On immersion of locally bounded curvature

By J. SZENTHE in Szeged

According to results of J. NASH ([11]) and N. H. KUIPER ([10]) C¹-immersions are too general to admit a reasonable generalization of the curvature theory of C^2 -immersions. The idea to extend the curvature theory to a restricted class is therefore justified and in fact this has been done at first by J. HJELMSLEV ([8]) and G. BOULIGAND ([3]) in case of C^1 -surfaces in 3-dimensional euclidean space. They were mainly interested in the curvature theory of curves on C^1 -surfaces, i.e. in generalizations of the theorems of Euler and Meusnier. Later on various related results have been obtained by others¹). In the first part of this paper a class of C^1 -immersions of k-dimensional manifolds into n-dimensional euclidean space is introduced, which will be called *immersions of locally bounded curvature*, and it is shown that in their case the second fundamental tensor can be defined in a way which resembles very much the standard one. In the case n=3, k=2 similar results have been achieved by H. BUSEMANN and W. FELLER ([5]) and A. V. POGORELOV ([14]) for considerably wider classes with more refined methods. In the second part of the paper the case k = n-1, i.e. hypersurfaces of locally bounded curvature are considered. It is shown that the theorem on the uniqueness of C^2 -hypersurfaces with given first and second fundamental forms generalizes to them which gives another point of considering immersions of locally bounded curvature.

1. Preliminaries

Some prerequisites of technical nature are provided in this section.

Let E^n be the *n*-dimensional euclidean space, and V_k^n (k = 1, ..., n-1) the euclidean vector space formed by its *k*-vectors. Oriented *k*-dimensional subspaces of V_1^n will be identified, as usual, with simple unit *k*-vectors, consequently the set $S_k^n (\subset V_k^n)$ of simple unit *k*-vectors will stand for the set of oriented *k*-dimensional subspaces of V_1^n as well. Let further B^n be the set of complete orthonormal systems

¹) An account of related results can be found in BUSEMANN [4].

in V_1^n , Q(n, k) the group of isometric isomorphisms of V_k^n , and O(n) that of orthogonal $n \times n$ matrices with real entries. The facts which follow are well known. O(n) is a simply transitive right transformation group of B^n with the definition: $b\alpha =$ $= \left(\sum_{i=1}^{n} \alpha_{ij} a_{i}\right)_{j=1,\dots,n} \text{ for } (a_{i})_{i=1,\dots,n} = b \in B^{n}, \ \|\alpha_{ij}\| = \alpha \in O(n). \text{ Distance on } B^{n} \text{ and} \\ O(n) \text{ is defined by } \sigma(b',b'') = \left[\sum_{i=1}^{n} (a_{i}' - a_{i}'')^{2}\right]^{\frac{1}{2}} \text{ and } \mu(\alpha',\alpha'') = \left[\sum_{i,j=1}^{n} (\alpha_{ij}' - \alpha_{ij}'')^{2}\right]^{\frac{1}{2}},$ respectively. If $b \in B^n$ is fixed then $\Phi_b = b\alpha$ defines a distance preserving map $\Phi_n: (O(n), \mu) \to (B^n, \sigma)$. With the above definition, O(n) is a distance preserving transformation group of B^n , and μ is left and right invariant. If $(a_i)_{i=1,\dots,n} = b \in B^n$ is fixed and $\sum_{i=1}^{n} x^{i} a_{i} = x \in V_{1}^{n}$ then with the definition $\alpha x = \sum_{i=1}^{n} \sum_{i=1}^{n} \alpha_{ij} x^{j} a_{i}$ the group O(n). is a left transformation group of V_1^n and since each of these transformations is an isometric isomorphism of V_1^n an isomorphism $\Psi_b: O(n) \to Q(n, 1)$ is obtained. But there is the standard homomorphism $\Sigma^k: Q(n, 1) \rightarrow Q(n, k)$, hence for any fixed $b \in B^n$ a homomorphism $\Lambda_b^k = \Sigma^k \circ \Psi_b : O(n) \to Q(n, k)$ is defined. If $X_0^k \in S_k^n$ and $H(X_0^k) \subset$ $\subset Q(n, k)$ is the subgroup of elements which leave X_0^k fixed then the inverse image of $H(X_0^k)$ under Λ_b^k is a subgroup $H_b(X_0^k)$ of O(n) and there is a one to one correspondence between the left coset space $O(n)/H_b(X_0^k)$ and S_k^n , where the left coset corresponding to $X^k \in S_k^n$ is formed by those elements α of O(n) for which $A_b^k(\alpha)$ sends X_0^k into X^k .

A distance preserving map $\theta: (O(n), \mu) \to E^{n^2}$ is defined by $\theta(\alpha) = (x^1, ..., x^{n^2})$, where $x^l = \alpha_{ij}$ for l = (i-1)n+j. If O(n) is considered as a Lie group then θ is a C^{∞} -embedding, therefore there is a Riemannian metric on O(n) for which θ is isometric. Let ϱ_e be the distance function of this Riemannian metric ([1], 124); $\varrho_e(\alpha', \alpha'')$ is equal to the infimum of the length of curves joining α', α'' if their length is calculated with respect to the distance function μ ([5]). Therefore ϱ_e and the above Riemannian metric are left and right invariant ([9], 169–172). If $b \in B^n$, $X_0^k \in S_k^n$ are fixed then a distance function $\bar{\varrho}_e$ is defined on the left coset space $O(n)/H_b(X_0^k)$ by $\bar{\varrho}_e(\alpha H_b(X_0^k), \beta H_b(X_0^k)) = \inf \{\varrho_e(\xi, \eta) | \xi \in \alpha H_b(X_0^k), \eta \in \beta H_b(X_0^k)\}$. The one to one correspondence $O(n)/H_b(X_0^k) \leftrightarrow S_k^n$ yields a distance function d^k on S_k^n for which this correspondence will be distance preserving. The distance function d^k does not depend on the particular choice of b and X_0^k and it will be called the *auxiliary metrization of* S_k^n .

Lemma 1.1. Let G be a compact Lie group, H a subgroup and ϱ the distance function of a Riemannian metric on G which is left and right invariant. Let the distance function $\overline{\varrho}$ on the left coset space G/H be defined by

$$\overline{\varrho}(\alpha H, \beta H) = \inf \{ \varrho(\xi, \eta) | \xi \in \alpha H, \eta \in \beta H \}.$$

Locally bounded curvature

Then there exist $\delta > 0$ and A > 0 such that in case $\overline{\varrho}(H, \alpha H) < \delta$ a unique $\xi \in \alpha H$ with $\varrho(\varepsilon, \xi) = \overline{\varrho}(H, \alpha H)$ exists, ε being the identity in G; further in case $\overline{\varrho}(H, \alpha_1 H) < \delta$ (l=1,2) the inequality $\varrho(\xi_1, \xi_2) \leq A\overline{\varrho}(\alpha_1 H, \alpha_2 H)$ holds for the corresponding $\xi_l \in \alpha_l H$. There is a Riemannian metric on G/H with distance function $\overline{\varrho} \geq \overline{\varrho}$.

Proof. The existence of a $\xi \in \alpha H$ with $\varrho(\varepsilon, \xi) = \overline{\varrho}(H, \alpha H)$ for any left coset αH is obvious. Since the given Riemannian metric is left and right invariant, H and its left cosets are totally geodesic submanifolds ([1], 136–137). There is such a $\delta' > 0$ that the spherical neighborhood $U(\vartheta)$ of of ε with radius ϑ is convex if $0 < \vartheta \leq \delta'$ ([1], 246— -150). Assume that for some αH with $\bar{\varrho}(H, \alpha H) \leq \delta'$ there are $\zeta', \zeta'' \in \alpha H$ with $\zeta' \neq \zeta''$, $\varrho(\varepsilon, \xi') = \varrho(\varepsilon, \xi'') = \bar{\varrho}(H, \alpha H) = 9$. Since $\xi', \xi'' \in U(9)$, there is a unique minimizing. geodesic arc joining them, which with the exception of its endpoints lies in the interior of U(9). But αH is totally geodesic, therefore this geodesic arc is in αH . By the invariance of the Riemannian metric $\bar{\rho}(H, \alpha H) = \inf \{\rho(\varepsilon, \zeta) | \zeta \in \alpha H\}$, therefore $\bar{\varrho}(H, \alpha H) < \vartheta$, which is a contradiction. There is a canonical coordinate system of the first kind $\varphi: W \to E^m$ and one of the second kind $\psi: W \to E^m$, both defined on the neighborhood W of ε , such that 1) if g_{ii} (i, j = 1, ..., m) are the components of the fundamental tensor of the given Riemannian metric in the coordinate system φ , then $g_{ii}(\varphi(\varepsilon)) = \delta_{ii}$; 2) if $\psi(\zeta) = (z^1, ..., z^m)$ for $\zeta \in W$, then $\psi(\zeta) = (0, ..., 0, z^{s+1}, ..., z^m)$ for $\zeta \in H \cap W$; moreover, if $\alpha H \cap W$ is not empty then there is a unique $\bar{\alpha} \in \alpha H \cap W$ such that $\zeta = \bar{\alpha} \cdot \bar{\zeta}$ with $\bar{\xi} \in H \cap W$ holds for any $\zeta \in \alpha H \cap W$ and

