Operator conjugation with respect to symmetric and skew-symmetric forms

By J. BOGNÁR in Budapest

Let K be the real or complex number field, E the n-dimensional ($1 \leqq n<\infty$) vector space over K, and B the set of all linear mappings of E into itself. The elements of B will be termed operators.

We recall that a sesquilinear form on E is a function $\varphi(x, y)$ of two variables $x, y \in E$ with values in K such that

$$
\varphi\left(\alpha_{1} x_{1}+\alpha_{2} x_{2}, y\right)=\alpha_{1} \varphi\left(x_{1}, y\right)+\alpha_{2} \varphi\left(x_{2}, y\right)
$$

and

$$
\varphi\left(y, \alpha_{1} x_{1}+\alpha_{2} x_{2}\right)=\bar{\alpha}_{1} \varphi\left(y, x_{1}\right)+\bar{\alpha}_{2} \varphi\left(y, x_{2}\right)
$$

for every $\alpha_{1}, \alpha_{2} \in K ; x_{1}, x_{2}, y \in E$. The sesquilinear form φ is said to be non-degenerate if $\varphi(x, y)=0$ for every y implies $x=0$, and $\varphi(x, y)=0$ for every x implies $y=0$. The sesquilinear form φ is said to be symmetric if $\varphi(x, y)=\bar{\varphi}(y, x)$, and skewsymmetric if $\varphi(x, y)=-\overline{\varphi(y, x)}$ for every x, y in E.

Let $\varphi(x, y)$ be a symmetric or skew-symmetric non-degenerate sesquilinear form on E. It is well-known (see e.g. [1], section 99) that to every $T \in B$ there is a uniquely defined $T^{*} \in B$ such that

$$
\begin{equation*}
\varphi(T x, y)=\varphi\left(x, T^{*} y\right) \quad(x, y \in E ; T \in B) . \tag{1}
\end{equation*}
$$

The operator T^{*} is called the adjoint of T with respect to φ. The mapping $T \rightarrow T^{*}$ ($T \in B$) has the following properties:

$$
\begin{gather*}
\left(\alpha_{1} T_{1}+\alpha_{2} T_{2}\right)^{*}=\bar{\alpha}_{1} T_{1}^{*}+\bar{\alpha}_{2} T_{2}^{*} \quad\left(\alpha_{1}, \alpha_{2} \in K ; T_{1}, T_{2} \in B\right) \tag{2}\\
\left(T_{1} T_{2}\right)^{*}=T_{2}^{*} T_{1}^{*} \quad\left(T_{1}, T_{2} \in B\right) \tag{3}\\
T^{* *}=T \quad(T \in B) \tag{4}
\end{gather*}
$$

In the present note it will be shown that any mapping of B into itself satisfying the conditions (2)-(4) can be obtained in this way.

The idea was suggested us by E. Fried's paper [2] where the case of a symmetric $\varphi(x, y)$ with definite $\varphi(x, x)$ (i.e. $\varphi(x, \dot{x})=0$ only if $x=0)$ is treated.

The "existence" part of our result is implicitly contained in the concluding remarks of [2]. However, the question of uniqueness and the separate characterization of the symmetric and skew-symmetric case do not appear there. Our proof of existence seems to be not quite different from Fried's one, but we need neither an a priori given inner product nor the characterization of operators commuting with every element of B.

