
/-unitary dilation of a general operator 

By CHANDLER DAVIS in Toronto (Canada)') 

According to a well-known theorem of SZ.-NAGY [13], [14, Thm. I. 4. 2], every 
contraction on Hilbert space has a unitary dilation on a larger space (and also 
has an extension on a larger spaa, which is the adjoint of an isometry [14, Thm. 
I. 4. 1.). In this paper, by a modification of familiar methods, the corresponding 
result is obtained for an arbitrary closed densely-defined operator. The conclusion 
is different in that the dilation is only /-unitary (and the extension is only the adjoint 
of a /-isometry, or the / -adjoint of a /-isometry). 

I t is a p l e a s u r e t o t h a n k B. SZ.-NAGY a n d E . DURSZT f o r c o n v e r s a t i o n s w h i c h 

inspired this investigation, and C. FOIA§ for suggestions which led to substantial 
improvements upon the first version. 

1. Definitions 

The subject will be a closed operator T whose domain D(T) is a dense linear 
set in a Hilbert space The inner product of § will be denoted by (,'). I will construct 
later a Hilbert space ft of which § is a linear subspace; the inner product of ft will 
be an extension of that of and will also be denoted by ( , ) . The orthoprojector 
on ft onto §> will be denoted by P I will also construct an operator U, closed 
and densely defined in ft, which is a "dilat ion" of T\ this means that 

(1. 1) T" = P9U"|s and T*n = P6U-16 (if = 1, 2, ...).. 

In addition ft will be a " / -space". This means [7] that the Hilbert space ft 
will have associated with it a canonical symmetry / , i.e., a fixed unitary hermitian 
operator / . In any /-space one considers along with / the complementary ortho-
projectors J+ and / ( 1 will use the notations A+ and A" for the positive part 
and the negative part of an arbitrary self-adjoint operator A [11, § 108].) It is often 
assumed that the ranges R(J+) and R(J~) are both non-zero, but here that is not 

') This research was done while the author was in Szeged on a Senior Research Fellowship 
of the National Research Council of Canada. 



76 Ch. Davis 

assumed. In terms of / , a new continuous hermitian sesquilinear form is defined by 

[k, k']=(Jk, k') (k,k'£S<). 

Unlike the inner product ( , ) , the " / - p r o d u c t " [ , ] need not be definite; in particular, 
[k,k]>0 for non-zero k£R(J+), while [k, £;]<0 for non-zero k£R{J~). For this 
reason ./-spaces are also called Hilbert spaces with indefinite metr ic; but do not 
be misled. The norm is defined in terms of the definite inner product , not the / -p roduc t , 
and topological notions are defined in terms of the norm. The " / - a d j o i n t " of any 
A is JA*J. 

A "/ - i sometr ic" operator U is a closed, densely defined operator which preserves 
the / p r o d u c t : 
(1 .2) [Uk, Uk']=[k, k'] (k,k'£D(U)). 

A /- isometry U is called " / -un i t a ry" in case it has a densely defined inverse, which 
then is necessarily /- isometric as well. The terminology and notat ion of unbounded 
operators are used because the operator U which appears below really can be un-
bounded. This has obliged me to depart f rom the usual terminology [7], in which 
/ -un i ta ry operators are by definition bounded. (IOHVIDOV [5], [6] studies unbounded 
/- isometr ies , but in quite different context.) 

2. The main lemma 

Let 17"| denote ( T * T ) 1 / 2 , a self-adjoint operator with D(\T\) = D(T), R(\T[) = 
= R(T*); similarly \T*\ = ( .7T*) I / 2 . Let W denote the unique partial isometry such 
that T=W\T\ = \T*\W, R(W)=R(T), R(W*)= R(T*) [10]. . 