$$\psi(\bar{\alpha}) = (\bar{a}^1, ..., \bar{a}^s, 0, ..., 0), \quad \psi(\bar{\xi}) = (0, ..., 0, \bar{z}^{s+1}, ..., \bar{z}^m),$$

$$\psi(\zeta) = (\bar{a}^1, ..., \bar{a}^s, \bar{z}^{s+1}, ..., \bar{z}^m);$$

3) if $\varphi(\zeta) = (\gamma^1, ..., \gamma^m)$ for $\zeta \in W$ and $\gamma^i = \chi^i(z^1, ..., z^m)$ (i = 1, ..., m) are the transition functions from ψ to φ , then $\chi^i(0, ..., 0, t, 0, ..., 0) = \delta_{ij}t$ for j = s+1, ..., m, if $(0, ..., 0, t, 0, ..., 0) = \delta_{ij}t$ for j = s+1, ..., m, if $(0, ..., 0, t, 0, ..., 0) \in \psi(W)$ ([9], II. 62—86). Let γ : $[0, 1] \rightarrow G$ be the unique minimizing geodesic arc joining ε and $\zeta \in W$; then γ is given by $\gamma^i(t) = \gamma^i \cdot t$ $(0 \le t \le 1)$ in the coordinate system φ . Hence

$$\varrho(\varepsilon,\zeta) = \int_0^1 \left[\sum_{i,j=1}^m g_{ij}(\varphi \circ \gamma(t))\gamma^i \gamma^j\right]^{\frac{1}{2}} dt = \int_0^1 \left[\sum_{i,j=1}^m g_{ij}(\varphi(\varepsilon))\gamma^i \gamma^j\right]^{\frac{1}{2}} dt = \left[\sum_{i=1}^m (\gamma^i)^2\right]^{\frac{1}{2}}.$$

Therefore if αH is such a coset that the corresponding $\xi \in \alpha H \cap W$ and $\psi(\xi) = (\bar{a}^1, \ldots, \bar{a}^s, \bar{x}^{s+1}, \ldots, \bar{x}^m)$, then

$$F_j(\bar{a}^1,\ldots,\bar{a}^s,\bar{x}^{s+1},\ldots,\bar{x}^m)=\sum_{i=1}^m\chi^i(\bar{a}^1,\ldots,\bar{a}^s,\bar{x}^{s+1},\ldots,\bar{x}^m)\cdot\frac{\partial\chi^i}{\partial z^j}\Big|_{\psi(\xi)}=0$$

for j = s + 1, ..., m. But

$$\frac{\partial F_j}{\partial z^i} = \sum_{i=1}^m \left(\frac{\partial \chi^i}{\partial z^i} \frac{\partial \chi^i}{\partial z^j} + \chi^i \frac{\partial^2 \chi^i}{\partial z^i \partial z^j} \right) \text{ and hence } \frac{\partial F_j}{\partial z^i} \Big|_{\psi(\varepsilon)} = \delta_{ji}$$

for j, l = s + 1, ..., m. Consequently there is a neighborhood $U \subset W$ of ε with $\frac{\partial (F_{s+1}, ..., F_m)}{\partial (z^{s+1}, ..., z^m)}\Big|_{\psi(\zeta)} \neq 0$ for $\zeta \in U$. Therefore by the implicit function theorem there are analytic functions $\omega^{s+1}(\bar{a}^1, ..., \bar{a}^s), ..., \omega^m(\bar{a}^1, ..., \bar{a}^s)$ defined on a neighborhood V of the origin in E^s such that

$$F_{j}(\bar{a}^{1},\ldots,\bar{a}^{s},\omega^{s+1}(\bar{a}^{1},\ldots,\bar{a}^{s}),\ldots,\omega^{m}(\bar{a}^{1},\ldots,\bar{a}^{s}))=0 \qquad (j=s+1,\ldots,m)$$

for $(\bar{a}^1, ..., \bar{a}^s) \in V$ and there are no other solutions of $F_j(\bar{a}^1, ..., \bar{a}^m, z^{s+1}, ..., z^m) = 0$ (j = s+1, ..., m) in V. Let αH be such a coset that $\xi \in \alpha H \cap W$ and $(\bar{a}^1, ..., \bar{a}^s) \in V$. Then $x^j = \omega^j(\bar{a}^1, ..., \bar{a}^s)$ (j = s+1, ..., m). Let $\delta'' > 0$ be such that $\xi \in \alpha H \cap W$, $(\bar{a}^1, ..., \bar{a}^s) \in V$ if $\bar{\varrho}(H, \alpha H) \leq \delta''$. Put $\delta = \min(\frac{1}{4}\delta', \delta'')$ and assume that $\bar{\varrho}(H, \alpha_1 H) =$ $= \vartheta_1 \leq \bar{\varrho}(H, \alpha_2 H) = \vartheta_2 \leq \delta$. Since $\varrho(\xi_1, \xi_2) \leq \frac{1}{2}\delta'$, there is a unique $\xi'_2 \in \alpha_2 H$ with $\bar{\varrho}(\alpha_1 H, \alpha_2 H) = \varrho(\xi_1, \xi'_2)$. Further there are such bounds $A' \leq A''$ that

$$A'\left[\sum_{i=1}^{m} (z_1^i - z_2^i)^2\right]^{\frac{1}{2}} \leq \varrho(\zeta_1, \zeta_2) \leq A''\left[\sum_{i=1}^{m} (z_1^i - z_2^i)^2\right]^{\frac{1}{2}}$$

for $\zeta_{1}, \zeta_{2} \in V, \ \psi(\zeta_{l}) = (z_{l}^{1}, ..., z_{l}^{m}) \quad (l = 1, 2)$ ([5]). Therefore

$$\frac{\varrho(\xi_{1},\xi_{2})}{\bar{\varrho}(\alpha_{1}H,\alpha_{2}H)} = \frac{\varrho(\xi_{1},\xi_{2})}{\varrho(\xi_{1},\xi_{2}')} \leq \frac{A'' \left[\sum_{i=1}^{s} (\bar{a}_{1}^{i} - \bar{a}_{2}^{i})^{2} + \sum_{j=s+1}^{m} (x_{1}^{j} - x_{2}^{j})^{2}\right]^{\frac{1}{2}}}{A' \left[\sum_{i=1}^{s} (\bar{a}_{1}^{i} - \bar{a}_{2}^{i})^{2} + \sum_{j=s+1}^{m} (x_{1}^{j} - x_{2}^{j})^{2}\right]^{\frac{1}{2}}} \leq \frac{A''}{A'} \left[1 + \frac{\sum_{i=1}^{m} (x_{1}^{i} - x_{2}^{i})^{2}}{\sum_{i=1}^{s} (\bar{a}_{1}^{i} - \bar{a}_{2}^{i})^{2}}\right]^{\frac{1}{2}} \leq \frac{A''}{A'} \left[1 + \left[\frac{\sum_{j=s+1}^{m} (\omega^{j}(\bar{a}_{1}^{1}, \dots, \bar{a}_{1}^{s}) - \omega^{j}(\bar{a}_{2}^{1}, \dots, \bar{a}_{2}^{s}))^{2}}{\sum_{i=1}^{s} (\bar{a}_{1}^{i} - \bar{a}_{2}^{i})^{2}}\right]^{\frac{1}{2}} \leq \frac{\omega^{j}(\bar{a}_{1}^{1}, \dots, \bar{a}_{1}^{s}) - \omega^{j}(\bar{a}_{2}^{1}, \dots, \bar{a}_{2}^{s})}{\sum_{i=1}^{s} (\bar{a}_{1}^{i} - \bar{a}_{2}^{i})^{2}}\right]^{\frac{1}{2}}$$

But

$$\frac{\omega^{j}(\bar{a}_{1}^{1},...,\bar{a}_{1}^{s})-\omega^{j}(\bar{a}_{2}^{1},...,\bar{a}_{2}^{s})|}{\left[\sum_{i=1}^{s}(\bar{a}_{1}^{i}-\bar{a}_{2}^{i})^{2}\right]^{\frac{1}{2}}} \leq \sum_{i=1}^{s} \left\{ \left|\frac{\partial\omega^{j}}{\partial\bar{a}^{i}}(\bar{a}_{1}^{1},...,\bar{a}_{1}^{s})\right| + \int_{0}^{1} \left|\frac{\partial\omega^{j}}{\partial\bar{a}^{i}}(\bar{a}_{1}^{1}+t(\bar{a}_{2}^{1}-\bar{a}_{1}^{1}),...,\bar{a}_{1}^{s}+t(\bar{a}_{2}^{s}-\bar{a}_{1}^{s})) - \frac{\partial\omega^{j}}{\partial\bar{a}^{i}}(\bar{a}_{1}^{1},...,\bar{a}_{1}^{s})\right| dt \right\}.$$

144

Locally bounded curvature

Hence the quantity under square root is bounded and the existence of a bound A with $\varrho(\xi_1, \xi_2) \leq A\bar{\varrho}(\alpha_1 H, \alpha_2 H)$ for $\bar{\varrho}(H, \alpha_1 H) \leq \delta$ (l=1, 2) follows. A Riemannian metric with distance function $\tilde{\varrho} \geq \bar{\varrho}$ can be evidently given by the standard construction of a homogeneous Riemannian metric on G/H based on the Haar measure of G([1], 136).

