## On the unitary part of an operator on Hilbert space

By E. DURSZT in Szeged

Let $T$ be a bounded (linear) operator on a Hilbert space $H$. If a subspace $K$ of $H$ reduces $T$ and $T \mid K$ is a unitary operator, then $T \mid K$ is called a unitary part of $T$. A unitary part of $T$ is maximal if it is an extension of every other unitary part of $T$.

A special case of Theorem 4 in [1] states the existence of the maximal unitary part $T \mid \dot{H}_{0}$ for an arbitrary bounded operator $T$, and characterizes $H_{0}$ as the set of vectors $\varphi$ of $H$ satisfying

$$
\begin{equation*}
T^{*} T A \varphi=A \varphi=T T^{*} A \varphi \tag{1}
\end{equation*}
$$

for every finite product $A$ of factors equal to $T, T^{*}$, and for $A=I$.
In case $T$ is a contraction (i.e. $\|T\| \leqq 1$ ), $H_{0}$ can be characterized as the set of vectors $\varphi$ in $H$ for which

$$
\begin{equation*}
\left\|T^{n} \varphi\right\|=\|\varphi\|=\left\|T^{* n} \varphi\right\| \cdot \quad(n=1,2, \ldots) \tag{2}
\end{equation*}
$$

cf. [2], [3]. For a contraction $T$, conditions (2) are obviously equivalent to the following ones:

$$
T^{* n} T^{n} \varphi=\varphi=T^{n} T^{* n} \varphi \quad(n=1,2, \ldots)
$$

In this paper we give a new proof of the existence of $H_{0}$ for an arbitrary bounded $T$, and characterize $H_{0}$ in a way which is simpler than (1) and very similar to the characterization (2) in the case of contractions. Also, we give a characterization of the orthogonal complement $H \ominus H_{0}$. Finally, by giving a counterexample we show that the characterization of $H_{0}$ by (2) does not hold true in general if $T$ is not a contraction, not even if $T$ is power-bounded.

Consider an arbitrary bounded operator $T$ on the Hilbert space $H$. We denote by $H^{0}$ the set of vectors $\varphi$ of $H$ for which:

$$
\begin{equation*}
\left\|T^{*} T^{n} \varphi\right\|=\left\|T^{n} \varphi\right\|=\|\varphi\|=\left\|\dot{T^{* n}} \varphi\right\|=\left\|T T^{* n} \varphi\right\| . \quad(n=1,2, \ldots) \tag{3}
\end{equation*}
$$

and by $H^{1}$ the subspace spanned by the ranges of the operators

$$
\begin{equation*}
T^{n}\left(I-T T^{*}\right) \quad \text { and } \quad T^{* n}\left(I-T^{*} T\right) \quad(n=0,1,2, \ldots) \tag{4}
\end{equation*}
$$

Theorem.
(i) $H^{0}$ is a subspace of $H$ reducing $T$.
(ii) $T \mid H^{0}$ is the maximal unitary part of $T$.
(iii) $H^{1}=H \ominus H^{0}$.

Proof. Let $\varphi \in H^{0}$. Then

$$
\left\|\left(I-T^{*} T\right) T^{n} \varphi\right\|^{2}=\left\|T^{n} \varphi\right\|^{2}-2\left\|T^{n+1} \varphi\right\|^{2}+\left\|T^{*} T^{n+1} \varphi\right\|^{2}=0 \quad(n=0,1, \ldots)
$$

i.e.:

$$
T^{*} T^{n+1} \varphi=T^{n} \varphi \quad(n=0,1,2, \ldots)
$$

Repeating this computation with $T^{*}$ in place of $T$ we get:

$$
T T^{* n+1} \varphi=T^{* n} \varphi \quad(n=0,1,2, \ldots)
$$

Resuming:

$$
\begin{equation*}
T^{*} T^{n+1} \varphi=T^{n} \varphi, \quad T T^{* n+1} \varphi=T^{* n} \varphi \quad(n=0,1,2, \ldots) \tag{5}
\end{equation*}
$$