I t will be useful to have special notat ion and terminology for some operators 
and subspaces derived f rom these, which will figure prominently in the construc-
tion. Let | J | = f XdE{X) be the spectral resolution of \T\; |T*| = f A dF(X), that 

o o 
of |7"*|. Define 

JT = Sgn (1 - T* T) = / sgn (1 - P ) dE(X), 
o 

Qr = (\\-T*T\Y'2 = f'Y\i=J?\dE(X), 
o 

l 
DT = ( ( l - r * r ) + ) 1 / 2 = JI\-X2dE{K), 

o 

XT = ((l-r*r)-)1/2 = /1Ik2 - 1 dE{ji), 
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which are self-adjoint operators. Clearly JT and DT are bounded and everywhere 
defined. As for the possibly unbounded operators |T|, QT, and XT, they differ 
by operators which are bounded, and so they have the same domain (which is D(T)). 

In case T is a contraction, / f and XT are O, while QT is equal to DT, the same 
operator denoted by that symbol in [14]. 

In spite of the choice of letter, JT is not quite suitable for defining a /-product 
on since it can have a null-space. Its role in the eventual construction of the 
/-space ft will be less direct. 

It is obvious that JTQ\ = QtJt = L — T*T. It is less immediate, but worth 
noting, that 

(2. 1) {JTQTK QTI) = ( h , l ) - { T h , Tl) {/,, l£D(T)). 

To see this, we may introduce ||| |||, the "graph norm for T", defined by 

|||A|||2 = W\2 + \\Th\\2 (h€D{T)). 

It makes D(T) into a (complete) Hilbert space, in which it is easy to prove that 
D(T*T) is dense. But with respect to this norm, both sides of (2. 1) are continuous 
functions of h and /; and (2. 1) does hold for /; and I belonging to D(T* T); therefore 
it must hold in general. 

Interchanging T with T* and E( ) with F( ), we get operators JT,, QTt, 
DTXT*, with properties corresponding. 

L e m m a . Let the symbol g stand for either / , Q, D, or X. We have TJ7 = |r* T. 

In the case TDT = DT*T, this relation has been crucial in unitary dilation 
theory since its beginnings [5], and it continues its role here. 

P r o o f . Each relation to be proved has the form 

(2. 2) W J f { X ) dE(X) = f / / ( 1 ) dF().)\ W 

for some piecewise-continuous function / vanishing at 0: for example, in the case 
of the equation TXT = XT*T, t ake / (A) = / [1>M](A)-A/I2 - 1 . Now the fact that 
W\T\ = \T*\W, with which we began, implies that WE(k) = F(k)W for all X if E( ) 

<x> 

and F( ) are normalized in the same way. Using the criterion J f ( X ) 2 d(E(X)h, h) < 
o 

for a vector h to belong to the domain of 
/ f(X) dE(X) and using the properties 
o 
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of W, we see easily that the two sides of (2. 2) have the same domain, and agree 
on the domain. 

This proves the Lemma as stated, but it is worth noting the somewhat more 
delicate fact that (with the same notation) 

(2.3) (lTh,T*l)={Th,lT,l) (hZD(T)j€D(T*)). 

For JT and DT this does follow from the Lemma. For the other two cases, we may 
either use approximation in the graph norm as for (2. 1), or else use the fact that 
QT resp. XT differs from |7"| by a bounded operator, which reduces (2. 3) rather 
quickly to the Lemma. 

The operators JT, JT*, QT, QT* are all that are needed to prove the main 
theorem; the others will be used only for the discussion of the geometry of the dila-
tion space, which will follow in § 4. 

3. The dilation 

T h e o r e m . Given any closed, densely defined operator T in §», there exists a 
Hilbert space S\ 2 i) and there exists a closed, densely defined operator U in ft, with the 
following properties: 

(a) ft is a J-space, with § ^ 7 + ( f t ) (i.e., [h, l] = (h, I) for h, /£§); 
(b) U is J-unitary, that is, (1. 2) holds and C/ - 1 is densely defined; 
(c) U is a dilation of T, that is, (1.1) holds; 
(d) V { t / n § : n = 0, ± 1 , ± 2 , ...} = ft. 