Lemma 1.2. There is such a bound B that $d^k(X_1^k, X_2^k) \leq B \cdot ||X_1^k - X_2^k||$ for any $X_1^k, X_2^k \in S_k^n$, where the norm is taken in the euclidean vector space V_k^n .

Proof. Since S_k^n is a C^{∞} -submanifold of V_k^n this embedding defines a Riemannian metric on S_k^n which has a distance function ϱ' , and admits such a bound B' that $\varrho'(X_1^k, X_2^k) \leq B' \cdot ||X_1^k - X_2^k||$ for $X_1^k, X_2^k \in S_k^n$ ([5]). Let $\overline{\varrho}$ be the distance function provided by Lemma 1.1, then there is such a B'' that $\widetilde{\varrho} \leq B'' \cdot \varrho'$. Consequently $B = B' \cdot B''$ is the bound required.

2. Immersions of locally bounded curvature

Immersions of locally bounded curvature are introduced in this section and . the basic concepts of the curvature theory of C^2 -immersions are generalized for them.

Let $f: M^k \to E^n$ be a C^1 -immersion of the C^1 -manifold M^k and for $p \in M^k$ let U be an oriented neighborhood of p in M^k . Then the tangent space $T_q M^k$ for $q \in U$ is mapped by the induced map of the tangent bundles $f_*: TM^k \to TE^n$ onto an oriented k-dimensional subspace of $T_{f(q)}E^n$ which in turn is mapped by $\exp_{f(q)}: T_{f(q)}E^n \to E^n$ onto an oriented k-plane L_q^k of E^n which defines a simple unit k-vector $X_q^k \in S_k^n$. The immersion f defines a Riemannian metric on M^k ; let d be its distance function. If there is such a K_p that $\limsup_{q\to p} \frac{\|X_q^k - X_p^k\|}{d(p,q)} \leq K_p$, then f is said to be of bounded curvature at p with the bound K_p . If p has a neighborhood V such that f is of bounded curvature at p with the bound K_V . If f is of locally bounded curvature at every point of M then it is called an *immersion of locally* bounded curvature.

Lemma 2.1. Let the C^1 -immersion $f: M^k \to E^n$ of the C^1 -manifold M^k be of locally bounded curvature at $p \in M^k$. Then there is a coordinate system $\alpha: U \to E^k$ of the C^1 -manifold M^k defined on a neighborhood U of p such that the second derivatives of the vector valued function $x_{\alpha} = f \circ \alpha^{-1}: \alpha(U) \to E^n$ exist are measurable, and independent of the order derivations almost everywhere on $\alpha(U)$.

Proof. Let $\pi_p: E^n \to L_p^k$ be the orthogonal projection on L_p^k . There is a neighborhood U' of p in M^k such that $\alpha = \pi_p \circ f: U' \to L_p^k$ yields a coordinate system 10 A of the C^1 -manifold M^k . Let V be the neighborhood of p on which f is of locally bounded curvature with the bound K_V according to the assumption of the lemma. Choose $\delta' > 0$ such that $U(2\delta')$, the spherical neighborhood of p with radius $2\delta'$ taken according to the distance function d, is contained in V. Then $\frac{||X_{q_1}^k - X_{q_2}^k||}{d(q_1, q_2)} \leq K_V$ $d(q_1, p) \leq \delta'$ (l = 1, 2). In fact, by assuming the contrary and considering successive bisections of a minimizing geodesic arc joining q_1, q_2 , one would arrive at a point of V where K_V cannot be a bound for f. Put $\delta = \min\left(\delta', \frac{1}{K_V}\right)$, then $U = U(\delta)$, the spherical neighborhood of p with radius δ , is contained in U'. To verify the last assertion it suffices to see that there is no $q \in U$ with $\langle X_q^k, X_p^k \rangle = 0$ ([13], 117–119); but this is obvious since $q \in U$ and $\langle X_q^k, X_p^k \rangle = 0$ would imply that $d(p,q) \geq \frac{\sqrt{2}}{K_V}$. If orthonormal coordinate systems are suitably chosen in E^n and L_p^k , then

$$Tx_{\alpha}(u^1,\ldots,u^k)=(u^1,\ldots,u^k,x_{\alpha}^{k+1}(u^1,\ldots,u^k),\ldots,x_{\alpha}^n(u^1,\ldots,u^k))$$

with $(u^1, \ldots, u^k) = \alpha(q)$ for $q \in U'$. Put

$$Y^{k}(u^{1},\ldots,u^{k})=\frac{\partial x_{\alpha}}{\partial u^{1}}\Big|_{\alpha(q)}\wedge\ldots\wedge\frac{\partial x_{\alpha}}{\partial u^{k}}\Big|_{\alpha(q)} \text{ and } N(u^{1},\ldots,u^{k})=\|Y^{k}(u^{1},\ldots,u^{k})\|$$

for $q \in U'$. Let Q be the solid k-dimensional cube spanned by the basic vectors of the coordinate system of L_p^k ; then its inverse image in L_q^k under π_p is a solid k-dimensional parallelepiped Q_q , which is spanned by the vectors $\frac{\partial x_a}{\partial u^1}\Big|_{\alpha(q)}, \ldots, \frac{\partial x_a}{\partial u^k}\Big|_{\alpha(q)}$, for $q \in U'$. But $N(u^1, \ldots, u^k)$ is equal to the k-dimensional volume of Q_q and

$$\langle Y^k(u^1,\ldots,u^k), X^k_p \rangle = N(u^1,\ldots,u^k) \langle X^k_q, X^k_p \rangle = 1 \quad ([10], 56-57)$$

Therefore

$$|N(u_1^1, \dots, u_1^k) - N(u_2^1, \dots, u_2^k)| = \left| \frac{\langle X_{q_2}^k - X_{q_1}^k, X_p^k \rangle}{\langle X_{q_1}^k, X_p^k \rangle \cdot \langle X_{q_2}^k, X_p^k \rangle} \right| \le \frac{\|X_{q_2}^k - X_{q_1}^k\|}{\|1 - \frac{1}{2} \|X_{q_1}^k - X_p^k\|^2 |\cdot|1 - \frac{1}{2} \|X_{q_2}^k - X_p^k\|^2} \le 4 \cdot \|X_{q_2}^k - X_{q_1}^k\|$$

if $q_1, q_2 \in U$. There is a C > 0 such that $d(q_1, q_2)^2 \leq C^2 \cdot \sum_{i=1}^k (u_1^i - u_2^i)^2$ for $q_1, q_2 \in U'$. Consequently

$$|N(u_1^1, \dots, u_1^k) - N(u_2^1, \dots, u_2^k)| \le 4 \cdot K_V \cdot d(q_1, q_2) \le 4 \cdot K_V \cdot C \cdot \left[\sum_{i=1}^k (u_1^i - u_2^i)^2\right]^{\frac{1}{2}}$$

for $q_1, q_2 \in U$. Therefore

$$\|Y^{k}(u_{1}^{1},\ldots,u_{1}^{k})-Y^{k}(u_{2}^{1},\ldots,u_{2}^{k})\| \leq N(u_{1}^{1},\ldots,u_{1}^{k})\cdot\|X_{q_{1}}^{k}-X_{q_{2}}^{k}\|+$$

$$+ |N(u_1^1, \ldots, u_1^k) - N(u_2^1, \ldots, u_2^k)| \le 6 \cdot K_V \cdot d(q_1, q_2) \le 6 \cdot K_V \cdot C \cdot \left[\sum_{i=1}^k (u_1^i - u_2^i)^2\right]^{\frac{1}{2}}$$

if $q_1, q_2 \in U$. This means in other words that $Y^k: \alpha(U) \to V_k^n$ is a Lipschitz map. Since

$$\left\|\frac{\partial x_{\alpha}}{\partial u^{i}}\Big|_{\alpha(q_{1})}-\frac{\partial x_{\alpha}}{\partial u^{i}}\Big|_{\alpha(q_{2})}\right\| \leq \|Y^{k}(u_{1}^{1},\ldots,u_{k}^{1})-Y^{k}(u_{2}^{1},\ldots,u_{2}^{k})|$$

it follows that $\frac{\partial x_{\alpha}}{\partial u^{i}}:\alpha(U) \rightarrow V_{1}^{n}$ is a Lipschitz map as well. Therefore by Rademacher's theorem ([13], 271-272), $\frac{\partial^{2} x_{\alpha}}{\partial u^{i} \partial u^{i}}$ (i, j = 1, ..., k) exist almost everywhere on $\alpha(U)$ and are measurable. The fact that $\frac{\partial^{2} x_{\alpha}}{\partial u^{i} \partial u^{i}} = \frac{\partial^{2} x_{\alpha}}{\partial u^{i} \partial u^{j}}$ almost everywhere on $\alpha(U)$ follows by an obvious application of Fubini's theorem.

