Operator conjugation with respect to symmetric and skew-symmetric forms

By J. BOGNÁR in Budapest

Let K be the real or complex number field, E the n-dimensional $(1 \le n < \infty)$ vector space over K, and B the set of all linear mappings of E into itself. The elements of B will be termed operators.

We recall that a sesquilinear form on E is a function $\varphi(x, y)$ of two variables $x, y \in E$ with values in K such that

$$\varphi(\alpha_1 x_1 + \alpha_2 x_2, y) = \alpha_1 \varphi(x_1, y) + \alpha_2 \varphi(x_2, y)$$

and

$$\varphi(y,\alpha_1x_1+\alpha_2x_2) = \bar{\alpha}_1\varphi(y,x_1) + \bar{\alpha}_2\varphi(y,x_2)$$

for every $\alpha_1, \alpha_2 \in K$; $x_1, x_2, y \in E$. The sesquilinear form φ is said to be *non-degenerate* if $\varphi(x, y) = 0$ for every y implies x = 0, and $\varphi(x, y) = 0$ for every x implies y = 0. The sesquilinear form φ is said to be symmetric if $\varphi(x, y) = \overline{\varphi(y, x)}$, and skew-symmetric if $\varphi(x, y) = -\overline{\varphi(y, x)}$ for every x, y in E.

Let $\varphi(x, y)$ be a symmetric or skew-symmetric non-degenerate sesquilinear form on E. It is well-known (see e.g. [1], section 99) that to every $T \in B$ there is a uniquely defined $T^* \in B$ such that

(1)
$$\varphi(Tx, y) = \varphi(x, T^*y) \quad (x, y \in E; T \in B).$$

The operator T^* is called the *adjoint* of T with respect to φ . The mapping $T \rightarrow T^*$ $(T \in B)$ has the following properties:

(2)
$$(\alpha_1 T_1 + \alpha_2 T_2)^* = \bar{\alpha}_1 T_1^* + \bar{\alpha}_2 T_2^* \quad (\alpha_1, \alpha_2 \in K; T_1, T_2 \in B),$$

(3)
$$(T_1 T_2)^* = T_2^* T_1^* \quad (T_1, T_2 \in B),$$

$$T^{**} = T \quad (T \in B).$$

In the present note it will be shown that any mapping of B into itself satisfying the conditions (2)—(4) can be obtained in this way.

The idea was suggested us by E. FRIED's paper [2] where the case of a symmetric $\varphi(x, y)$ with *definite* $\varphi(x, x)$ (i.e. $\varphi(x, x)=0$ only if x=0) is treated.

J. Bognár

The "existence" part of our result is implicitly contained in the concluding remarks of [2]. However, the question of uniqueness and the separate characterization of the symmetric and skew-symmetric case do not appear there. Our proof of existence seems to be not quite different from FRIED's one, but we need neither an *a priori* given inner product nor the characterization of operators commuting with every element of B.

Theorem. Let $T \rightarrow T^*$ ($T \in B$) be a mapping of B into itself with the properties (2), (3), (4). If K=C, the field of complex numbers, then there exist both a symmetric and a skew-symmetric non-degenerate sesquilinear form φ on E satisfying the relation (1). If K=R, the field of real numbers, then there exists either a symmetric or a skewsymmetric non-degenerate sesquilinear form φ on E satisfying (1); the form φ will be symmetric if and only if there is an operator $T_0 \in B$ such that

(5) rank $T_0 = 1$, $T_0^* T_0 \neq 0$.

In each of the above cases φ is, up to a real non-zero factor, uniquely determined.

Proof. If there is an operator T_0 with properties (5), we choose a basis $e_1, ..., e_n$ of E such that

(6)
$$T_0 e_k = 0$$
 $(k=2,...,n).$

In the opposite case let $e_1, ..., e_n$ be any basis of E.

We define n^2 operators P_{ik} setting

(7)
$$P_{jk}e_r = \delta_{kr}e_j$$
 $(j, k, r=1, ..., n).$

Turning our attention to the mapping $T \rightarrow T^*$ ($T \in B$) we observe that

(8) $T^*=0$ if and only if T=0.

Indeed, according to (2), $0^* = (2 \cdot 0)^* = 2 \cdot 0^*$ i.e. $0^* = 0$. Moreover, in view of (4), $T^* = 0$ implies $T = T^{**} = (T^*)^* = 0^* = 0$.