(In stating (d), and occasionally below, I use an expression like £/§ as short-hand 
for t / ( § n i > ( i / ) . ) 

The construction follows quite closely that of SCHAFFER, as sharpened sub-
sequently [14, I. 5]. I begin (as Schaffer did) with a space ft0, somewhat larger than 
desired but easy to describe: it is the direct sum of countably many isometric copies 
of § (with the usual inner product). One of these copies I will identify at once with 
§>. The unitary application of each copy onto, the next one in order will be denoted 
by S; thus I write 

(3". 1) ft0 = - © S - 2 S © 5 - 1 § © S ® 5 § © 5 2 § e - - - . 

S will have a role as an operator (a bilateral shift of multiplicity dim § acting on ft) 
and as a device for indexing the component subspaces of ft0 in (3. 1). For any fc£ft°, 
kt will mean the component of k in S%. (Thus, for instance, (Sk)i — Ski_1.) 
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Now to define J, I take the diagonal operator-matrix 

(3. 2) 

JF* 

JF* 

1 

JT 

JT 

That is, for an element S"h ( / i£§) I define 

J(S"h) 

S"(JT*h) (n < 0), 
h (n = 0), 
S"(JTh) (n > 0). 

This extends to a self-adjoint operator J on ft0 such that the space is spanned by its 
eigenspaces belonging to (at most) the three eigenvalues 0, ± 1. Define ft = R(J)^ ft0 

and [k, k'] = (Jk, k'). Obviously conclusion (a) of the Theorem holds. 
The operator U will be, essentially, an extension of 

(3. 3) 

0 
1 0 

1 0 
QT* T 

— JtT* QT 0 
1 O 

1 O 

The simplest interpretation of (3. 3) is that it defines an operator in ft0 for which 

V(Snh) 

Sn+1 h (n — 0), 
QT*h®-SJTT*hd (« = -1; h<iD(T*)), 
Th@SQTh £ §)®S§> (n = 0; h£D(Tj), 

and which is then to be extended by linearity to the finite linear combinations of the 
vectors S"h. 

So defined, V takes D ( F ) D f t into ft. To verify this, we treat (Vk)^ the only 
component about which there is any possible doubt. By definition, (Vk)t .= 
= SQTk0 — SJTT* Sk_!. This is in S(R(JT)) as desired because QT and JT, being 
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by their definition self-adjoint operators with the same null-space, have R(QT) = 
= R(JT) (— R(JT)). Therefore we are free to treat (3. 3) as representing an operator 
with domain in ft. 

Next it must be proved that the operator V possesses a closure [10]. Suppose 
not ; then there exists a sequence ( k M ) i n D ( V ) such that kM —0 but Vk(n) approaches 
a non-zero limit. It is easy to see that either {Vkw)0 or (F/c("))1 approaches a non-
zero limit; the argument goes the same in either case, I will write it for the first 
alternative. We have {VkM)0 = Tk(

0
n) + QT*S№\ by definition, where (k(

0
n)) is a 

sequence of vectors in D(T), tending to 0 as n — and (h'M) = (Sk("\) is a sequence 
of vectors in D(T*), tending to 0 as « — but where the sequence ((Ffc(r,))0) ap-
proaches a non-zero limit. We can write Tk(

0
n) = \T*\h(n), where (hM) = {WkiJ)) is a 

sequence of elements of D(T*) approaching 0 as « — <*>. Now 

(Vk^)0 = \T*\h{,,) + QT*h'(n) = \T*\(hW + h'^) + (QT*-\T*\)h'C\ 

and because Qr*~\T*\ is bounded, the last term tends to 0 as w — Therefore 
\T*\(hM + h'M) tends to a non-zero limit. But this contradicts the fact that |r*(, 
is a closed operator. 

We may, therefore, extend F t o a minimal closed linear operator U; its domain 
is clearly dense. It is also clear that t / ( S - 1 §>®§>)Q §ff i 

As to the first equation in (1. 1), clearly T" is an extension of It is 
also easy to see that D(U")C\§> = D(Tn). 