If the C^1 -immersion $f: M^k \to E^n$ is of locally bounded curvature at p and $\alpha: U \to E^k$ is a coordinate system of the C^1 -manifold M^k on the neighborhood U of p constructed according to the proof of the preceding lemma then $\alpha: U \to E^k$ will be called a *distinguished coordinate system*.

Let $f: M^k \to E^n$ be a C^1 -immersion, NM^k its normal bundle, $\pi: NM^k \to M^k$ the projection in the normal bundle and $v: NM^k \to E^n$ the normal map of the immersion; $\pi^{-1}(p) = N_p M^k$ is a euclidean vector space and the restriction of v to it is an isometric vector space isomorphism. Assume that f is of locally bounded curvature on the neighborhood V of p with the bound K_V . Let $(a_1, ..., a_n) = b \in B^n$ be such a base that $a_1 \wedge ... \wedge a_k = X_p^k$ and $A_b^k: O(n) \to Q(n, k)$ the corresponding homomorphism. Then $H_b(X_p^k) \subset O(n)$ is the subgroup of elements which leave X_p^k fixed, and by the correspondence $O(n)/H_b(X_p^k) \to S_k^n$ for any $q \in M^k$ there is a left coset $\alpha_q H_b(X_p^k)$ consisting of those elements which send X_p^k to X_q^k . Let $\delta > 0$ be the number provided by Lemma 1. 1 for the case $G = O(n), H = H_b(X_p^k), \varrho = \varrho_e$ and B the bound given by Lemma 1. 2. There is a neighborhood $U(\delta')$ of radius $\delta' > 0$

of p such that $U(2\delta') \subset V$ and $\delta' \leq \frac{\delta}{K_V \cdot B}$. Consequently if $q \in U(\delta')$, then

$$\bar{\varrho}_e(H_b(X_p^k), \alpha_q H_b(X_p^k)) = d^k(X_p^k, X_q^k) \leq B \cdot ||X_p^k - X_q^k|| \leq \delta.$$

Hence by Lemma 1.1 for any $q \in U(\delta')$ there exists a unique $\xi_q \in \alpha_q H_b(X_p^k)$ with

 $\varrho_e(\varepsilon, \xi_q) = \overline{\varrho}_e(H_b(X_p^k), \alpha_q H_b(X_p^k))$. The field of bases $\beta: U \to B^n$ defined on $U = U(\delta')$ by $\beta(q) = b \cdot \xi_q = (\overline{w}_1(q), ..., \overline{w}_n(q)) \ (q \in U)$ will be called a *distinguished field of* bases. Assume that a distinguished coordinate system $\alpha: U \to E^n$ is given as well. Then $(w_1(u^1, ..., u^k), ..., w_n(u^1, ..., u^k)), \ (u^1, ..., u^k) \in \alpha(U)$ with $w_i(u^1, ..., u^k) = w_i(q)$ (i = 1, ..., n) for $(u^1, ..., u^k) = \alpha(q) \ (q \in U)$ is called a *coordinate representation of* the distinguished field of bases. If $w \in \pi^{-1}(U)$ then

$$v(w) = \sum_{j=k+1}^{n} t^{j} \overline{w}_{j}(q) = \sum_{j=k+1}^{n} t^{j} w_{j}(u^{1}, ..., u^{k}) \text{ and } \zeta_{\alpha\beta}(w) = (u^{1}, ..., u^{k}, t^{k+1}, ..., t^{n})$$

defines a coordinate system $\zeta_{\alpha\beta}$: $\pi^{-1}(U) \rightarrow \alpha(U) \times E^{n-k}$ for the normal bundle; this will be called a *distinguished coordinate system of the normal bundle*. The map $z_{\alpha\beta}$: $\alpha(U) \times E^{n-k} \rightarrow E^n$ defined by $z_{\alpha\beta}(u^1, ..., u^k, t^{k+1}, ..., t^n) = \sum_{j=k+1}^n t^j w_j(u^1, ..., u^k)$ is called a *distinguished coordinate representation of the normal map*.

Lemma 2.2. Let the C^1 -immersion $f: M^k \to E^n$ be of locally bounded curvature at $p \in M^k$, let $\alpha: U \to E^k$, $\beta: U \to B^n$ be a distinguished coordinate system and a distinguished field of bases on the neighborhood U of p. Then the corresponding coordinate representation $z_{\alpha\beta}: \alpha(U) \times B_{\vartheta}^{n-k} \to E^n$ of the normal map is a Lipschitz map, where B_{ϑ}^{n-k} is the solid ball of radius $\vartheta > 0$ at the origin in E^{n-k} .

Proof. Since

$$\frac{\|z_{\alpha\beta}(u_1^1, \dots, u_1^k, t_1^{k+1}, \dots, t_1^n) - z_{\alpha\beta}(u_2^1, \dots, u_2^k, t_2^{k+1}, \dots, t_2^n)\|}{\left[\sum_{i=1}^k (u_1^i - u_2^i)^2 + \sum_{j=k+1}^n (t_1^j - t_2^j)^2\right]^{\frac{1}{2}}} \leq \frac{\|x_{\alpha}(u_1^1, \dots, u_1^k) - x_{\alpha}(u_2^1, \dots, u_2^k)\|}{\left[\sum_{i=1}^k (u_1^i - u_2^i)^2\right]^{\frac{1}{2}}} + \frac{\left[\sum_{j=k+1}^n (t_1^j - t_2^j)^2\right]^{\frac{1}{2}}}{\left[\sum_{j=k+1}^n (t_1^j - t_2^j)^2\right]^{\frac{1}{2}}} + \frac{\left\|\sum_{j=k+1}^n t_2^j(w_j(u_1^1, \dots, u_1^k) - w_j(u_2^1, \dots, u_2^k))\right\|}{\left[\sum_{i=1}^k (u_1^i - u_2^i)^2\right]^{\frac{1}{2}}}$$

it sufficies to find bounds for the first and the last term. With the notations of and

according to the proof of the preceding lemma

$$\frac{\|x_{\alpha}(u_{1}^{1}, \dots, u_{1}^{k}) - x_{\alpha}(u_{2}^{1}, \dots, u_{2}^{k})\|}{\left[\sum_{i=1}^{k} (u_{1}^{i} - u_{2}^{i})^{2}\right]^{\frac{1}{2}}} = \left\{1 + \sum_{j=k+1}^{n} \left\{\sum_{i=1}^{n} \frac{\partial x_{\alpha}^{j}}{\partial u^{i}}\right|_{\alpha(q_{1})} \frac{u_{2}^{i} - u_{1}^{i}}{\left[\sum_{s=1}^{k} (u_{1}^{s} - u_{2}^{s})^{2}\right]^{\frac{1}{2}}} + \frac{R_{j_{i}}}{\left[\sum_{s=1}^{k} (u_{1}^{s} - u_{2}^{s})^{2}\right]^{\frac{1}{2}}}\right)^{2}\right\}^{\frac{1}{2}} \leq \\ \leq \left\{1 + \sum_{j=k+1}^{n} \left\{\sum_{i=1}^{k} \left|\frac{\partial x_{\alpha}^{j}}{\partial u^{i}}\right|_{\alpha(q_{1})} + \frac{|R_{j_{i}}|}{\left[\sum_{s=1}^{k} (u_{1}^{s} - u_{2}^{s})^{2}\right]^{\frac{1}{2}}}\right)^{2}\right\}^{\frac{1}{2}} \leq \\ \leq 1 + \sum_{j=k+1}^{n} \sum_{i=1}^{k} \left(\left|\frac{\partial x_{\alpha}^{j}}{\partial u^{i}}\right|_{\alpha(q_{1})} + \frac{|R_{j_{i}}|}{\left[\sum_{s=1}^{k} (u_{1}^{i} - u_{2}^{i})^{2}\right]^{\frac{1}{2}}}\right)^{2}\right\}^{\frac{1}{2}} \leq \\ \leq 1 + \sqrt{2} \|Y^{k}(u_{1}^{1}, \dots, u_{1}^{k})\| + \frac{1}{\left[\sum_{s=1}^{k} (u_{1}^{s} - u_{2}^{s})^{2}\right]^{\frac{1}{2}}} \sum_{j=k+1}^{n} \sum_{i=1}^{k} |R_{j_{i}}|.$$

