J-unitary dilation of a general operator

By CHANDLER DAVIS in Toronto (Canada) )

According to a well-known theorem of Sz.-NagGy [13], [14, Thm. L 4. 2], every
contraction on Hilbert space has a unitary dilation on a larger space (and also
has an extension on a larger space which is the adjoint of an isometry [14, Thm.
L. 4. 1.). In this paper, by a modification of familiar methods, the corresponding

_result is obtained for an arbitrary closed densely-defined operator. The conclusion
is different in that the dilation is only J-unitary (and the extension is only the adjoint
of a J-isometry, or the J-adjoint of a J-isometry).

It is a pleasure to thank B. Sz.-NAGY and E. DURszT for conversations whxch
inspired this investigation, and C. Foias for suggestions which led to substantial
improvements' upon the first version. :

1. Definitions

The subject wilt be a closed operator T whose domain D(T) is a dense linear
set in a Hilbert space §. The inner product of § will be denoted by (,). [ will construct
later a Hilbert space & of which $ is a linear subspace; the inner product of & will
be an extension of that of §, and will also be denoted by (,). The orthoprojector
on K onto $ will be denoted by Pg. 1 will also construct an operator U, closed
and densely defined in &, which is a “dilation” of T'; this means that

(1. 1) T" = PyU"y and T* =PgU™"g (=12 ..).

In addition & will be a “J-space”. This means [7] that the Hilbert space !
‘will have associated with it a canonical symmetry J, i.e., a fixed unitary hermitian
operator J. In any J-space one considers along with J the complementary ortho-
projectors J* and J~. (I will use the notations A* and A~ for the positive part
and the negative part of an arbitrary self-adjoint operator 4 {11, § 108].) 1t is often
assumed that the ranges R(J*) and R(J™) are both non-zero, but here that is not

1) This research was done while the author was in Szeged on a Senior Research Fellowship
of the National Research Council of Canada.
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assumea. In terms of J, a new continuous hermitian sesquilinear form is defined by
5, K=k, k) - (k, k’eR).

Unlike the inner product (, ), the “J-product” [, ] need not be definite; in particular,
[, k]=0 for non-zero k€ R(J*), while [k, k]<O for non-zero k¢R(J™). For this
reason J-spaces are also called Hilbert spaces with indefinite metric; but do not
be misled. The norm is defined in terms of the definite inner product, not the J-product,
and topological notions are defined in terms of the norm. The “J-adjoint” of any
A is JA*J. :

A “J-isometric” operator U 1s a closed, densely defined operator which preserves
the J-product: .
1.2 [Uk, Uk'|=[k, k'] (k, k' € D(U)).

A J-isometry U is called ““J-unitary” in case it has a densely defined inverse, which
then is necessarily J-isometric as well. The terminology and notation of unbounded
operators are used because the operator U which appears below really. can be un-
bounded. This has obliged me to depart from the usual terminology [7), in which
J-unitary operators are by definition bounded. (Ionvipov [5], (6] studies unboundéd
J-isometries, but in quite different context.) '

2. The main lemma

Let [T|.denote (T*T)'/2, a self-adjoint operator with D(|T)=D(T), R(IT|) =
=R(T*); similarly |T*|=(TT*)!/2. Let W denote the > the unique partial isometry such
that T=W|T|=|T*|W, R(W)=R(T), R(W*)=R(T%) [10].

It will be useful to have special notation and terminology for some operators
and subspaces derived from these, which w111 figure prominently in the construc-

tion. Let |T|= fidE(/l) be the spectral resolution of [T|; |T*|= f/l dF(A), that

of [T*|. Deﬁne .
Jr=sgn(1-T*T) = sgn(1—12) dE(),
0

Or = (1-T*T)V? = [V[1=22[dE®),
0
Dy = ((1=T*T)*)12 = [Y1-22dE),

Xr=(A-T*D)7)2 = [V2Z-TdE®,
: 1
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which are self-adjoint operators. Clearly J; and D are bounded and everywhere
defined. As for the possibly unbounded operators |T|, Qr, and Xy, they differ
by operators which are bounded, and so they have the same domain (which is D (T)).