The other half of (1. 1) is less apparent, and will be deferred. 
The main formal idea in the construction comes out in verifying that U is 

/-isometric, that is, in verifying (1. 2). 
In doing this, we may restrict attention to vectors in D(V) — thus to k such 

that k0£D(T) and k_v € S~1(D(T*)). This is by an argument already invoked 
in § 2: namely, if D(U) is considered in the graph norm for U, then D{V) is dense 
in it and both sides of (1. 2) are continuous in k and k'. Also, by the usual polariza-
tion argument, it is enough to prove (1. 2) for k = k'. Define / by 

k —— Jc _ ^ © Jcq © / j 

this decomposition is both orthogonal and /-orthogonal. It is obvious that the 
transformation / — Ul=,Sl preserves both the inner product and the / -product . 
It is also obvious that U(k_t®k)^§>® S§> is both orthogonal and / -or thogonal 
to Ul. Therefore it is enough to prove (1. 2) for 1 = 0. The right-hand member is then 

[k, k] = (/(¿_!©k0), k_l®k0) = (JT*Sk_i,Sk_1) + (k0, k0). 

The left-hand member of (1. 2) is 
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(3.4) [Uk,Uk] =(j((Uk)0® №¿,№0 (BiUky) 

^((UQoAUk^ + iJTS-HUQ^S-HUky) : 

= (QT*Sk-1 + Tk0,QT*Sk_i + Tk0) + 

+ (JT(-JTT*Sk_1 + QTk0),-JTT*Sk_1 + QTk0). 

The terms ( T k 0 , Tk0) + (JTQTk0, QTk0) add to (k0> k0) by (2. 1). The terms 

2 R e ( Q T * S k _ t , TkQ) + 2 Re T*Sk_x, QTk0) = 

= 2Re{(g r*S'A:_1 , Tk0) — (T*Sk_i, QTk0)} 

add to zero essentially by the Lemma — strictly, by (2. 3). The remaining terms 
in (3. 4) are equal to 

QT*Sk_1) + (T*Sk_l, JTT*Sk_1). 

I apply (2. 1) (with T and T* interchanged) to this expression, taking as the vectors 
h,l in (2. 1) the vectors J^Sk^y, Sk_l£D(T*). It becomes 

(QT*JT*h, QT*l) + (T*JT*h, JTT*l) = (JT*QT*h, QT*l) + (JTT*h, JTT*l) = (h, I), 

by use also of the Lemma. That is, 

[Uk, Uk] = (k0,k0)+(h, / ) = (kQ, k0)+(JT*Sk„t, Sk_t) = [k, k], 

(1. 2) is established. 
It is also easy to prove the "forward half" of (d). Define 

(3 .5) . ft + = S ® S / r ( § ) © S 2 / T ( § ) e - - . 

Since SQT§>, which is dense in S. / r$>= f l f t , and since for 1 we have 
Un§, = S—iU§,, it is clear (remembering (3.2)) that V{£/"§: « = 0,1, 2, ... } = ft+. 

The remaining arguments concern the inverse of U. We know U is one-one 
by (1 .2) ; because if Uk = 0 then (1. 2) shows that Jk is orthogonal to the dense 
set D(U), and, J having zero null-space, this forces A: = 0. Therefore U~l exists; 
we have to consider D(U~X) = R(U). 

Now it is evident that R(U) 12 © «5^0,1}, and that when we consider 
restrictions to this subspace, U"1 agrees with 5 " 1 . Take k = k0 © ky, with k0 £ D (T*) 
and kj £ S(D(T)). Define 

(3 .6) / = / _ ! © / „ (.Sl_1 = JT*QT>k0-JT*TS-1kl, l0 = T*k0 + QTJTS-1k1). 