But .

$$\|Y^{k}(u_{1}^{1},\ldots,u_{1}^{k})\| = N(u_{1}^{1},\ldots,u_{1}^{k}) = \frac{1}{\langle X_{q_{1}}^{k},X_{p}^{k} \rangle} = \frac{1}{1 - \frac{1}{2} \|X_{q_{1}}^{k} - X_{p}^{k}\|^{2}} \leq 2$$

and

$$R_{ji} = \int_{0}^{1} \left(\frac{\partial x_{\alpha}^{j}}{\partial u^{i}} \Big|_{\alpha(q(t))} - \frac{\partial x_{\alpha}^{j}}{\partial u^{i}} \Big|_{\alpha(q_{1})} \right) (u_{2}^{i} - u_{1}^{i}) dt,$$

where

$$\alpha(q(t)) = (u_1^1 + t(u_2^1 - u_1^1), \dots, u_1^k + t(u_2^k - u_1^k)), \quad (0 \le t \le 1).$$

Therefore

$$\sum_{j=k+1}^{n} \sum_{i=1}^{k} |R_{ji}| \leq \int_{0}^{1} \sum_{j=k+1}^{n} \sum_{i=1}^{k} \left\| \left(\frac{\partial x_{\alpha}^{j}}{\partial u^{i}} \Big|_{\alpha(q(t))} - \frac{\partial x_{\alpha}^{j}}{\partial u^{i}} \Big|_{\alpha(q_{1})} \right) (u_{2}^{i} - u_{1}^{i}) \right| dt \leq \\ \leq \left[\sum_{s=1}^{k} (u_{1}^{i} - u_{2}^{i})^{2} \right]^{\frac{1}{2}} \cdot \int_{0}^{1} \left[2 \sum_{j=k+1}^{n} \sum_{i=1}^{k} \left(\frac{\partial x_{\alpha}^{j}}{\partial u^{i}} \Big|_{\alpha(q(t))} - \frac{\partial x_{\alpha}^{j}}{\partial u^{i}} \Big|_{\alpha(q_{1})} \right)^{2} \right]^{\frac{1}{2}} dt \leq \\ \leq \left[2 \sum_{i=1}^{k} (u_{1}^{i} - u_{2}^{i})^{2} \right]^{\frac{1}{2}} \int_{0}^{1} \left\| Y^{k} (\alpha(q(t))) - Y^{k} (\alpha(q_{1}))) \right\| dt \leq \\ \leq \left[2 \sum_{i=1}^{k} (u_{1}^{i} - u_{2}^{i})^{2} \right]^{\frac{1}{2}} \cdot 6 \cdot K_{V} \cdot d(q_{1}, q_{2}) dt \leq C \right]$$

Consequently -

$$\frac{\|x_{\alpha}(u_{1}^{1},\ldots,u_{1}^{k})-x_{\alpha}(u_{2}^{1},\ldots,u_{2}^{k})\|}{\left[\sum_{i=1}^{k}(u_{1}^{i}-u_{2}^{i})^{2}\right]^{\frac{1}{2}}} \leq 1+8\sqrt{2}.$$

By Lemmas 1.1 and 1.2

$$\left\| \sum_{j=k+1}^{n} t_{j} \left(w_{j}(u_{1}^{1}, \dots, u_{1}^{k}) - w_{j}(u_{2}^{1}, \dots, u_{2}^{k}) \right) \right\| \leq \\ \leq \vartheta \left[\sum_{j=k+1}^{n} \left(w_{j}(u_{1}^{1}, \dots, u_{1}^{k}) - w_{j}(u_{2}^{1}, \dots, u_{2}^{k}) \right)^{2} \right]^{\frac{1}{2}} \leq \vartheta \cdot \sigma(b\xi_{q_{1}}, b\xi_{q_{2}}) = \\ = \vartheta \cdot \mu(\xi_{q_{1}}, \xi_{q_{2}}) \leq \vartheta \cdot \varrho_{e}(\xi_{q_{1}}, \xi_{q_{2}}) \leq \vartheta \cdot A \cdot \bar{\varrho}_{e}(\alpha_{1}H_{b}(X_{p}^{k}), \alpha_{2}H_{b}(X_{p}^{k})) = \\ = \vartheta \cdot A \cdot d^{k}(X_{q_{1}}^{k}, X_{q_{2}}^{k}) \leq \vartheta \cdot A \cdot B \cdot \|X_{q_{1}}^{k} - X_{q_{2}}^{k}\| \leq \vartheta \cdot A \cdot B \cdot K_{V} \cdot d(q_{1}, q_{2}) \leq \\ \leq \vartheta \cdot A \cdot B \cdot K_{V} \cdot C \left[\sum_{i=1}^{k} (u_{1}^{i} - u_{2}^{i})^{2} \right]^{\frac{1}{2}}.$$

Theorem 2.1. Let $f: M^k \rightarrow E^n$ be an immersion of locally bounded curvature. Then its second fundamental tensor and second fundamental forms exist almost everywhere on M^k .

Proof. Let $\alpha: U \to E^k$ be a distinguished coordinate system, $\beta: U \to B^n$ a distinguished field of bases. By the preceding lemma $w_i: \alpha(U) \to V_1^n$ (i=1, ..., n) is a Lipschitz map and therefore, according to Rademacher's theorem, $\frac{\partial w_i}{\partial u^s}$ (s=1, ..., k) exist almost everywhere on $\alpha(U)$ and are measurable. As a consequence the usual definition of the second fundamental tensor applies almost everywhere on U as follows. Let $w(u^1, ..., u^k) = \sum_{j=k+1}^n \beta^j(u^1, ..., u^k)w_j(u^1, ..., u^k)$ be the coordinate representation of a normal field, where β^j are differentiable functions on $\alpha(U)$, and $v = \sum_{i=1}^k \alpha^i \frac{\partial x_\alpha}{\partial u^i}\Big|_{\alpha(q)}$, then D(v, w), the derivative of w in the direction of v, exists if $\frac{\partial w_j}{\partial u^i}\Big|_{\alpha(q)}$ (i=1, ..., k; j=k+1, ..., n) all exist. Let $S_q(v, w)$ be the orthogonal projection of D(v, w) on X_q^k , then

$$S_q(v,w) = \sum_{i=1}^k \sum_{r=1}^k \sum_{s=1}^k \sum_{j=k+1}^n g^{ir}(u^1,\ldots,u^k) \alpha^s \beta^j(u^1,\ldots,u^k) \left\langle \frac{\partial x_{\alpha}}{\partial u^r}, \frac{\partial w_j}{\partial u^s} \right\rangle \Big|_{\alpha(q)} \frac{\partial x_{\alpha}}{\partial u^i} \Big|_{\alpha(q)}$$

where g^{ir} are the contravariant components of the first fundamental tensor. Therefore

Locally bounded curvature

 $S_q(v, w)$ defines a tensor S_q : $T_q M^k \times N_q M^k \to T_q M^k$. Consequently a tensor field S is obtained which is defined for almost every $q \in M^k$ and is called the second fundamental tensor of the immersion. If ||w|| = 1 and w is fixed then $l_w(v, v') =$ $= \langle S_q(v, w), v' \rangle = \sum_{r=1}^k \sum_{s=1}^k \sum_{j=k+1}^n \alpha^{r} \alpha^s \beta^j \langle \frac{\partial x_a}{\partial u^r}, \frac{\partial w_j}{\partial u^s} \rangle$ is a bilinear form

 $l_w: T_a M^k \times T_a M^k \rightarrow E^1$

in $v = \sum_{i=1}^{k} \alpha^{i} \frac{\partial x_{\alpha}}{\partial u^{i}}\Big|_{\alpha(a)}$ and $v' = \sum_{i=1}^{k} \alpha'^{i} \frac{\partial x_{\alpha}}{\partial u^{i}}\Big|_{\alpha(q)}$. This is called the second fundamental form of the immersion at q in the normal direction $w \in N_{q} M^{k}$.

In case of a hypersurface of locally bounded curvature $f: M^{n-1} \rightarrow E^n$ there is essentially one choice for w, therefore the hypersurface has one second fundamental form *l*. The above theorem and Lemma 2.1 give the following

Corollary. Let $f: M^{n-1} \to E^n$ be a hypersurface of locally bounded curvature and l its second fundamental form, then $l_q: T_q M^{n-1} \times T_q M^{n-1} \to E^1$ is symmetric for almost every $q \in M^{n-1}$. The coefficients of l are measurable in any distinguished coordinate system of the hypersurface.