So we have: (3) implies (5).
On the other hand, if (5) holds for a vector $\varphi$, then

$$
\begin{gathered}
\left\|T^{*} T^{n+1} \varphi\right\|^{2}=\left\|T^{n} \varphi\right\|^{2}=\left(T^{* n} T^{n} \varphi, \varphi\right)=\left(T^{*} T^{n} \varphi, T^{n-1} \varphi\right)= \\
=\left(T^{n-1} \varphi, T^{n-1} \varphi\right)=\left\|T^{n-1} \varphi\right\|^{2}=\cdots=\|\varphi\|^{2}
\end{gathered}
$$

and analogously

$$
\left\|T T^{* n+1} \varphi\right\|=\left\|T^{* n} \varphi\right\|=\|\varphi\| . \quad(n=0,1,2, \ldots)
$$

So we have: (3) is equivalent to (5).
From (5) it is obvious that $H^{0}$ is a subspace of $H$. In the special case $n=0$ we get from (5)

$$
\begin{equation*}
T^{*} T \varphi=\varphi=T T^{*} \varphi \quad\left(\varphi \in H^{0}\right) \tag{6}
\end{equation*}
$$

This fact and (3) show that $H^{0}$ is invariant both for $T$ and $T^{*}$, i.e., $H^{0}$ reduces $T$.
So (i) is proved.
Clearly (6) implies that $T \mid H^{0}$ is unitary on $H^{0}$. Suppose that $K(\subset H)$ reduces $T$ and $T \mid K$ is unitary, and let $\varphi \in K$. In this case (3) holds for $\varphi$ and consequently, $\varphi \in H^{0}$. Thus $K \subset H^{0}$, i.e. our statement (ii) is proved.

As regards (iii), (5) shows that the vector $\varphi \in H$ belongs to $H^{0}$ if and only if

$$
H \perp\left(I-T^{*} T\right) T^{n} \varphi \quad \text { and } \quad H \perp\left(I-T T^{*}\right) T^{* n} \varphi \quad(n=0,1, \therefore)
$$

or equivalently:

$$
T^{* n}\left(I-T^{*} T\right) H \perp \varphi \quad \text { and } \quad T^{n}\left(I-T T^{*}\right) H \perp \varphi \quad(n \doteq 0,1, \ldots)
$$

Thus we have: $\varphi \in H^{0}$ if $\varphi$ is orthogonal to the ranges of the operators (4), i.e. if $\varphi \perp H^{1}$. This gives $H^{1}=H \ominus H^{0}$.

So we finished the proof of the theorem.
As regards the counterexample, let $\left\{\psi_{1}, \psi_{2}\right\}$ be an orthonormal basis in a two-dimensional Hilbert space $H$ and define $T$ by the matrix

$$
\left(\begin{array}{cc}
-1 & 0 \\
\sqrt{3} & 0
\end{array}\right)
$$

We prove that there exists a non-zero vector satisfying (2) and such that the corresponding $H_{0}$ is $\{0\}$. Indeed, let $\varphi=\frac{1}{2} \psi_{1}+\frac{\sqrt{3}}{2} \psi_{2}$. An easy computation shows that

$$
\|\varphi\|=1, \quad T \varphi=\psi_{1}=T^{*} \varphi, \quad T^{n}=(-1)^{n-1} T \quad(n=1,2, \ldots)
$$

and consequently

$$
\left\|T^{n} \varphi\right\|=\|\varphi\|=\left\|T^{* n} \varphi\right\| \quad(n=1,2, \ldots)
$$

i.e. (2) is fulfilled.

Next observe that $T$ is not a unitary operator. In order to prove that $H_{0}=\{0\}$ it suffices therefore to prove that $T$ is not reduced by any non-trivial subspace. If $H$ had a non-trivial subspace reducing $T$, then this subspace should be one-dimensional, i.e. spanned by an eigenvector of $T$. An easy computation shows that the two possible linearly independent eigenvectors of $T$ are $\psi_{2}$ and $\frac{1}{2} \psi_{1}-\frac{\sqrt{3}}{2} \psi_{2}$, but none of them spans an invariant subspace of $T^{*}$.

## References

[1] C. Apostol, Sur la partie normale d'un ensemble d'opérateurs de l'espace de Hilbert, Acta Math. Acad. Sci. Hung., 17 (1966), 1-4.
[2] M. H. Langer, Ein Zerspaltungsatz für Operatoren im Hilbertraüm, Acta Math. Acad. Sci. Hung., 12 (1961), 441-445.
[3] B. Sz.-Nagy et C. Foiaş, Sur les contractions de l'espace de Hilbert. IV, Acta Sci. Math., 21 (1960), 251—259.