In case 7 is-a contraction, J; and X; are O, while Q is equal to Dy, the same
operator denoted by that symbol in [14]. »

Tn spite of the choice of letter, J; is not quite suitable for deﬁnmg a J-product
on $, since it can have a null-space. Its role in the eventual construction of the
J-space & will be less direct.

It is obvious that J;0% = Q%J, = 1 —T*T. It is less immediate, but worth
noting, that"

@.1) (JrOrh, Orl) = (h, l)—.(le, Tl (h, 1€ D(T)).
To see this;- we may introduce IIi Il, the “graph norm for T, defined by
1AlIZ = 14>+ ThI> (k€ D(T)).

It makes D(T) into a (complete) Hilbert space, in which it is easy to prove that
D(T*T) is dense. But with respect to this norm, both sides of (2. 1) are continuous
functions of 4 and /; and (2. 1) does hold for /2 and / belonging to D(T* T); therefore
it must hold in general.

Interchanging 7 with T* and E( ) with F( ), we get operators Jrey Qr+,
Dy, Xr+, with properties corresponding.

Lemrﬁa. Let rhé symbol § srandfbr either J, Q, D, or X. We have TRy =Q«T.

In the case TD,= D4 T, this relation has been crucial in unitary dilation
theory since its beginnings [5], and it continues its role here.

Proof. Each relation to be proved has the form

@.2) w f S dEQ) = [ f F0) dm.)] W
. 0 0

* for some piecewise-continuous function f vanishing at 0: for example, in the case ‘
of the equation TXr=X7+T, take f(A) = y1;,«j(A)-AVA2—1. Now the fact that
 WI|T|=|T*|W, with which we began, implies that WE(4)= F(A)W for all 1 if E( )

and F( ) are normalized in the same way. Using the criterion f S d(E(Dh, h) <
0

for a vector h to belong to the domain of f f(4) dE(Z) and using the properties
0 : '
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of W, we see easily that the two sides of (2. 2) have the same domain, and agree
on the domain.

This proves the Lemma as stated, but it is worth noting the somewhat more
delicate fact that (with the same notation)

@.3) M, T*))=(Th pel)  (hED(T), 1€D(T).

For J; and Dy this does follow from the Lemma. For the other two cases, we may
either use approximation in the graph norm as for (2. 1), or else use the fact that
Qr resp. Xp differs’ from [T| by a bounded operator, which reduces (2. 3) rather
quickly to the Lemma.

The operators Jr, J+, Qr, Qp+ are all that are needed to prove the main

theorem; the others will be used only for the discussion of the geometry of the dila-
tion space, which will follow in §4. ' :

3. The dilation

, Theorem. Given any closed, densely defined operator T.in 9, there exists a
Hilbert space 2 9 and there exists a closed, densely defined operator U in K, with the
Sfollowing properties:

. (@) & is a J-space, with HSJH(K) (ie., [h, N1=(h 1) for h,I1€H);
(b) U is J-unitary, that is, (1.2) holds and U~ is densely defined;
(¢) U is a dilation of T, that is, (1. 1) holds; '

(d) \/{U"s55 n=0,+1, +£2, ...} = &

(In stating (d) and occasionally below, I use an express1on like U$-as short-hand
for U(HND(V).) .

The construction follows quite closely that of SCHAFFER, as-sharpened sub-
sequently [14, 1. 5]. I begin (as Schiffer did) with a space K9, somewhat larger than
desired but easy to describe: it is the direct sum of countably many isometric copies
of $ (with the usual inner product). One of these copies I will identify at once with
9. The unitary application of each copy onto the next one in order will be denoted
by S; thus I write

(3. 1) RO= . 5 2HBS 'HBHOSHOS?HD -

S will have a role as an operator (a bilateral shift of multiplicity dim $ acting on &)
and as a device for indexing the component subspaces of K2 in (3. 1). For any k € K9,
~ k; will mean the component of k in S'§. (Thus, for instance, (Sk),= Sk;_,.)
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Now to define J, I take the diagonal operator-matrix

-

I | .
3.2) , ' 1
Jr
That is, for an element S"h (h€H) I define
S*(Jr+h) (n <0,
J(S"h) =h (n=10),
S*(Jrh) (n=0).