Since by the definition (7)

(9)
$$P_{ik} \neq 0, \quad P_{ik} P_{rs} = \delta_{kr} P_{is} \quad (j, k, r, s = 1, ..., n),$$

from (8) and (3) we infer

(10)
$$P_{jk}^* \neq 0, \quad P_{rs}^* P_{jk}^* = \delta_{kr} P_{js}^* \quad (j, k, r, s = 1, ..., n).$$

We will construct and study the required sesquilinear form φ by the aid of the basis $e_1, ..., e_n$ and a new basis $f_1, ..., f_n$. In order to define the latter, we need the operators P_{ik}^* and an operator S (resp. W) of rank 1 such that $S^* = S$ ($W^* = -W$).

Let the relations (5) be satisfied by some $T_0 \in B$. We may assume that (6) holds, too. Setting $S = T_0^*T_0$ we have

(11)
$$S^* = S, S \neq 0, Se_k = 0$$
 $(k = 2, ..., n).$

Operator conjugation

If (5) cannot be satisfied then in particular

$$P_{11}^*P_{11}=0$$
, and $P_{k1}^*P_{k1}=0$, $(P_{11}+P_{k1})^*(P_{11}+P_{k1})=0$ $(k=2,...,n)$.

Hence, in view of (2),

$$P_{11}^*P_{k1} + P_{k1}^*P_{11} = 0$$
 (k=2, ..., n).

But for some $k \neq 1$ the operator $W = P_{11}^* P_{k1}$ is different from zero. In fact, otherwise it would follow that

$$P_{11}^*e_k = P_{11}^*P_{k1}e_1 = 0$$
 (k=1, ..., n)

i.e. $P_{11}^* = 0$. Thus we have

(12)
$$W^* = -W, \quad W \neq 0, \quad We_k = 0 \quad (k = 2, ..., n).$$

Let

(13)
$$f_1 = \begin{cases} Se_1 & \text{if (5) can be fulfilled,} \\ We_1 & \text{otherwise,} \end{cases}$$

and let

(14)
$$f_k = P_{1k}^* f_1$$
 $(k=2,...,n)$.

The validity of (14) can be extended to k=1. Really, if $f_1 = Se_1$, then $P_{11}^*f_1 =$ $=P_{11}^*Se_1=P_{11}^*S^*e_1=(SP_{11})^*e_1=S^*e_1=Se_1=f_1$; in the case $f_1=We_1$ a similar argument holds. Making use of this fact and of formula (10) we obtain:

(15)
$$P_{jk}^* f_r = \delta_{jr} f_k$$
 $(j, k, r = 1, ..., n).$

Assume that $\sum_{r=1}^{n} \alpha_r f_r = 0$ for some $\alpha_1, ..., \alpha_n \in K$. Then $P_{j1}^* \sum_{r=1}^{n} \alpha_r f_r = 0$, so that by (15) $\alpha_j f_1 = 0$ (j=1, ..., n). On account of (11)-(13) $f_1 \neq 0$. Hence $\alpha_1 = \alpha_2 =$ $= \cdots = \alpha_n = 0$. Consequently, f_1, \dots, f_n constitute a basis of E.

Now let $\varphi(x, y)$ be a non-degenerate sesquilinear form on E which satisfies the relation (1). Then necessarily

$$\varphi(e_j, f_k) = \varphi(P_{j1}e_1, f_k) = \varphi(e_1, P_{j1}^*f_k) = \delta_{jk}\varphi(e_1, f_1) \qquad (j, k = 1, \dots, n),$$

and

$$\varphi\left(\sum_{j=1}^{n} \mu_{j} e_{j}, \sum_{k=1}^{n} \nu_{k} f_{k}\right) = \sum_{j,k=1}^{n} \mu_{j} \bar{\nu}_{k} \varphi(e_{j}, f_{k}) =$$
$$= \sum_{k=1}^{n} \mu_{k} \bar{\nu}_{k} \varphi(e_{1}, f_{1}) \qquad (\mu_{k}, \nu_{k} \in K; \ k = 1, \dots, n),$$

where

 $\varphi(e_1, f_1) \neq 0.$

71

Therefore if φ_1, φ_2 are two non-degenerate sesquilinear forms with the property

$$\varphi_k(Tx, y) = \varphi_k(x, T^*y)$$
 (x, $y \in E$; $T \in B$; $k = 1, 2$),

then $\varphi_1 = \lambda \varphi_2$, where

(16)
$$\lambda = \frac{\varphi_1(e_1, f_1)}{\varphi_2(e_1, f_1)}$$

is a non-zero (till now possibly complex) number.