Theorem. Let $T \rightarrow T^{*}(T \in B)$ be a mapping of B into itself with the properties (2), (3), (4). If $K=C$, the field of complex numbers, then there exist both a symmetric and a skew-symmetric non-degenerate sesquilinear form φ on E satisfying the relation (1). If $K=R$, the field of real numbers, then there exists either a symmetric or a skewsymmetric non-degenerate sesquilinear form φ on E satisfying (1); the form φ will be symmetric if and only if there is an operator $T_{0} \in B$ such that

$$
\begin{equation*}
\operatorname{rank} T_{0}=1, \quad T_{0}^{*} T_{0} \neq 0 \tag{5}
\end{equation*}
$$

In each of the above cases φ is, up to a real non-zero factor, uniquely determined.
Proof. If there is an operator T_{0} with properties (5), we choose a basis $\dot{e}_{1}, \ldots, e_{n}$ of E such that

$$
\begin{equation*}
T_{0} e_{k}=0 \quad(k=2, \ldots, n) \tag{6}
\end{equation*}
$$

In the opposite case let e_{1}, \ldots, e_{n} be any basis of E.
We define n^{2} operators $P_{j k}$ setting

$$
\begin{equation*}
P_{j k} e_{r}=\delta_{k r} e_{j} \quad(j, k, r=1, \ldots, n) \tag{7}
\end{equation*}
$$

Turning our attention to the mapping $T \rightarrow T^{*}(T \in B)$ we observe that

$$
\begin{equation*}
T^{*}=0 \text { if and only if } T=0 \tag{8}
\end{equation*}
$$

Indeed, according to (2), $0^{*}=(2 \cdot 0)^{*}=2 \cdot 0^{*}$ i.e. $0^{*}=0$. Moreover, in view of (4), $T^{*}=0$ implies $T=T^{* *}=\left(T^{*}\right)^{*}=0^{*}=0$.

Since by the definition (7)

$$
\begin{equation*}
P_{j k} \neq 0, \quad P_{j k} P_{r s}=\delta_{k r} P_{j s} \quad(j, k, r, s=1, \ldots, n) \tag{9}
\end{equation*}
$$

from (8) and (3) we infer

$$
\begin{equation*}
P_{j k}^{*} \neq 0, \quad P_{r s}^{*} P_{j k}^{*}=\delta_{k r} P_{j s}^{*} \quad(j, k, r, s=1, \ldots, n) . \tag{10}
\end{equation*}
$$

We will construct and study the required sesquilinear form φ by the aid of the basis e_{1}, \ldots, e_{n} and a new basis f_{1}, \ldots, f_{n}. In order to define the latter, we need the operators $P_{j k}^{*}$ and an operator S (resp. W) of rank 1 such that $S^{*}=S\left(W^{*}=-W\right)$.

Let the relations (5) be satisfied by some $T_{0} \in B$. We may assume that (6) holds, too. Setting $S=T_{0}^{*} T_{0}$ we have

$$
\begin{equation*}
S^{*}=S, \quad S \neq 0, \quad S e_{k}=0 \quad(k=2, \ldots, n) \tag{11}
\end{equation*}
$$

If (5) cannot be satisfied then in particular

$$
P_{11}^{*} P_{11}=0, . \text { and } \quad P_{k 1}^{*} P_{k 1}=0, \quad\left(P_{11}+P_{k 1}\right)^{*}\left(P_{11}+P_{k 1}\right)=0 \quad(k=2, \ldots, n)
$$

Hence, in view of (2),

$$
P_{11}^{*} P_{k 1}+P_{k 1}^{*} P_{11}=0 \quad(k=2, \ldots, n)
$$

But for some $k \neq 1$ the operator $W=P_{11}^{*} P_{k 1}$ is different from zero. In fact, otherwise it would follow that

$$
P_{11}^{*} e_{k}=P_{11}^{*} P_{k 1} e_{1}=0 \quad(k=1, \ldots, n)
$$

i.e. $P_{11}^{*}=0$. Thus we have

$$
\begin{equation*}
W^{*}=-W, \quad W \neq 0, \quad W e_{k}=0 \quad(k=2, \ldots, n) \tag{12}
\end{equation*}
$$

Let

$$
f_{1}= \begin{cases}S e_{1} & \text { if (5) can be fulfilled } \tag{13}\\ W e_{1} & \text { otherwise }\end{cases}
$$

and let

$$
\begin{equation*}
f_{k}=P_{1 k}^{*} f_{1} \quad(k=2, \ldots, n) . \tag{14}
\end{equation*}
$$