3. The uniqueness of hypersurfaces of locally bounded curvature with given first and second fundamental forms

The uniqueness theorem for C^{∞} -hypersurfaces is the following: Let the C^{∞} -hypersurfaces $f_1, f_2: M^{n-1} \to E^n$ $(n \ge 3)$ have common first and second fundamental forms where the second fundamental forms are taken with respect to C^{∞} -unit normal fields $\overline{w}_n^1, \overline{w}_n^2: M^{n-1} \to V_1^n$ of the hypersurfaces f_1, f_2 . Then there exists a distance preserving transformation $\Phi: E^n \to E^n$ with $f_2 = \Phi \circ f_1$ ([7], 79–81).

This theorem will be generalized to hypersurfaces of locally bounded curvature in this section.

Lemma 3.1. Let the C^1 -hypersurface $f: M^{n-1} \to E^n$ be of locally bounded curvature at $p \in M^{n-1}$ with the bound K_V , let $\alpha: U \to E^{n-1}$ be a distinguished coordinate system, $\beta: U \to B^n$ a distinguished field of bases on the neighborhood U of p and $z_{\alpha\beta}: \alpha(U) \times E^1 \to E^n$ the corresponding coordinate representation of the normal map. Then there exist a neighborhood $\tilde{U} \subset U$ of p and numbers $\delta, \vartheta > 0$ such that

$$\|z_{\alpha\beta}(u_1^1,\ldots,u_1^{n-1},t_1^n)-z_{\alpha\beta}(u_2^1,\ldots,u_2^{n-1},t_2^n)\| \ge \delta \left[\sum_{i=1}^{n-1} (u_1^i-u_2^i)^2+(t_1^n-t_2^n)^2\right]^{\frac{1}{2}}$$

($u_1^1,\ldots,u_l^{n-1},t_l^n)\in\alpha(\tilde{U})\times B_9^1$ ($l=1,2$).

151

Proof. If $u_1^i = u_2^i$ (i = 1, ..., n-1), the inequality holds with $\delta = 1$ for any $\vartheta > 0$, therefore it will be assumed that $(u_i^1, ..., u_i^{n-1})$ (l = 1, 2) correspond to different $q_1, q_2 \in U$. Assume further that $t_1^n \ge t_2^n$ and put $t = t_2^n$, $\Delta t = t_1^n - t_2^n$,

$$\Delta u = \left[\sum_{i=1}^{n-1} (u_2^i - u_1^i)^2\right]^{\frac{1}{2}}, \quad x = x_{\alpha}(u_1^1, \dots, u_1^{n-1}) - x_{\alpha}(u_2^1, \dots, u_2^{n-1}),$$

$$\psi_l = \overline{w}_n(q_l), \quad y = x + t(\widetilde{w}_1 - \widetilde{w}_2), \quad z = x + t_1^n \widetilde{w}_1 - t_2^n \widetilde{w}_2, \quad d = d(q_1, q_2).$$

Let ε_l be the angle of the vector x and the subspace $X_{q_l}^{n-1}$ and put $\gamma_l = \sphericalangle(x, \tilde{w}_l)$, $\gamma' = \sphericalangle(y, \tilde{w}_1)$, $\gamma'' = \sphericalangle(x, \tilde{w}_1 - \tilde{w}_2)$, $2\gamma = \sphericalangle(\tilde{w}_1, \tilde{w}_2)$ where $\gamma'' = 0$ if $\tilde{w}_1 = \tilde{w}_2$. According to the proof of Lemma 2.2, $1 \leq \frac{\|x\|}{\Delta u} \leq 1 + 8\sqrt{2}$ if $q_1, q_2 \in U$. Let $\alpha': U' \to E^{n-1}$ be a distinguished coordinate system at $q_1 \in U$ and let $q_2 \in U' \cap U$. Then for a coordinate system suitably chosen in E^n we have $|\lg \varepsilon_1| = \left|\frac{\Delta x_{\alpha'}}{\Delta u'}\right|$ where, like below, primes refer to analogous quentities in case of the coordinate system α' . Therefore

$$\begin{aligned} |\operatorname{tg} \varepsilon_{1}| &= \left\| \left(\sum_{i=1}^{n-1} \frac{\partial x_{\alpha'}^{n}}{\partial u'^{i}} \Big|_{\alpha'(q_{2})} \frac{u_{1}^{\prime i} - u_{2}^{\prime i}}{\Delta u'} + \frac{R_{ni}^{\prime}}{\Delta u'} \right) \right\| \leq \sum_{i=1}^{n-1} \left(\left\| \frac{\partial x_{\alpha'}^{n}}{\partial u'^{i}} \right\|_{\alpha'(q_{2})} + \frac{|R_{ni}^{\prime}|}{\Delta u'} \right) \\ &\leq \sqrt{2} \| Y^{n-1} (u_{2}^{\prime 1}, \dots, u_{2}^{\prime n-1}) \| + \frac{1}{\Delta u'} \sum_{i=1}^{n-1} |R_{ni}^{\prime}| \leq \\ &\leq \sqrt{2} \| Y^{n-1} (u_{1}^{\prime 1}, \dots, u_{1}^{\prime n-1}) - Y^{n-1} (u_{2}^{\prime 1}, \dots, u_{2}^{\prime n-1}) \| + \\ \frac{1}{\Delta u'} \sum_{i=1}^{n-1} |R_{ni}^{\prime}| \leq \sqrt{2} \cdot 6 \cdot K_{V} \cdot C' \cdot \Delta u' + \sqrt{2} \cdot 6 \cdot K_{V} \cdot C' \cdot \Delta u' = 12 \cdot \sqrt{2} \cdot K_{V} \cdot C' \cdot \Delta u', \end{aligned}$$

with respect to the proof of Lemmas 2.1. and 2.2. Hence $\frac{|\lg \varepsilon_1|}{||x||} \leq \frac{|\lg \varepsilon_1|}{\Delta u'} \leq \frac{|\lg \varepsilon_1|}{\Delta u'} \leq \frac{|\lg \varepsilon_1|}{||x||} \leq \frac{|\lg \varepsilon_1|}{\Delta u'} \leq \frac{|\lg \varepsilon_1|}{||x||}$ is bounded on a neighborhood of p, since f is a C^1 -hypersurface. Therefore a neighborhood $\tilde{U} \subset U$ of p and a bound D exist with $\frac{|\lg \varepsilon_l|}{||x||} \leq D$ for $q_1, q_2 \in \tilde{U}$ (l=1, 2). Obviously

$$\|z\|^{2} = (\Delta t)^{2} + \|x\|^{2} + t^{2} \|\tilde{w}_{1} - \tilde{w}_{2}\|^{2} - 2\Delta t \left[\|x\|^{2} + t^{2} \|\tilde{w}_{1} - \tilde{w}_{2}\|^{2} - 2t \|x\| \cdot \|\tilde{w}_{1} - \tilde{w}_{2}\| \cdot \cos \gamma'' \right]^{\frac{1}{2}} \cdot \cos \gamma' - 2t \|x\| \cdot \|\tilde{w}_{1} - \tilde{w}_{2}\| \cdot \cos \gamma'.$$

Hence

$$\begin{aligned} \|z\|^{2} &\geq (\Delta t)^{2} + \|x\|^{2} - t^{2} \cdot K_{V}^{2} \cdot d^{2} - \\ &- 2\Delta t \left[\|x\|^{2} + t^{2} \cdot K_{V}^{2} \cdot d^{2} + 2t \cdot \|x\| \cdot K_{V} \cdot d \cdot \cos \gamma' \right]^{\frac{1}{2}} - 2t \cdot \|x\| \cdot K_{V} \cdot d = (\Delta t)^{2} + \\ &+ (\Delta u)^{2} \left[\frac{\|x\|^{2}}{(\Delta u)^{2}} - t^{2} \cdot K_{V}^{2} \cdot \frac{d^{2}}{(\Delta u)^{2}} - 2\Delta t \frac{\|x\|}{\Delta u} \left(\frac{\|x\|}{\Delta u} + t \cdot K_{V} \cdot \frac{d}{\Delta u} \right) \frac{\cos \gamma'}{\|x\|} - \\ &- 2t \cdot K_{V} \cdot \frac{\|x\|}{\Delta u} \cdot \frac{d}{\Delta u} \right]. \end{aligned}$$

But

$$\frac{\cos \gamma'}{\|x\|} = \frac{\langle \tilde{w}_1, x + t(\tilde{w}_1 - \tilde{w}_2) \rangle}{\|x\| \cdot \|x + t(\tilde{w}_1 - \tilde{w}_2)\|} = \\ = \left[\frac{\cos \gamma_1}{\|x\|} + 2t \frac{\sin^2 \gamma}{\|x\|} \right] \cdot \left[1 + t^2 \frac{\|\tilde{w}_1 - \tilde{w}_2\|^2}{\|x\|^2} + 2t \left(\frac{\cos \gamma_1}{\|x\|} - \frac{\cos \gamma_2}{\|x\|} \right) \right]^{-\frac{1}{2}}$$

and as obvious calculations show $|\cos \gamma_l| \leq |\sin \varepsilon_l| \leq |\lg \varepsilon_l|$, $\frac{||w_1 - w_2||}{||x||} \leq K_V \cdot C$, $\frac{\sin \gamma}{||x||} = K_V \cdot C$. Therefore $\frac{\cos \gamma'}{||x||}$ is bounded if $q_1, q_2 \in \tilde{U}$ and t is sufficiently small. The above estimates yield the existence of such $\delta, \vartheta > 0$ that $||z|| \geq \delta[(\Delta t)^2 + (\Delta u)^2]^{\frac{1}{2}}$ if $q_1, q_2 \in \tilde{U}$ and $|t_1^n|, |t_2^n| \leq \vartheta$.