This extends to a self-adjoint operator J on R° such that the space is spanned by its

eigenspaces belonging to (at most) the three eigenvalues 0, + 1. Define 8 =R(J)S K°

and [k, k’}=(Jk, k). Obviously conclusion (a) of the Theorem holds. '
The operator U will be, essentially, an extension of

1 "0
1 0 :
(3 V= ~ O | T
—JrT*| Q| O
1 0

The simplest interpreta_t'ion of (3. 3) is that it defines an operator .in_ K° for which
) : Sn+1h
V(S"h) =1 QrhD—SIrT*h € HOSH
| TheSQOrh€ H$OSH

(l’l#—l,O),
(n=0; heD(T)),

and which is then to be extended by linearity to the finite linear combinations of the
vectors S"h. ‘

So defined, ¥V takes D(V)(N K into K. To verify this, we treat (Vk),, the only
component about which there is any possible doubt. By definition, (Vk), =
= 8Qrko— ST T* Sk_,. This is'in S(R(Jy)) as desired because Qr and Jr, being
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by their definition self-adjoint operators with the same null-space, have R(Qr)=

= R(J;) (=R(Jy)). Therefore we are free to treat (3. 3) as representing an operator
with domain in §. :

Next it must be proved that the operator V' possesses a closure [10]. Suppose
not; then there exists a sequence (k) in D (V') such that k‘” -0 but V&™ approaches
a non-zero limit. It is easy to see that either (Vk™), or (Vk™), approaches a non-
zero limit; the argument goes the same in either case, I will write it for the first
alternative. We have (Vk™), = Tk{” 4+ QSk™ by definition, where (k§) is a
sequence of vectors in D(T), tending to 0 as n — o, and (A'™) =(Sk™),) is a sequence
of vectors in D(T*), tending to 0 as n—oo; but where the sequence ((V4™),) ap-
proaches a non-zero limit. We can write Tk{" = |T*|h™, where (A)y=(Wk§") is a
sequence of elements of D(T*) approaching 0 as n . Now

(V) = [T+ Qe = [T (K +H ) + Qs — T,

and because Qr.— |T*| is bounded, the last term tends to O as n — oo, Therefore
| T*| (W +#’™) tends to a non-zero limit. But this contradicts the fact that |T*|
is a closed operator.

We may, therefore, extend ¥ to a minimal closed linear operator U; its domain
_is clearly dense. It is also clear that US98 HSHD SH.

As to the first equation in (1. 1), clearly 7" is an extension of P U"|$H. It is
also easy to see that D(UNH=D(T".

The other half of (L. 1) is less apparent, and will be. deferred.

The main formal idea in the construction comes out in verifying that U is
J-isometric, that is, in verifying (1. 2).

In doing this, we may restrict attention to vectors in D (V) — thus to k£ such
that ko€ D(T) and k_, € S™Y(D(T*)). This is by an argument already invoked
in § 2: namely, if D(U) is considered in the graph norm for U, then D (V) is dense
in it and both sides of (1. 2) are continuous in k£ and k’. Also, by the usual polariza-
tion argument, it is_enough to prove (1. 2) for k=k’. Define / by

k ='k_1®k0691;

this decomposition is both orthogonal and J-orthogonal. It is obvious that the
transformation /—U/=SI preserves both the inner product and the J-product.
It is also obvious that U(k_,®k)EH@ SH is both orthogonal and J-orthogonal
to Ul. Therefore it is enough to prove (1. 2) for /=0. The right-hand member is then

[k, k] = (J(k—, Do), k_y @ko) = (JrsSk_y, Sk_ 1)+ (ko» ko).