The validity of (14) can be extended to $k=1$. Really, if $f_{1}=S e_{1}$, then $P_{11}^{*} f_{1}=$ $=P_{11}^{*} S e_{1}=P_{11}^{*} S^{*} e_{1}=\left(S P_{11}\right)^{*} e_{1}=S^{*} e_{1}=S e_{1}=f_{1}$; in the case $f_{1}=W e_{1}$ a similar argument holds. Making use of this fact and of formula (10) we obtain:

$$
\begin{equation*}
P_{j k}^{*} f_{r}=\delta_{j r} f_{k} \quad(j, k, r=1, \ldots, n) . \tag{15}
\end{equation*}
$$

Assume that $\sum_{r=1}^{n} \alpha_{r} f_{r}=0$ for some $\alpha_{1}, \ldots, \alpha_{n} \in K$. Then $P_{j 1}^{*} \sum_{r=1}^{n} \alpha_{r} f_{r}=0$, so that by (15) $\alpha_{j} f_{1}=0(j=1, \ldots, n)$. On account of (11)-(13) $\dot{f}_{1} \neq 0$. Hence $\alpha_{1}=\alpha_{2}=$ $=\cdots=\alpha_{n}=0$. Consequently, f_{1}, \ldots, f_{n} constitute a basis of E.

Now let $\varphi(x, y)$ be a non-degenerate sesquilinear form on E which satisfies the relation (1). Then necessarily

$$
\varphi\left(e_{j}, f_{k}\right)=\varphi\left(P_{j 1} e_{1}, f_{k}\right)=\varphi\left(e_{1}, P_{j 1}^{*} f_{k}\right)=\delta_{j k} \varphi\left(e_{1}, f_{1}\right) \quad(j, k=1, \ldots, n)
$$

and

$$
\begin{aligned}
& \varphi\left(\sum_{j=1}^{n} \mu_{j} e_{j}, \sum_{k=1}^{n} v_{k} f_{k}\right)=\sum_{j, k=1}^{n} \mu_{j} \bar{v}_{k} \varphi\left(e_{j}, f_{k}\right)= \\
= & \sum_{k=1}^{n} \mu_{k} \bar{v}_{k} \varphi\left(e_{1}, f_{1}\right) \quad\left(\mu_{k}, v_{k} \in K ; k=1, \ldots, n\right)
\end{aligned}
$$

where

$$
\varphi\left(e_{1}, f_{1}\right) \neq 0
$$

Therefore if φ_{1}, φ_{2} are two non-degenerate sesquilinear forms with the property

$$
\varphi_{k}(T x, y)=\varphi_{k}\left(x, T^{*} y\right) \quad(x, y \in E ; T \in B ; k=1,2),
$$

then $\varphi_{1}=\lambda \varphi_{2}$, where

$$
\begin{equation*}
\lambda=\frac{\varphi_{1}\left(e_{1}, f_{1}\right)}{\varphi_{2}\left(e_{1}, f_{1}\right)} \tag{16}
\end{equation*}
$$

is a non-zero (till now possibly complex) number.
Since a real multiple of a symmetric (skew-symmetric) form is symmetric (skewsymmetric), and a non-degenerate form cannot be symmetric and skew-symmetric at the same time, for $K=R$ we additionally find that the cases where φ can be chosen. symmetric or skew-symmetric, respectively, must be mutually disjoint.

