lim _{m n_{j}-\infty} H\left(m n_{j}\right)=H(m)+\lim _{n_{j} \rightarrow \infty} H\left(n_{j}\right)=H(m)+C .
$$

Using the additivity of $H(n)$ we obtain that $C=0$.
Let now m_{1}, m_{2} be coprime integers, $m_{1} m_{2} \equiv 1(\bmod 8)$. Then $H\left(m_{1}\right)=$ $=-H\left(m_{2}\right)$. Hence it follows that $H(m)$ is constant in every reduced residue class $\bmod 8$. But this is possible only if $H(m)=0$ for every odd m.

Now we prove that $H\left(2^{\alpha}\right)=0$ for $\alpha=1,2, \ldots$. Let n be an integer such that $(n(n+K), 3)=1$. Then using (2.1) and that $H(3)=0$ we have

$$
\begin{gathered}
o(1)=g(n+K)-f(n)=g(3 n+3 K)-f(3 n)=[g(3 n+3 K)-f(3 n+2 K)]+ \\
+[f(3 n+2 K)-f(3 n+K)]+[f(3 n+K)-f(3 n)]=o(1)-H(3 n+2 K)-H(3 n+K)
\end{gathered}
$$ i.e.

$$
H(3 n+K)+H(3 n+2 K) \rightarrow 0 .
$$

Since $(n(n+K), 3)=1$ and $2^{\beta} \| 3 n+K$ hold for infinitely many n, we have $H\left(2^{\beta}\right)=0$. Consequently, $H(n)=0$ for every n coprime to K.

We need the following
Lemma 1. If

$$
\begin{equation*}
f(n+K)-f(n) \rightarrow 0 \tag{2.7}
\end{equation*}
$$

as $n \rightarrow \infty$ over the n 's coprime to K, then $f(n)=c \log n$ holds whenever $(n, K)=1$.
Proof. Firstly we deduce that $f(n)$ is totally additive in the set $(n, K)=1$, i.e. that

$$
\begin{equation*}
f(n m)=f(n)+f(m), \tag{2.8}
\end{equation*}
$$

whenever $(n m, K)=1$.
For this purpose let p be a prime or a prime power, $p \nmid K$, and let v be a large integer. Let $\varepsilon>0$ and l be so large, that

$$
\begin{equation*}
|f(n+K)-f(n)|<\varepsilon \text { if } n \geqq p^{l} . \tag{2.9}
\end{equation*}
$$

Then

$$
\begin{aligned}
& f\left(p^{v}\right)=f\left(p^{v}+K p\right)+\theta_{1} \varepsilon p=f(p)+f\left(p^{v-1}+K\right)+\theta_{1} \varepsilon p= \\
& =f(p)+f\left(p^{v-1}+K p\right)+\theta_{2} \varepsilon p=\cdots=(v-l+1) f\left(p^{t-1}+K\right)+v \theta_{v-l} \varepsilon p \\
& \quad\left(\left|\theta_{1}\right| \leqq 1, \cdots,\left|\theta_{v-l}\right| \leqq 1\right) .
\end{aligned}
$$

Hence it follows immediately that

$$
\lim _{v \rightarrow \infty} \frac{f\left(p^{v}\right)}{v}=f(p) \text {; i. e. } \lim _{v \rightarrow \infty} \frac{f\left(p^{v}\right)}{\log p^{v}}=\frac{f(p)}{\log p} .
$$

Applying this relation for $p=q^{\mu}$ and for $p=q$ we have

$$
\frac{f\left(q^{u}\right)}{\log q^{\mu}}=\lim _{v \rightarrow \infty} \frac{f\left(q^{\mu v}\right)}{\log q^{\mu v}}=\lim _{v \rightarrow \infty} \frac{f\left(q^{v}\right)}{\log q^{v}}=\frac{f(q)}{\log q} ;
$$

hence $f\left(q^{\mu}\right)=\mu f(q)$ follows. Consequently (2.8) holds.
Let now p be a prime. We take N large, $(N, K)=1$, and write it in the form

$$
N=a_{0} p^{v}+a_{1} p^{v-1}+\cdots+a_{v}, \quad 0 \leqq a_{j}<p \quad(j=0, \cdots, v), \quad a_{0} \geqq 1 .
$$

Using the inequality (2.9) we have

$$
\begin{gathered}
f(k N)=f\left(K a_{0} p^{v}+\cdots+K a_{v}\right)=f\left(K a_{0} p^{v}+\cdots+K a_{v-1} p\right)+\theta_{1} \varepsilon a_{v}= \\
=f(p)+f\left(K a_{0} p^{v-1}+\cdots+K a_{v-1}\right)+\theta_{2} \varepsilon p=\cdots= \\
=(v-l+1) f(p)+f\left(K a_{0} p^{l-1}+\cdots+K a_{l-1}\right)+\theta_{v-l} \varepsilon p \quad\left(\left|\theta_{1}\right| \leqq 1, \cdots,\left|\theta_{v-l}\right| \leqq 1\right) .
\end{gathered}
$$