The left-hand member of (1. 2) is
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G WUk UM = (UK @ UK, (UK (UK),)

= (UKo, (UKYo) + (IS~ (Uk)y, 5™ (UR),)
= (Op+Sk_1+ Ty, QpeSk_ |+ Tho) +
+(JIr (= JTT*Sk 1+ Qrko), _JT-T*Sk 1 +QTkO) '
The terms (Tko, Tko)—l—(JT Orko, Qrko) add to (kq, ko) by (2. 1). The terms
2 Re (QT*Sk 1 s Tko) +2 Re ("‘JT T*Sk 13 QTkO)
L= 2Re{(Qr+Sk_ 1, Tko)—(T*Sk_j, Qqu)}
add to zero eséentially by the Lemma — strictly, by (2. 3). The remaining terms - A
in (3. 4) are equal to : ‘
(Qr+Sk_,, , QreSk_ 1)+(T*Sk 15 JTT*Sk 1)
Lapply (2. 1) (with T and T* interchanged) to thlS expression, takmg as the vectors
hlin (2. 1) the vectors Jr.Sk_q, Sk_ 1ED(T") It becomes
(QT*JT*II, QT*I)‘I"(T*JT*h JTT*I) = (JT*QT*h QT*I)‘["‘(JTT*}I JTT*I) = (h l) :
by use also of the Lemma. That is,
[Uk, Uk} = (ko:ko)+(h h= (ko,ko)+(Jr*Sk_-1, Sk_y) = [k k].
(1, 2) is established. .
It is also easy to prove the “forward half” of (d). Define
G5 . R =50SK©)OS(H)e -
Since UH2 SO H, which is dense in ST H=SHNK, and since for n=>1 we have
U"H=S""1U$, it is clear (remembering (3.2)) that V{U"$H: n=0,1,2, ... } =K.
The remaining arguments concern the inverse of U. We know U is ong-one
by (1. 2); because if Uk=0 then (1. 2) shows that Jk is orthogonal to the dense
set D(U), and, J havmg zero null-space, this forces k= 0 Therefore U~1! exists;
we have to consider D(U~1)=R(U). :
Now it is evident that R(U) 2 @ {S"9: n=0,1}, and that when we. consider
restrictions to this subspace, U~! agrees with S—! Take k= kOEBk1 , with ko € D(T*)
and k, €S(D(T)) Define :
(3 6) l-f-l_1®l_0 (Sl—l ="JT*QT1k0—JT*TS_VIk1, ‘lo = T*k0+QTJTS_1k1).
I will shpw that Ul=k. Circumspection is needed with this / because it need not
be in D(V). As in earlier arguments, let us approximate by elements from the
- appropriate domains. Let (k) be a sequence of elements of & such that (i) k™ =
= kP @ k{™; (i) (k§) is a sequence approaching k, in D(T*) considered with the
graph norm for T*, while each k§” lies in the dense set D(TT*); (iii) similarly, in
‘ _D(T) w1ththegraphnormforT Sk~ §—1k, and S~k € D(T*T). In particular,

6 A
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- k™ —k in R°, Now define /™ in terms of k™ by putting superscripts on equations
(3. 6). By the definition of the graph norm we have also /® -/ in R°. Furthermore
I™cQ, €K by the definition of &. But UI® = Vl‘") can be computed from (3. 3)..
One obtains, using the Lemma, :

(VI®)g = Qs Qs k9 — T TS {P) + T(T* K + 01 TS k) = k),
and similarly (V1¢?), =k{". Now because U is a closed extension of ¥, Ul=k.
The most immediate consequence is ‘that R(U) is dense; this was all that was

~ lacking to complete the proof of (b)..
' But we have showed in addition that U~! is an extens1on of the operator

o I ,
. t » 0 JT*QT* - JT*T ‘
(3--'7) . ' l T ’QTJT s
o0

which is interpreted similarly to (3. 3). By the same reasoning used in connection
with (3.5), we see that V{U"H: n=0,1,2,...}=-- B S 2 nHDS UnHDH,
and this completes the proof of (d). We also see at once that PgU~"|$ is an
extension of T* (n=1,2,..).

To complete the proof of (1. 1), it remains to show that D(U"")ﬂsj D(T*")
It suffices, just as before, to check -that when k, =0, we have keD(U- 1) if and
only if ko € D(T*). Let, then, k€ R(U), k, =0. It is easy to see that we may assume
k€9 (i.e., k = ko) without loss of generality. Because U is the minimal closed extension
of ¥, we may take k = Ul, with sequences (/™), (k™) having the properties k™ = U/,
1™ ] k™ ok, SI® eD(T*), I9eD(T). Now S~k = —J,T*SI® + QI
approaches S~'k,=0. From this we want to prove that

ko = Hm k) = lim(Qrs SI®, + TIE)

isin D(T*) Take any h€ D(T); it will be sufficient to prove that (ko, T h) (lo, h),
and for this it will be enough to prove that