If $K=C$ and both of the forms φ_{1}, φ_{2} are required to be symmetric (resp. skew-symmetric), then the value of λ in (16) must be real. As a matter of fact, the relations

$$
\varphi_{k}\left(e_{1}, f_{1}\right)=\varepsilon \overline{\varphi_{k}\left(f_{1}, e_{1}\right)} \quad(\varepsilon= \pm 1 ; k=1,2)
$$

imply $\lambda=\bar{\lambda}$.
Conversely, it is easy to see that for any fixed real non-zero number γ the formula

$$
\begin{equation*}
\varphi\left(\sum_{j=1}^{n} \mu_{j} e_{j}, \sum_{k=1}^{n} v_{k} f_{k}\right)=\gamma \sum_{k=1}^{n} \mu_{k} \bar{v}_{k} \quad\left(\mu_{k}, v_{k} \in K ; k=1, \ldots, n\right) \tag{17}
\end{equation*}
$$

defines a non-degenerate sesquilinear form on E. Moreover, in view of (7) and (15) we have

$$
\begin{aligned}
& \varphi\left(P_{j k} e_{r}, f_{s}\right)=\delta_{k r} \varphi\left(e_{j}, f_{s}\right)=\delta_{k r} \delta_{j s} \gamma \\
& \varphi\left(e_{r}, P_{j k}^{*} f_{s}\right)=\delta_{j s} \varphi\left(e_{r}, f_{k}\right)=\delta_{j s} \delta_{k r} \gamma
\end{aligned}
$$

i.e.

$$
\varphi\left(P_{j k} e_{r}, f_{s}\right)=\varphi\left(e_{r}, P_{j k}^{*} f_{s}\right) \quad(j, k, r, s=1, \ldots, n)
$$

so that making use of the linearity of $P_{j k}$ and the sequilinearity of φ we obtain

$$
\varphi\left(P_{j k} x, y\right)=\varphi\left(x, P_{j k}^{*} y\right) \quad(x, y \in E ; j, k=1, \ldots, n)
$$

Taking into account that any $T \in B$ is a linear combination of the operators $P_{j k}$, the relation (1) follows.

If $f_{1}=S e_{1}$ (cf. (13)), then the relations (1), (11), (17), (15), (4) and (7) yield:

$$
\begin{gathered}
\varphi\left(f_{1}, e_{1}\right)=\varphi\left(S e_{1}, e_{1}\right)=\varphi\left(e_{1}, S e_{1}\right)=\varphi\left(e_{1}, f_{1}\right)=\gamma, \\
\varphi\left(f_{k}, e_{j}\right)=\varphi\left(P_{1 k}^{*} f_{1}, e_{j}\right)=\varphi\left(f_{1}, P_{1 k} e_{j}\right)=\delta_{k j} \varphi\left(f_{1}, e_{1}\right)=\delta_{k j} \gamma, \\
\varphi\left(\sum_{k=1}^{n} v_{k} f_{k}, \sum_{j=1}^{n} \mu_{j} e_{j}\right)=\sum_{j, k=1}^{n} v_{k} \bar{\mu}_{j} \varphi\left(f_{k}, e_{j}\right)=\sum_{k=1}^{n} v_{k} \bar{\mu}_{k} \gamma
\end{gathered}
$$

Thus, in view of (17), φ is symmetric.

If $f_{1}=W e_{1}$ (cf. (13)) then, by virtue of (12), φ turns out to be skew-symmetric.
Finally, let $K=C$, and let φ be a symmetric (skew-symmetric) non-degenerate sesquilinear form satisfying the relation (1). Then $\varphi_{1}=i \varphi$ is a skew-symmetric (resp. symmetric) non-degenerate sesquilinear form satisfying (1).
$\dot{A} d d e d$ in proof. Professor Klaus Vala kindly called my attention to the fact that Fried's result referred to in the introduction is a special case of a theorem of Mackey and Kakutani (cf. C. E. Rickart, General theory of Banach algebras, Princeton-Toronto-London-New York, 1960; p. 265), where operators on a Banach space of arbitrary dimension are considered. The two proofs, however, seem to have nothing in common.

References

[1] А. И. Мальцев, Основы линейной алгебры (Москва, 1956).
[2] E. Fried, A characterization of the adjoints of linear transformations, Annales Univ. Sci. Budapest, sectio math., 8 (1965), 181-185.
(Received March 27, 1969)