Writing

$$
M=\max _{m \leqq K_{P} l}|f(m)|
$$

we have

$$
f(N)=(v-l+1) f(p)-f(K)+\theta M+\theta \varepsilon v p \quad(|\theta| \leqq 1)
$$

Observing that $p^{v} \leqq N<p^{v+1}$ we get

$$
\lim _{N \rightarrow \infty} \frac{v}{\log N}=\frac{1}{\log p}
$$

Hence

$$
\lim _{\substack{N \rightarrow \infty \\(N, K)=1}} \frac{f(N)}{\log N}=\frac{f(p)}{\log p}
$$

Let now N, M be arbitrary integers such that $(N, K)=(M, K)=1$. Since

$$
\frac{f(N)}{\log N}=\lim _{k \rightarrow \infty} \frac{f\left(N^{k}\right)}{\log N^{k}}=\lim _{k \rightarrow \infty} \frac{f\left(M^{k}\right)}{\log M^{k}}=\frac{f(M)}{\log M}
$$

$f(N) / \log N$ is constant if $(N, K)=1$. This finishes the proof of Lemma 1.
By this we proved that under the condition (2.1) the functions $f(n)$ and $g(n)$ have the form (2.2), (2.3).

Since $c \log (n+K)-c \log n \rightarrow 0$, we have $l_{2}(n+K)-l_{1}(n) \rightarrow 0(n \rightarrow \infty)$. Hence we deduce the relations (2.4), (2.5).

Let $2^{\alpha} \| K, \beta \leqq \alpha-1$. Since there exist infinitely many n satisfying the conditions $n=2^{\beta} m,(m, K)=1,(n+K, K)=2^{\beta}$, we have $l_{2}(n+K)=l_{2}\left(2^{\beta}\right), l_{1}(n)=l_{1}\left(2^{\beta}\right)$. Consequently $l_{1}\left(2^{\beta}\right)=l_{2}\left(2^{\beta}\right)$. Choosing n such that $2^{\alpha+j} \| n(j \geqq 1)$ and $\left(n, 2^{-\alpha} K\right)=1$, we have $2^{\alpha} \| n+K$ and $\left(n+K, 2^{-\alpha} K\right)=1$. Hence $l_{2}\left(2^{\alpha}\right)=l_{1}\left(2^{\alpha+j}\right)$ follows. Let $2^{\alpha+j} \| n,\left(n, 2^{-\alpha} K\right)=1$. Then $2^{\alpha} \| n+\dot{K}$ and $\left(n+K, 2^{-\alpha} K\right)=1$. Consequently $l_{1}(n)=l_{1}\left(2^{\alpha+j}\right), l_{2}(n+K)=l_{2}\left(2^{\alpha}\right)$. Hence we obtain that $l_{1}\left(2^{\alpha}\right)=l_{2}\left(2^{\alpha+j}\right)(j \geqq 1)$. This completes the proof of (2.4).

The proof of (2.5) is similar and can be omitted.
From (2.4) and (2.5) it follows immediately, that $l_{2}(n+K)=l_{1}(n)$ for $n=1,2, \ldots$ Consequently the relations (2.2)-(2.5) are sufficient to guarantee the fulfilment of (2.1).

Remarks. 1) It would be interesting to prove the more general assertion: If $f_{i}(n)(i=0, \ldots, k)$ are additive functions satisfying the condition

$$
\sum_{i=0}^{k} f_{i}(n+i) \rightarrow 0 \quad(n \rightarrow \infty)
$$

then

$$
f_{i}(n)=c_{i} \log n+l_{i}(n) \quad(i=0, \ldots, k)
$$

where $l_{i}(n)$ have finite support. I am unable to prove this for $k \geqq 2$.
2) It seems probable that the following generalization of the conjecture of P. Erdobs holds: If $f(n)$ and $g(n)$ are additive functions such that $g(n+1)-f(n)$ is bounded, then $g(n)=c \log n+v(n), f(n)=c \log n+u(n)$, and $u(n), v(n)$ are bounded.
3. Now we investigate the class of additive functions satisfying

$$
\begin{equation*}
f(2 n+1)-f(n) \rightarrow C \quad(C \text { is a constant }) . \tag{3.1}
\end{equation*}
$$

Theorem 2. If $f(n)$ is a completely additive function satisfying (3.1), then $f(n)=c \log n, c=C / \log 2$.