3.8) ' (k§, Thy—(I$>, B) ~ 0.
Substituting the expression for k§”, and using (2. 1) and (2. 3)
' (k((;"), Th) = (Q7+ S, Th)+ (TIY, Th)
= (Qn_SI(_"l-, Th)— (Jr @1, Qrh)+ (I, h)
= (T*SI%,, Qrh)— (s Qrl, Qrh)+ (S, h).
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Hence the left-hand member of (3.8) is equal bto '
(TSI, ~ I 0710, 0r k) = —(Jr STk, Qph) ~ ~ (IS~ ky, Orh) =

as requrred This completes the proof of the dilation property, and thereby that of
the Theorem.

Corollary. Under the hypothéses of the Theorem, there exists a Hilbert space
29 and there exlsts a closed densely deﬁned operator U, in R+, with the follow-'
zng properttes :
(a) 8, is a J-space, with 5CJ+(Q+)
(b) U, is J-isometric, that is, (1. 2) holds;
~Ac) T*is the restriction of U% 1o D(T*);
() V{ULS: n=0,1,2,..}=8,."

* Namely, use the construction of the Theorem, and the space K, defined there
(3.5). It inherits the J-space structure of &, because J|, is still a unitary hermitian
operator; the same symbol may be used for this restriction. As U, we must of - .
course take UIRK,. All the assertions of the Corollary follow at once from what
has already been proved, except (c). But (c) follows from the definition of adjoint.
Indeed, let k¢ D(T*) and k¢ D(U,) be given. As observed 1n the proof of (c) of
.the Theorem, k€ D(T). Therefore

U,k h) = (TA0,11)+(SQTk0,h)+(S(k ko), ) = (Tko, ) = (ko T*h)

which is what is needed to prove that T*E U*. The. Corollary is established.

The Corollary does say, as promised in the Introduction, that every operator
~ has an extension which is the adjoint (or the J-ad_lomt) of a J-isometry, but the
operator about which it says so is 7. Indeed, the exten51on in question is U,
its ordinary adjoint U, is a J-isometry by (b); but then so s its J-adjoint JU, J
because for all k, K’ ¢ D(JU,J) we have Jk, JK' ¢ D(U,) and

WU, Jk, JU Ik Y =[U, Tk, U, Jk'1=[Jk, JK'] =Tk, kK']. .

4. Geometry of the dilation space

_The construction of §3 carries over more than the algebraic manipulations
. from the ‘contraction’ czis'e' I will now exhibit the generalization of the geometrfc
_considerations related to the ‘defect spaces [18, I. 3—4]. The geometry here must
of course be richer, but it stays in close analogy.

Consrder the followmg subspaces of :

D, =R(Dy) = R((1-T*T)*), the “defect’ spac.e"’ for T;
“4.n Or = N(1 —T*T), the “isometric-like space” for 7 -
’ Xy =R(Xp)=R((1-T*T)"), the “exceéé 'space” for T.

6*
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Defect, isometric-like, and excess spaces for T* are defined the sarne way It is.
clear that

“.2) , H'= bT@DT@xT = D ® O+ ® Xpe; |
- and that the defect and isometric-like spaces have simple eharacterizations:

4.3) heOre heD(T) and [Tlh="h; heDr < he)D(T]) and [T} — .

1t is also clear from definitions that Dy =J; (§), X, =J7 (9), and Dy & X; = J,(H):
and then from (3. 2) and (3 3), we see that K, (deﬁned by (3. 5)) has the following
subspaces invariant for U:

@{S"iDT: n=0,1;2, ...} S JH(R)ND ), @{S"xT: n=12..})CSJ (8.
Symmetrically, we construct a positive and a ne'gative.subs'pace '
OS"D: 1 =0,1,2,...}, S "¥p:n=1,2..}
invariant for U1, . : S .
The complications occur for =0, +1. To describe the action of U there,
note first that :
o W(®r) & D, W' (D) & D,
@.4) W(Or) S Op,  WH(Or) € O,
| C W(ED) S X, WH(ER) S ¥

Indeed, the assertions regarding defect and isometric-like spaces are easﬂy proved
using the characterizations (4 3); then the .assertions regardmg the excess spaces -
follow using (4. 2). _

. Now the action of U within $ — that is, the action of T'= W|T| — may be
very complicated indeed, but one portion of the complication is brought into view
by (4.2) and (4. 4): We have two orthogonal decompositions of the space, and a
palr of partial isometries relating the two.