Theorem 3. 1. Let $f_1, f_2: M^{n-1} \to E^n$ be hypersurfaces of locally bounded curvature, g^1, g^2 their first fundamental forms, and l^1, l^2 their second fundamental forms which are calculated with respect to continuous unit normal fields $\tilde{w}_n^1, \tilde{w}_n^2: M^{n-1} \to V_1^n$ of the hypersurfaces. Assume that $g^1 = g^2$ and $l_q^1 = l_q^2$ for almost every $q \in M^{n-1}$. Then there exists a distance preserving transformation $\Phi: E^n \to E^n$ such that $f_2 = \Phi \circ f_1$.

Proof. Let $N^l M^{n-1}$ be the normal bundle and $\gamma_l: N^l M^{n-1} \to E^n$ be the normal map of the hypersurface f_l (l=1, 2). In consequence of the preceding lemma for any $p \in M^{n-1}$ there is a distinguished coordinate system $\alpha_l: U \to E^{n-1}$ and a distinguished field of bases $\beta_l: U \to B^n$ of f_l (l=1, 2) on a neighborhood U of p such that if $z_l: \alpha_l(U) \times E^l \to E^n$ is the corresponding representation of the normal map, then $\delta, 9 > 0$ and $\tilde{U} \subset U$ exist for which the assertion of the lemma holds. Here β_1, β_2 are chosen so as to give $\overline{w}_n^l(q) = \tilde{w}_n^l(q)$ for $q \in U$. Let $\pi_l: N^l M^{n-1}$ be the projection in the bundle and $V^l = \{w | w \in \pi_l^{-1}(\tilde{U}), ||w|| < 9\}$; then the restriction of v^l to V^l is one-to-one. Consequently there is such a distance function ϱ_l that $v_l: (V^l, \varrho^l) \to E^n$ is distance preserving. By convexification of the distance function ϱ_l an intrinsic distance function $\bar{\varrho}^l$ is obtained on V^l ([2], [4], 77). The map $\gamma_l: (V^l, \bar{\varrho}^l) \to E^n$ is locally distance preserving. If $w \in V^1$ then there is a unique $w' \in V^2$ such that $\pi_1(w) =$ $= \pi_2(w') = q$ and if $\gamma_1(w) = f_1(q) + t^n \bar{w}_n^1(q)$ then $v_2(w') = f_2(q) + t^n \bar{w}_n^2(q)$. Let

 $\Psi_{\tilde{U}}: V^1 \to V^2$ be defined by $\Psi_{\tilde{U}}(w) = w'$, then $\Psi_{\tilde{U}}$ is one-to-one and maps V^1 onto V^2 . The following argument will show that $\Psi_{\tilde{U}}: (V^1, \bar{\varrho}^1) \to (V^2, \bar{\varrho}^2)$ is distance preserving. Let $\bar{g}_{ab}^1(u^1, ..., u^{n-1}, t^n)$ be defined for a, b = 1, ..., n, and $(u^1, ..., u^{n-1}, t^n) \in \alpha_1(\tilde{U}) \times B_3^1$ by

$$\bar{g}_{ab}^{1} = \begin{cases} \left\langle \frac{\partial z_{1}}{\partial u^{a}}, \frac{\partial z_{1}}{\partial u^{b}} \right\rangle & \text{if} \quad a, b = 1, \dots, n-1 \\ \left\langle \frac{\partial z_{1}}{\partial u^{a}}, \frac{\partial z_{1}}{\partial t^{n}} \right\rangle & \text{if} \quad a = 1, \dots, n-1; \ b = n, \\ \left\langle \frac{\partial z_{1}}{\partial t^{n}}, \frac{\partial z_{1}}{\partial u^{b}} \right\rangle & \text{if} \quad a = n; \ b = 1, \dots, n-1, \\ \left\langle \frac{\partial z_{1}}{\partial t^{n}}, \frac{\partial z_{1}}{\partial t^{n}} \right\rangle & \text{if} \quad a = b = n. \end{cases}$$

Then

$$\bar{g}_{ab}^{1} = g_{ab}^{1} + t^{n} (l_{ab}^{1} + l_{ba}^{1}) + (t^{n})^{2} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{r=1}^{n-1} \sum_{s=1}^{n-1} g_{ij}^{1} g_{1}^{ri} g_{1}^{sj} l_{ar}^{1} l_{bs}^{1}$$

if a b = 1, ..., n-1, where g_{ab}^1, g_1^{ab} are the covariant and contravariant components of the first fundamental tensor and the l_{ab}^1 coefficients of the second fundamental form of f_1 in the coordinate system α_1 ; $\bar{g}_{ab}^1 = 0$ if a = 1, ..., n-1; b = n or a = n; b = 1, ..., n-1; $\bar{g}_{ab}^1 = 1$ if a = b = n. The functions \bar{g}_{ab}^1 are measurable on $\alpha_1(\tilde{U}) \times B_9^1$. Let $\hat{x}(u^1, ..., u^{n-1}) = \hat{w}_n^2(g), (u^1, ..., u^{n-1}) = \alpha_1(g), (g \in \tilde{U})$ and put $\hat{z}(u^1, ..., u^{n-1}, t^n) =$ $= \hat{x}(u^1, ..., u^{n-1}) + t^n \hat{w}_n(u^1, ..., u^{n-1})$ for $(u^1, ..., u^{n-1}, t^n) \in \alpha_1(\tilde{U}) \times B_9^1$. Let the $\bar{g}_{ab}^2(u^1, ..., u^{n-1}, t^n)$ be defined for a, b = 1, ..., n and $(u^1, ..., u^{n-1}, t^n) \in \alpha_1(\tilde{U}) \times B_9^1$ by

$$\bar{g}_{ab}^{2} = \begin{cases} \left\langle \frac{\partial \hat{z}}{\partial u^{a}}, \frac{\partial \hat{z}}{\partial u^{b}} \right\rangle & \text{if } a, b = 1, \dots, n-1, \\ \left\langle \frac{\partial \hat{z}}{\partial u^{a}}, \frac{\partial \hat{z}}{\partial t^{n}} \right\rangle & \text{if } a = 1, \dots, n-1; \ b = n, \\ \left\langle \frac{\partial \hat{z}}{\partial t^{n}}, \frac{\partial \hat{z}}{\partial u^{b}} \right\rangle & \text{if } a = n; \ b = 1, \dots, n-1, \\ \left\langle \frac{\partial \hat{z}}{\partial t^{n}}, \frac{\partial \hat{z}}{\partial t^{n}} \right\rangle & \text{if } a = b = n. \end{cases}$$