I will show that Ul = k. Circumspection is needed with this / because it need not 
be in D(V) . As in earlier arguments, let us approximate by elements f rom the 
appropriate domains. Let (k (n )) be a sequence of elements of ft such that (i) k(n> = 
= A$ 0 f f i^" ) ; (ii) ( k j f ) ) is a sequence approaching k0 in D(T") considered with the 
graph norm for T*, while each k^n> lies in the dense set D (7T*) ; (iii) similarly, in 
D(T) with the graph norm for T, S - 1 / ^ " ' - S'1 kt and £D(T*T). In particular, 
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k(n)-~k in ft0. Now define lM in terms of k(n) by putting superscripts on equations 
(3. 6). By the definition of the graph norm we have also / in ft0. Furthermore 

/ £ f t by the definition of ft. But UlM = VlM can be computed from (3. 3). 
One obtains, using the Lemma, ' 

(Vl(n% = Qt*(Jt> Qt*W - JT> TS'J *<»>) + T(T*k(
0"> + QTJrS-> /<<">) = kf>, 

and similarly (VlM)l=k^"\ Now because U is a closed extension of V, Ul = k. 
The most immediate consequence is that R(U) is dense; this was all that was 

lacking to complete the proof of (b). 

which is interpreted similarly to (3. 3). By the same reasoning used in connection 
with (3. 5), we see that V { £ / " § : « = 0, 1, 2,. . .} = ••• © S - 2 J T ^ ® S ~ 1 J T S ® § > , 
and this completes the proof of (d). We also see at once that P § U is an 
extension of T*" («== 1, 2, ...). 

To complete the proof of (1. 1), it remains to show that D(U-") r\% = D(T*"). 
It suffices, just as before, to check that when k1=0, we have k^.D(U~1) if and 
only if k0dD(T*). Let, then, k£R(U), = 0 . It is easy to see that we may assume 
k £ § (i.e., k = k0) without loss of generality. Because U is the minimal closed extension 
of V, we may take k — Ul, with sequences (/(")), (kM) having the properties kin) = Ul{"\ 

Sl^\eD(T*), l(
0

n)eD(T). Now S - 1 ^ ' = -JTT* Sl^\+QTl(
0

n> 

approaches S~ikl=0. From this we want to prove that 

is in D(T*). Take any heD(T); it will be sufficient to prove that {k0, Th) = (l0, h), 
and for this it will be enough to prove that 

(3.7) T* Q T J T 

O 1 
O 

k0 = lim k'Qn) = lim (QT*Sl^\ + T l ^ ) 

(3. 8) 77?)-(/<">, h) — 0. 

Substituting the expression for and using (2. 1) and (2. 3), 

№ Th) = (QJ, S/L"',, Th) + (TI<J\ Th) 

= (Qt'SI(-\ , Th)-{JTQrW, QTh) + (li»\ h) 

= (T*Sl("\, QTh)-(JTQA"\ QTh) + (l(
0"\ h). 
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Hence the left-hand member of (3. 8) is equal to 

(T*Sl^\ -JtQtW&tIi) = -(JTS-lkt\ QTh) - - {JTS~xk„ QTh) = 0, 

as required. This completes the proof of the dilation property, and thereby that of 
the Theorem. 

C o r o l l a r y . Under the hypotheses of the Theorem, there exists a Hilbert space 
ft + 5 § and there exists a closed, densely defined operator U + in ft+, with the follow-
ing properties: 

(a) is a J-space, with 9)^zJ+(R+); 
(b) U+ is J-isometric, that is, (1.2) holds', 
(c) T* is the restriction of U% to D(T*); 
(d) V {£/"§: n = 0, 1, 2, ...} = ft+. 

Namely, use the construction of the Theorem, and the space ft+ defined there 
(3. 5). It inherits the /-space structure of ft, because / | f t + is still a unitary hermitian 
operator; the same symbol may be used for this restriction. As U+ we must of 
course take t / | f t + . All the assertions of the Corollary follow at once from what 
has already been proved, except (c). But (c) follows from the definition of adjoint. 
Indeed, let h£D{T*) and k£D(U+) be given. As observed in the proof of (c) of 
the Theorem, k0dD(T). Therefore 

(U+k, h) = 0Tk0, h) + (SQTk0, h) + (S(k — k0), h) = (Tk0; h) = (k0, T*h), 

which is what is needed to prove that T*QU%. The Corollary is established. 
The Corollary does say, as promised in the Introduction, that every operator 

has an extension which is the adjoint (or the /-adjoint) of a /-isometry, but the 
operator about which it says so is T*. Indeed, the extension in question is U% ; 
its ordinary adjoint C/+. is a /-isometry by (b); but then so is its /-adjoint JU+J, 
because for all k, k'£D(JU+J) we have Jk, Jk'£D(U+) and 