Since a real multiple of a symmetric (skew-symmetric) form is symmetric (skew-symmetric), and a non-degenerate form cannot be symmetric and skew-symmetric at the same time, for K=R we additionally find that the cases where φ can be chosen. symmetric or skew-symmetric, respectively, must be mutually disjoint.

If K=C and both of the forms φ_1 , φ_2 are required to be symmetric (resp. skew-symmetric), then the value of λ in (16) must be real. As a matter of fact, the relations

imply
$$\lambda = \overline{\lambda}$$
. $\varphi_k(e_1, f_1) = \varepsilon \overline{\varphi_k(f_1, e_1)}$ $(\varepsilon = \pm 1; k = 1, 2)$

Conversely, it is easy to see that for any fixed real non-zero number γ the formula

(17)
$$\varphi\left(\sum_{j=1}^{n} \mu_{j} e_{j}, \sum_{k=1}^{n} \nu_{k} f_{k}\right) = \gamma \sum_{k=1}^{n} \mu_{k} \bar{\nu}_{k} \qquad (\mu_{k}, \nu_{k} \in K; \ k = 1, ..., n)$$

defines a non-degenerate sesquilinear form on E. Moreover, in view of (7) and (15) we have

$$\varphi(P_{jk}e_r, f_s) = \delta_{kr} \varphi(e_j, f_s) = \delta_{kr} \delta_{js} \gamma,$$

$$\varphi(e_r, P_{ik}^* f_r) = \delta_{ir} \varphi(e_r, f_k) = \delta_{ir} \delta_{kr} \gamma$$

i.e.

$$\varphi(P_{jk}e_r,f_s)=\varphi(e_r,P_{jk}^*f_s) \qquad (j,k,r,s=1,\ldots,n),$$

so that making use of the linearity of P_{ik} and the sequilinearity of φ we obtain

$$\varphi(P_{jk}x, y) = \varphi(x, P_{jk}^*y)$$
 $(x, y \in E; j, k = 1, ..., n).$

Taking into account that any $T \in B$ is a linear combination of the operators P_{jk} , the relation (1) follows.

If $f_1 = Se_1$ (cf. (13)), then the relations (1), (11), (17), (15), (4) and (7) yield:

$$\varphi(f_1, e_1) = \varphi(Se_1, e_1) = \varphi(e_1, Se_1) = \varphi(e_1, f_1) = \gamma,$$

$$\varphi(f_k, e_j) = \varphi(P_{1k}^* f_1, e_j) = \varphi(f_1, P_{1k} e_j) = \delta_{kj} \varphi(f_1, e_1) = \delta_{kj} \gamma,$$

$$\varphi\left(\sum_{k=1}^n v_k f_k, \sum_{j=1}^n \mu_j e_j\right) = \sum_{j,k=1}^n v_k \overline{\mu}_j \varphi(f_k, e_j) = \sum_{k=1}^n v_k \overline{\mu}_k \gamma.$$

Thus, in view of (17), φ is symmetric.

Operator conjugation

If $f_1 = We_1$ (cf. (13)) then, by virtue of (12), φ turns out to be skew-symmetric. Finally, let K = C, and let φ be a symmetric (skew-symmetric) non-degenerate sesquilinear form satisfying the relation (1). Then $\varphi_1 = i\varphi$ is a skew-symmetric (resp. symmetric) non-degenerate sesquilinear form satisfying (1).

Added in proof. Professor KLAUS VALA kindly called my attention to the fact that FRIED's result referred to in the introduction is a special case of a theorem of Mackey and Kakutani (cf. C. E. RICKART, General theory of Banach algebras, Princeton—Toronto—London—New York, 1960; p. 265), where operators on a Banach space of arbitrary dimension are considered. The two proofs, however, seem to have nothing in common.

References

[1] А. И. Мальцев, Основы линейной алгебры (Москва, 1956).

[2] E. FRIED, A characterization of the adjoints of linear transformations, Annales Univ. Sci. Budapest, sectio math., 8 (1965), 181-185.

(Received March 27, 1969)