Then

$$\bar{\hat{g}}_{ab}^2 = \hat{g}_{ab}^2 + t^n (\hat{l}_{ab}^2 + \hat{l}_{ba}^2) + (t^n)^2 \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{r=1}^{n-1} \sum_{s=1}^{n-1} \hat{g}_{ij}^2 \hat{g}_2^{ri} \hat{g}_2^{sj} \hat{l}_{ar}^2 \hat{l}_{bs}^2$$

if a, b = 1, ..., n-1, where $\hat{g}_{ab}^2, \hat{g}_{2}^{ab}, \hat{l}_{ab}^2$ are the corresponding quantities of f_2 in the coordinate system α_1 ; $\overline{g}_{ab}^2 = 0$ if a = 1, ..., n-1; b = n or a = n; b = 1, ..., n-1; $\overline{\hat{g}}_{ab}^2 = 1$ if a = b = n. The measurability of the functions $\overline{\hat{g}}_{ab}^2$ follows again by the Corollary to Theorem 2.1 but a coordinate transformation have to be considered as well. According to assumptions of the theorem $\bar{g}_{ab}^1 = \bar{g}_{ab}^2$ (a, b = 1, ..., n) almost everywhere on $\alpha_1(\tilde{U}) \times B_1^3$. If $w_1, w_2 \in V^1$ are sufficiently near then there is an *n*-dimensional parallelepiped P in $v_1(V^1)$ formed by a set S of straight line segments parallel and congruent to the one joining $v_1(w_1), v_1(w_2)$ and such that their endpoints fill two (n-1)-dimensional cubes the centres of which are $v_1(w_1)$ and $v_1(w_2)$. Let the arc $\varphi: [0, 1] \rightarrow V^1$ be such that $v_1 \circ \varphi: [0, 1] \rightarrow E^n$ is a linear representation of a segment in S, and let the functions $\varphi^{h}(t)$ $(h=1, ..., n; 0 \le t \le 1)$ be defined by $z_1(\varphi^1(t), ..., \varphi^n(t)) = v_1 \circ \varphi(t) \ (0 \le t \le 1)$. In consequence of Lemma 3.1 $\varphi^h(t)$ are Lipschitz functions; therefore $\dot{\varphi}(t)$ exist almost everywhere on [0, 1] and are measurable in case of any segment in the set S. Obvious applications of Fubini's theorem to the set P yield that there are segments in S arbitrary near to the one joining $v_1(w_1), v_1(w_2)$ such that 1) $\bar{g}_{ab}^1(\varphi^1(t), ..., \varphi^n(t)), \ \bar{g}_{ab}^2(\varphi^1(t), ..., \varphi^n(t))$ (a, b = 1, ..., n)are measurable on $[0, 1]; 2) \bar{g}_{ab}^{1}(\varphi^{1}(t), ..., \varphi^{n}(t)) = \bar{g}_{ab}^{2}(\varphi^{1}(t), ..., \varphi^{n}(t)) (a, b = 1, ..., n)$ almost everywhere on [0, 1]. The distance of the points $v_1 \circ \varphi(0)$, $v_1 \circ \varphi(1)$ in case of such segments is

$$\int_{0}^{1} \left[\sum_{a,b=1}^{n} \bar{g}_{ab}^{1}(\varphi^{1}(t), \dots, \varphi^{n}(t)) \dot{\varphi}^{a}(t) \dot{\varphi}^{b}(t) \right]^{\frac{1}{2}} dt =$$
$$= \int_{0}^{1} \left[\sum_{a,b=1}^{n} \bar{g}_{ab}^{2}(\varphi^{1}(t), \dots, \varphi^{n}(t)) \dot{\varphi}^{a}(t) \dot{\varphi}^{b}(t) \right]^{\frac{1}{2}} dt.$$

But by Tonelli's theorem the last integral is equal to the length of the curve $\hat{z}(\varphi^1(t), ..., \varphi^n(t))$ $(0 \le t \le 1)$ since it is of bounded variation in consequence of Lemma 2.2. Furthermore we have $\hat{z}(\varphi^1(0), ..., \varphi^n(0)) = v_2 \circ \Psi_{\tilde{U}} \circ \varphi(0)$ and $\hat{z}(\varphi^1(1), ..., \varphi^n(1)) = v_2 \circ \Psi_{\tilde{U}} \circ \varphi(1)$, and therefore

$$\varrho^1(\varphi(0),\varphi(1)) \geq \varrho^2(\Psi_{\tilde{U}} \circ \varphi(0),\Psi_{\tilde{U}} \circ \varphi(1)).$$

Consequently $\varrho^1(w_1, w_2) \ge \varrho^2 (\Psi_{\tilde{U}}(w_1), \Psi_{\tilde{U}}(w_2))$, and changing the role of f_1, f_2 in the above argument gives $\varrho^1(w_1, w_2) \le \varrho^2 (\Psi_{\tilde{U}}(w_1), \Psi_{\tilde{U}}(w_2))$. These imply that $\Psi_{\tilde{U}}: (V^1, \varrho^1) \to (V^2, \varrho^2)$ is locally distance preserving and $\Psi_{\tilde{U}}: (V^1, \bar{\varrho}^1) \to (V^2, \bar{\varrho}^2)$ is distance preserving. Proceeding in like manner a sequence of neighborhoods $\{\tilde{U}_m\}_{m=1,2,...}$ covering M^{n-1} can be obtained with the corresponding sequences $\{(V_m^l, \bar{\varrho}_m^l)\}_{m=1,2,...}$ of metrized neighborhoods in $N^l M^{n-1}$ and the distance preserving maps $\Psi_m: (V_m^1, \bar{\varrho}_m^1)$. The set $V_l = \bigcup_{m=1}^{\infty} V_m^l$ is a neighborhood of the zero section in $N^l M^{n-1}$ and since $\bar{\varrho}_{m'}^l, \bar{\varrho}_{m''}^l$ are equal on $V_{m'}^l \cap V_{m''}^l$ there is an intrinsic distance function $\bar{\varrho}^l$ on V_l which is equal to $\bar{\varrho}_m^l$ on V_m^l (m = 1, 2, ..., ; l = 1, 2). Further Ψ_m , and $\Psi_{m''}$ coincide on $V_{m'}^1 \cap V_{m''}^1$, therefore there is a distance preserving map $\Psi: (V_1, \bar{\varrho}_1) \rightarrow (V_2, \bar{\varrho}_2)$ which coincides with Ψ_m on V_m^1 for m = 1, 2, Hence $v_l: (V_l, \bar{\varrho}_l) \rightarrow E^n$ is locally distance preserving. There is an open subset of V_1^1 with compact closure A such that $v_1: (A, \bar{\varrho}_1) \rightarrow E^n$ and $v_2 \circ \Psi: (A, \bar{\varrho}_1) \rightarrow E^n$ are distance preserving, therefore there is a distance preserving transformation $\Phi: E^n \rightarrow E^n$ with $v_2 \circ \Psi = \Phi \circ v_1$ on A. Assume that the last equality does not hold on V_1 . Then there is a $w^* \in V_1$ nearest to A with $v_2 \circ \Psi(w^*) \neq \Phi \circ v_1(w^*)$. But w^* has a neighborhood V^* on which $v_1, v_2 \circ \Psi$ are distance preserving, consequently there is a distance preserving transformation $\Phi^*: E^n \rightarrow E^n$ with $v_2 \circ \Psi = \Phi \circ v_1$ on V^* . Since $\bar{\varrho}_1$ is intrinsic and locally euclidean there is an open subset $V' \subset V^*$ such that $v_2 \circ \Psi = \Phi \circ v_1$ on V'. Consequently $v_2 \circ \Psi = \Phi \circ v_1$ on V^* in contradiction with the above assumption. Therefore $v_2 \circ \Psi = \Phi \circ v_1$ on V_1 . The restriction of this equality to the zero section in $N^1 M^{n-1}$ yields the assertion of the theorem.

Remark. The assumption of Theorem 3.1 that there are continuous unit normal fields on the whole manifold M^{n-1} for both hypersurfaces does not mean an essential restriction since if M^{n-1} is not orientable its orientable covering manifold can be considered instead.

References

- [1] R. L. BISHOP-R. J. CRITTENDEN, Geometry of manifolds (New York, 1964).
- [2] L. M. BLUMENTHAL, Theory and applications of distance geometry (Oxford, 1953).
- [3] G. BOULIGAND, Introduction à la géométrie infinitésimale directe (Paris, 1932).
- [4] H. BUSEMANN, Convex surfaces (New York, 1958).
- [5] H. BUSEMANN and W. FELLER, Regularity properties of a certain class of surfaces, Bull. Amer. Math. Soc., 51 (1945), 583-588.
- [6] H. BUSEMANN-W. MAYER, On the foundations of the calculus of variations, Trans. Amer. Math. Soc., 49 (1941), 173-198.
- [7] N. J. HICKS, Notes on differential geometry (Princeton, 1965).
- [8] J. HJELMSLEV, Grundlag for fladernes Geometri, Mém. Acad. Roy. Sc. Lett. Danmark, Copenhague, (7) 12 (1914).
- [9] S. KOBAYASHI-K. NOMIZU, Foundations of differential geometry. I (New York, 1963).
- [10] N. H. KUIPER, On C¹-isometric imbeddings. I, Proc. Koninkl. Nederl. Akad. Wetensch., 58 (1955), 545-556.
- [11] J. NASH, C¹-isometric imbeddings, Ann. of Math., 60 (1954), 383-396.
- [12] L. S. PONTRJAGIN, Topologische Gruppen. I-II (Leipzig, 1958).
- [13] H. WHITNEY, Geometric integration theory (Princeton, 1957).
- [14] А. В. Погорелов, Поверхности ограниченной внешней кривизны (Харьков, 1956).

(Received May 15, 1969)

156