[JU+Jk, JU+Jk'] = [U+Jk, U+Jk'] = [Jk, Jk'] = [k, k']. , 

4. Geometry of the dilation space 

The construction of §3 carries over more than the algebraic manipulations 
from the contraction case. I will now exhibit the generalization of the geometric 

.considerations related to the defect spaces [18, I. 3—4]..The geometry here must 
of course be richer, but it stays in close analogy. 

Consider the following subspaces of 

T>T = R(DT) = R(( 1 - T*T)+), the "defect space" for T; 
(4. 1) © r = N(l-T*T), the "isometric-like space" for T; 

XT =R(XT)-R((l-T*T)~), the "excess space" for T. 

6* 
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Defect, isometric-like, and excess spaces for T*• are defined the same way. It is 
clear that 

(4 .2 ) § = X>T@£)T@XT = T i t * ® £ ) t * ® X t * , 

and that the defect and isometric-like spaces have simple characterizations: 

(4 .3 ) h££T oh£D(T) and \T\h = h; he T>T Q D(\T\") and \T\*h - 0. 

I t is also clear f rom definitions that T>T = Jf (§) , £ r = / f (§>), and T>T © l ' r = JT(§); 
and then f rom (3. 2) and (3. 3), we see that 5\+ (defined by (3. 5)) has the following 
subspaces invariant for U: 

® { S " D r : n = 0, 1 ,2 , . . .} g / + ( f i ) n D ( i / ) , ®{S"XT: n = 1 ,2 , ...} g / " ( f t ) . ' 

Symmetrically, we construct a positive and a negative subspace 

®{S-"5>T*: n = 0 ,1 , 2, ...}, ®{S~"XT*: n = 1,2,...} 

invariant for £ / _ 1 . 
The complications occur for n = 0, ± 1. To describe the action of U there, 

^*(£> r *) g 
JF*(D r . ) g D T , 

Indeed, the assertions regarding defect and isometric-like spaces are easily proved 
using the characterizations (4. 3); then the assertions regarding the excess spaces 
follow using (4. 2). 

N o w the action of U within § — that is, the action of T= \V\T\ — may be 
very complicated indeed, bu t one port ion of the complication is brought into view 
by (4. 2) and (4. 4): We have two orthogonal decompositions of the space, and a 
pair of partial isometries relating the two. . 

The action of U "mixes" / + ( f t ) with / " ( f t ) only at two places: U takes 
S - ^ X r ^ n D i U ^ J - i R ) into 3 tT*®S(XT) , al though XT*QJ+ (f t) . Secondly, U 
takes 3 £ r n D ( C / ) c / + ( f t ) into XT*®S(XT), al though S ( £ 7 . ) g / - ( f t ) . 

One especially simple reducing subspace of T has been studied by. A POSTOL 
[1] and DURSZT [2], extending [14, Thm. I. 3. 2]. In terms of the present paper, one 
may put the central idea as follows. Among subspaces 11 of § such that !T|U is : 

unitary, there is a maximal one U°°, given by 

r - n r ( O r n O p ) i l n r * " ( O r n O p ) . 
n=0 n=1 

The par t r | U ~ is called the "unitary pa r t " of T\ r l ^ Q l t 0 0 , the "completely non-
unitary pa r t " . 

note first that 

(4 .4) 

W(D;r) g T>T*, 

w{3iT) g ï r * , 
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This is easily proved using the Theorem of § 3, even if T is unbounded; along 
with the formula 

W- = p £ / " ( O r n O r * ) -
n= —OO 

To be sure, the dilation is of interest only as regards the completely non-unitary 
part. None of the considerations of § 3 would have been affected if I had constructed 
ft0 f rom copies of § © I T ° rather than copies of §>. 