The action of U “mixes” J*(R) with J=(K) only at two places: U - takes

STIE)NDU)ST(R) into Xr«® S(Xy), although X SJH(R).. Secondly, U
takes X;ND(U)SJ*(K) into X;.d S(Xy), although S(%T)CJ ().

_One especially simple reducing subspace of T has been studied by APOSTOL
1] and Durszt [2], extending [14, Thm. L 3. 2]. In terms of the present paper, one’ '
may put the central idea as follows. Among subspaces 1l of $ such that T|1I is -
unitary, there is a maximal one 1, given by

= N7 @20 N T (©r (197

The part T[1I°° is called the “unitary part” of T, TISBGL[” the “completely non-
" unitary part '
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‘This is easily proved using the Theorem of § 3, even if T is unbounded; along
with the formula :
' U= = ) U(OrNOm).
n-——eo
To be sure, the dilation is of interest only as regards the comb]etely non-unitary

" part. None of the considerations of § 3 would have been affected if I had constructed
K° from copies of O U~ rather than copies of H.

5_. Further remarks

1. In case T is a contraction (|7 =1), the construction given in § 3 leads to
the same dilation as that of [14, 1. 5], with J the identity operator and with U unitary.
To see this, one need only compare the two step-by-step.

2. Unlike the case of Sz.-Nagy, the construction given here is not determmed
. essentially uniquely by the conditions .of the Theorem. Indeed, assuming that T
is neither a contraction nor doubly-expansive (|lThll>]|h]l and ||T*W| >]|h"|] for
all &, b’ in the respective domains), I will show how it can always be modified in a
non-trivial way.

For we know, once those two cases are excluded, that either D; and X, are
both non-zero, or D« and X« are both non-zero. This enables us to find operators
Z™ on § such that

ZO =1; ZOJ, = J;Z0 (n1=1,2,..); ZOJp=JIpZ® (n=~1,-2,..);

1ZO s M, (ZD) =M (m==£1,%2,..);
for some n,
ZWD, = Dy (f n=>0), or. Z("):‘DT* # Dy (if 1< 0).

Then define Z= > S"Z™ S~ a continuous, continuously invertible operator on

— o

R°, and consider it restricted to K. Evidently all the properties asserted in the Theorem
for U hold also for ZU, as does also the desirable property of having 8,89 in
its domain. Yet the geometry can be quite different. The conditions of the Theorem
‘determine the structure of & only with respect to [, ], leaving a great deal of freedom
as to the inner product (, ).

In order to get a uniqueness assertion we must assume more.

Proposition. Given $ and T, let & and U be constructed as in the proof of
the Theorem. Let & be a J-space. (with canonical symmetry still denoted by J) and
U’ a J-unitary in it, which also satisfy conditions (a)—(d) of the Theorem. Assume
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Jurther that (for n=1,2,..) U"(D)SJ*®), U"(ZNDT) S J- (&),
U= (D) SIHR), U"(X.ND(T*)) S J~(K"). Then there exists a unitary and
J-unitary map Z' of R onto K& such that U'=Z'UZ""1.

" The proof exploits property (d) in the same way as in the case of contractions.
There is no need to go into details. '

3. Naturally the construction was motivated in large part by the hope of find-
ing a geometric approach to characteristic functions for arbitrary operators. Just
as Sz.-NAGY and Foias [14, VI exhibit a natural geometrlc genesis of the characteristic
function of a contraction, it is hoped to do the same for more general operators.
The role of contractive analytic operator-valued function [14, V—VI] might be
played by J-contractive ones [3] (further refetrences in [12]). In fact, since the construc-
tion described here was found, this program has made  some progress, leading to
a geometric treatment of the characteristic functions studied earlier by SAHNOVIC
[12] and KuZer’ [9]. This will be described in future papers.
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