A semiring whose Green’s relations do not commute

By MIREILLE P, GRILLET in Manhattan (Kansasl., U.S. A)

We call Green’s relations on a semiring R-the equivalence relations defined
thus: a.Zb (a#b) if and only if a and b generate the same principal left (right) ideal,
D=FLNR and # =L NA. The relations & and £ commute for a large class of
"semirings which includes semirings with a commutative addition or with a globally
idempotent (or weakly reductive) multiplication. In these cases, they have properties
analogous to the properties of Green’s relations in semigroup theory and appiy'
to the study of ideals of a semiring (cf. [2]). However ¥ and # do not commute in
general and the purpose of this paper is to give a counterexample, Wthh we have

been unable to obtain by more elementary methods. .
' Our example is the semiring R generated by the two elements set {b, d} and sub-
ject to the relations: ,
b =d?b+2db+b = b+2bd+bd>.

Since these relations can also be written under the erIﬁ: b=ddb+b)+db+b =
= b+bd+(b+bd)d, it is clear that in R the relation: db+b LbR b +bd holds.
We shall prove that there exists no element ¢ of R such that db+b %e& b+bd.

1. It is possible to construct R as.the quotient of the free semiring F on the
set {b, d} by the smallest congruence on F contammg the binary relation ¢ consist- -
ing of the two pairs:

'O (5, d*b+2db+B), (b, b+2bd+bd?).

However, to obtain a suitable description of R, we need to refine this construc-
tion by using the construction of F itself Which_ we first recall briefly (cf. [3]). -

Let S be the free multiplicative semigroup on {b, d}, i.e. the set of all mono-
mials x;x, ---x, (>0, x;€ {b, d}. Then consider the free additive semigroup W
on S which is the set of all sums w, +w,+ - +w, where n=>0 and w;€S with
addition defined by juxtaposition. The multiplication in S can be extended to a
assomatlve multlphcatnon of W in the following way:

p -
O W) 4wy = Z[Zwiw;-],
: i=1 \j=1
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for all w;, w;€ S. We shall denote by S' (W?°) the set resulting from the adjunc-

tion of a formal identity to the multiplicative (additive) semigroup S(W).
Finally let & be the transitive closure of the binary relation % defined as the

set of all pairs having either the form (w, w) with we W or (x,y) or (y,x) with

x=u+z[2wiw<]+u, y=ut 3 (3] 0,

where m,n >0 Wi, W; E Sforall i, j and u, v€ W° ‘Then F= W/@ is the free semiring
on {b,d}.
. We shall now describe R as the quouent of W by a suitable congruence. First
let (w, w)eg* if and only if (w,w)€% or (w’,w)€¥. Observe that the binary
relation ¥* consists of four pairs and is symmetrlc Then let # be the binary
're]atlon on W defined by: ,
) = {(u+swt+o, utswt+v); u,vEW®, s5,t€S, (w,w)eg*}.

Also let P=2 U . Then we have the following:

" Lemma 1. The smallest congruence € on W containing both G and 9 is the
* transitive closure of 2. Furthermore R= W/%

Proof. Clearly any congruence on W which contains both % and 2 must
also contain %*, %, 2 and therefore the transitive closure ¢’ of #. Thus ¢’ C¥.
To show the inverse inclusion, we shall successively prove that 4’ contains both ¢
and 2, and that ¢’ is a congruence on W. _

Trivially ¢’ contains ¢; also, since # S 2, certainly the transitive closure * of

2 contains the transitive closure 2 of &. : _
. Since both # and & are symmetric and % is reflexive, ¢’ is an equivalence
" relation. Also both # and & admit the addmon of W, so does # whence %’ is an
additive congruence on W. It is left to show that ¢’ is also a multiplicative con-
gruence. To this end it suffices to prove that 2 has the following property: if ZEW
and (x,y)€%; then (zx, zp)€ ¥’ -and (xz,yz)€¥’.

Observe first that, since 2 is a congruence on W containing &, forall (x, y)€F
and z€ W, we have: (zx,zy)€2 and (xz, yz)€ 9. Thus, since DS, (zx, zy)€E”
" and (xz, yz) €%’ for all (x,y)€F, ze W.

On the, other hand, let x = u+swt+v and y = u+sw t+v be such ‘that u,
vEWS, 5, 1€ S and (w, w)eg* If first z€ S, then

(zx, zu+zswt +20) €D, (zp, zu+zsw't+20)€D

'by distributivity modulo 2. Also (zu + zswt + zv, 2u+zsW t+2zv)€4. Since €’ is an
additive congruence contammg both # and 2, it follows that (zx, zy)e(g’ similarly
(xz, y2)€¥’. : .
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If now z€W so that z = zl+22-+l--~+z, for some r=0 and z;€S. By the
above, (z;x, z; y)e(g’ for all i. Since '

X = 21X+ 2 X+ —|—zx and zy~z,y+22y+ +z,y,

and %’ is an additive congruence, we obtain (zx, zy)€¥’. Similarly (xz, y2)€¥".
It is routine to check that R= W/¥, which completes'the proof.

2. Let K be the set of all elements x = x, + x5+ - +x (r=0, x; ES) of W
having the followmg two propertles

(A) for all i, x;=drbdu for some Pi»4;=0;
~ (B) there exists k such that 1 =k=r, p,=¢,=0, p;>0 if i<k and ¢;>0 if
i=k. : B '
. Tt is convenient to write the elements of K under the form x = x;+b+x,,
where x;, x, have the obvious meaning. Observe that all monomials of x, are divis-
ible on the left by 4 and all monomials of x, are divisible on the right by d.