5. Further remarks 

1. In case T is a contraction ( | | r | | ^ 1), the construction given in § 3 leads to 
the same dilation as that of [14,1. 5], with J the identity operator and with U unitary. 
To see this, one need only compare the two step-by-step. 

2. Unlike the case of Sz.-Nagy, the construction given here is not determined 
essentially uniquely by the conditions of the Theorem. Indeed, assuming that T 
is neither a contraction nor doubly-expansive (||77i|| S p H and \\T*h'\\^\\h'\\ for 
all h, h' in the respective domains), I will show how it can always be modified in a 
non-trivial way. 

For we know, once those two cases are excluded, that either X>T and X r are 
both non-zero, or D r * and XT* are both non-zero. This enables us to find operators 
,Z(n) on § such that 

Z(0) = j . Z(n) j t = j r r Z ( . ) = 2, . . . ) ; Z W / p = /r*Z<"> (n = ~ 1 , - 2 , . . . ) ; 

WZ^W^M, IKZW)-1!! M (« = ±1,±2,...); 

for some n, 

ZMX>T (if " > 0), or. Z ( ">£ r * (if n < 0). 

Then define Z = j? S"ZMS~", a continuous, continuously invertible operator on 

ft0, and consider it restricted to ft. Evidently all the properties asserted in the Theorem 
for U hold also for ZU, as does also the desirable property of having ft+9§ in 
its domain. Yet the geometry can be quite different- The conditions of the Theorem 
determine the structure of ft only with respect to [ , ], leaving a great deal of freedom 
as to the inner product ( , ). 

In order to get a uniqueness assertion we must assume more. 

P r o p o s i t i o n . Given § and T, let ft and U be constructed as in the proof of 
the Theorem. Let ft' be a J-space. (with canonical symmetry still denoted by J) and 
U' a J-unitary in it, which also satisfy conditions (a)—(d) of the Theorem. Assume 
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further that ( f o r n = 1, 2, . . . .) { / ' " ( Ф т ) д / + ( Я ' ) , и'п(ХтГ) D(T)) g / " ( f t ' ) , 

U'-n(T>T*)<^J+(&'), С/'-"(3£т,ПО(.Г)) g Г ( й ' ) . Then there exists a unitary and 
J-unitary map Z' of ft onto ft' such that U' = Z ' £ / Z ' ~ 1 . 

T h e p r o o f e x p l o i t s p r o p e r t y (d ) in t h e s a m e w a y as in t h e ca se o f c o n t r a c t i o n s . 

T h e r e is n o n e e d t o g o i n t o de ta i l s . 

3. N a t u r a l l y t h e c o n s t r u c t i o n w a s m o t i v a t e d in l a r g e p a r t b y t h e h o p e o f f i n d -

i n g a g e o m e t r i c a p p r o a c h t o c h a r a c t e r i s t i c f u n c t i o n s f o r a r b i t r a r y o p e r a t o r s . J u s t 

a s SZ.-NAGY a n d FOIA§ [14, V I ] e x h i b i t a n a t u r a l g e o m e t r i c genes i s o f t h e c h a r a c t e r i s t i c 

f u n c t i o n of a c o n t r a c t i o n , it is h o p e d t o d o t h e s a m e f o r m o r e g e n e r a l o p e r a t o r s . 

T h e r o l e of c o n t r a c t i v e a n a l y t i c o p e r a t o r - v a l u e d f u n c t i o n [14, V — V I ] m i g h t be 

p l a y e d b y / - c o n t r a c t i v e o n e s [3] ( f u r t h e r r e f e r e n c e s in [12]). I n f a c t , s ince t h e c o n s t r u c -

t i o n d e s c r i b e d h e r e w a s f o u n d , th i s p r o g r a m h a s m a d e s o m e p r o g r e s s , l e a d i n g t o 

a g e o m e t r i c t r e a t m e n t o f t h e c h a r a c t e r i s t i c f u n c t i o n s s t u d i e d ea r l i e r b y SAHNOVIC 

[12] a n d KUZEL' [9]. T h i s will be d e s c r i b e d in f u t u r e p a p e r s . 
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