Proof. Without loss of generality we may suppose $C=0$. Then we need to show that $f(n)=0$ identically.

Let N be a large integer, which we represent in the dyadical form:

$$
\begin{equation*}
N=2^{v_{1}}+2^{v_{2}}+\cdots+2^{v_{k}} \quad\left(v_{1}>v_{2}>\cdots>v_{k}\right) . \tag{3.2}
\end{equation*}
$$

Let $\alpha(N)$ denote the length of this representation, i.e. $\alpha(N)=k$.
Using (3.1) with $C=0$ and the total additivity of $f(n)$ we have

$$
\begin{equation*}
f(2 n+1)-f(2 n) \rightarrow-f(2) \quad(n \rightarrow \infty) . \tag{3.3}
\end{equation*}
$$

Hence we get

$$
\begin{aligned}
& f(N)=f\left(2^{v_{k}}\right)+f\left(2^{v_{1}-v_{k}}+\cdots+2^{v_{k-1}-v_{k}}+1\right)=. \\
& =v_{k} f(2)-f(2)+f\left(2^{v_{1}-v_{k}}+\cdots+2^{v_{k-1}-v_{k}}\right)+o(1) .
\end{aligned}
$$

Repeating this process we obtain that

$$
\begin{equation*}
f(N)=v_{1} f(2)-k f(2)+o(1) k \quad(N \rightarrow \infty) \tag{3.4}
\end{equation*}
$$

Since $2^{v_{1}} \leqq N<2^{v_{1}+1}$, we have $\frac{v_{1} \log 2}{\log N} \rightarrow 1$. Consequently, from (3.4),

$$
\begin{equation*}
\frac{f(N)}{\log N}=\frac{f(2)}{\log 2}-f(2) \log 2 \cdot \frac{\alpha(N)}{\log N}+o(1) . \tag{3.5}
\end{equation*}
$$

Now we prove that $f(2)=0$. For this let $N_{l}=2+2^{3}+\ldots+2^{2 l+1}$. Then
$3 N_{l}=2+2^{2}+\ldots+2^{2 l+2}$. Hence we obtain that $\alpha\left(3 N_{l}\right)=2 \alpha\left(N_{l}\right), \quad \alpha\left(N_{l}\right)=$ $=(1+o(1)) \frac{\log N_{l}}{2 \log 2}$. By (3.5) we have

$$
\begin{aligned}
f(3) & =f\left(3 N_{l}\right)-f\left(N_{l}\right)=-f(2) \log 2\left[\alpha\left(3 N_{l}\right)-\alpha\left(N_{l}\right)\right]+o\left(\log N_{l}\right)= \\
& =-f(2) \log 2 \cdot \alpha\left(N_{l}\right)+o\left(\log N_{l}\right)=-\frac{f(2)}{2}(1+o(1)) \log N_{l}
\end{aligned}
$$

Hence it follows immediately that $f(2)=0$.
Thus from (3.5),

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{f(N)}{\log N}=0 \tag{3.6}
\end{equation*}
$$

Using (3.6) and the total additivity of $f(n)$ we have

$$
\frac{f(N)}{\log N}=\lim _{k \rightarrow \infty} \frac{f\left(N^{k}\right)}{\log N^{k}}=0,
$$

and hence $f(N)=0$. This completes the proof of Theorem 2 .
Remarks.

1) I am unable to prove Theorem 2 for restrictedly additive functions $f(n)$.
2) Similarly, I cannot decide whether from $g(2 n+1)-f(n) \rightarrow C$ it follows or not that $f(n)$ and $g(n)$ are constant multiples of $\log n$.
3) It would be interesting to give all the solutions of the relation

$$
f(A n+B)-f(a n+b) \rightarrow C \quad(n \rightarrow \infty)
$$

in additive functions $f(n)$, for arbitrary integers A, B, a, b.

References

[1] P. Erdős, On the distribution of additive functions, Ann. of Math., 47 (1946), 1-20.
[2] A. S. Besicovirch, On additive functions of a positive integer, Studies in mathematical analysis and related topics, Essays in honor of G. Pólya (Stanford, 1962), 38-41.
[3] I. KÁtai, A remark on additive arithmetical functions, Annales Univ. Sci. Budapest, Sect. Math., 10 (1967), 81-83.
[4] A. MÁté, A new proof of a theorem of P. Erdős, Proc. Amer. Math. Soc., 8 (1967), 139-142.
[5] P. Erdős, On the distribution function of additive arithmetical functions, Rend. Sem. Math. Fis., Milano, 27 (1958), 3-7.
[0] I. Kátar, Characterization of an additive function by its local behaviour (not yet published). [7] I. KÁtai, A remark on number-theoretical functions, Acta Arithm. (in print).