- Lemma 2. Let x€K and x’ €W satzsfy (x,x)E‘g Then x" € K. Furthermore
(x;+b, x,1+b)€(6” and (b+x,,b+x,)€%. '

Proof. Clearly, it is enough to show that 2 has these properties. We consider
successively the two cases (x, x)€F and (x, x")€4. We may also assume x 7 x’.
1) Let (x,x)€& and x€ K. Then we can write. for instance:

vx:u+2[2u.1,-w}]+v, X.=u+ Z‘[Z’wiw}]-i—v, : »
B B = == :

for some u, v€ W°, w;, w;€ S. We shall study only the case when u, v€ W, the cases
when u=0 or v=0 being simpler. Clearly, since x satisfy (A) and x, x” have same
monomials up to the order, then x’ satisfy (A) too. -

Write u = u,tu, 4+, v= vl+vz+ b, with m’,n"=0, u;,v;€S.
Since w;, w;€ W2, but b¢ W2 certainly w,w} b, so that x€ K implies that either
b=u, for some k—l 2,...,m" or b=u, for some k'=1,2,...,n '

Assume that b=uy, for some k; then x; = u, +- +uk_1 and

Xy = Uy +'um"+2 [Z Wiw;]"—v'
- . - =1 =1
Then set x; =x, and '

. . n . m : . .
Xo = Uy + o+t + Z [Z Wiw}]._l_v‘

j=1\i=1

Clearly, since all monomials of x, are divisible on the left by d, so are all monomials
of x3; also (x; +b, x; +b)€F trivially. Now, looking at the above expressions of
x, and x,, we see that (b-+x,, b+x,)€F; in particular x, and x, have the same
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monomials up to the order which implies that all monomials of x, are divisible
on the right by d, since the monomials of x, have this property We therefore obtain
that X" = x, +b +x, satisfies (B) whence x'¢ K.

. The case when b=v, for some k" is treated similarly.

2) Let now (x, x)c% and x€K; then x = u4swt+v, X’ = u-+sw't+v for
some u, v€ WO, s5,t€ S, (w, w)€%*. Two subcases are to be considered: ‘

a) If s#1 or t31, then swr€ W2 so that no monomial of swt can be equal
to b. Thus x € K implies b=, for some monomial u, of « (and hence u ¢O) or that
b=v,, for some monomial v, of v (and hence »0).

If first u = Uy o Uy (m =0, u;€ S) and b=u, for some 1 <k<m then set

Xy =4y +“2+"' Fi_y = X3,
Xp = Upyy o Uy +SWET D,
X, = Upyq+ oo Uy W0,

_ All possible forms of w€ W such that (w, w)eg* for some w €W are:
b, b+2bd-bd?,d*b+2db + b hence sbr figures as a monomial of swein all cases;
since x € K, and since swi is a term of a sum equal to x,, s=d”, t =d? for some p =0
and ¢g=0. Then it is obvious to check on all possible forms of swt and sw’'t that
all their monomials are of the form d” bd? with p’=0 and ¢’ =0. Since the set of
monomials of x, and x;, can differ only by monomials of swr and sw’t, x€K implies
that x"€K. ObVlously (x2+b, x; +b)€P since x,=x;; also (b+x,,b+x)€RB
is obvious on the form of x, and x,.

‘The case when b=u,, for some monomial v, of v is treated in a s1m11ar way.

b) If finally s=¢=1, then the different possible forms of x€K are: u+b+v, .
u+b+v, u+d*b+2db-+b+v, u+b-+2bd+bd?+v; they correspond respectively
to the following forms of x": u+d?b-+2db+b+v, u+b+2bd+bd?, u+b-+v,
u+b+v. It is then easy to check on these forms that the result holds also in thlS case.

The followmg lemma will be needed later on: :

Lemma 3. Let x = x4 —i—x2 + - 4x,, with r >0 and x; € Sfor all i, be such that
(db+b, x)€G. Then the two sets A= {i; x;=bd} and B, = {j; x;=dbd} have an even
cardinality. :

Proof. The result -holds certainly for x = -db +b, for then A4, =B, =0. Clearly,
" it is enough to show that if (x, x') €2 and I4,] and ]Bxl are even, so-are !Ax[ and'
|Bo|.

This is clear 1f (x, x)E for then x and x’ have the same mo_nomlals up to
the order. _ ' oo
Let now (x,-x )6 JA‘ so that x = y-+4swit-+v, x" = u-+sw't -+ v for some v, ve WO,
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s=d’, t=d? with p,q=0 (for x,x’€K) and (w, w)€¥*. Then we have: |4,] =
= A Al + 14,y 1B = |Bu+ 1Bl +1B,J5 also [Ag] = [} + [ +14,),
|B,| = |B,|+|Bs.:|+|B,. Thus it is enough to show that |A,,| and |4,
(|Bgw:] and |By,|) differ only by an even number. This is done by direct inspec-
tion of the pairs (swt, sw’t). Observe that it is enough to consider pairs (w, W)€%
“(since the result is symmetric in x and x”) and integers p, g = 1. The cases which are
left to study are given by the following table:

swt Swt

b | b+2bd+bd?
b d2b+2db+b -

{ bd | bd+2bd?+ bd>

%3
Il
-
Il
—_

©
!
]
U

bd | d*bd+2dbd+bd
db | db+2dbd+dbd?
db | db+2d2b+db
(| aba | dbd+2abd? + dbd® -
s=1= d{ dbd | d3bd 2d2bd+ dbd

ta
|
S
~
I
_

¢ .

It is clear by the table that lAsw,l and |A,,.|(|B,,.| and |B,,.)) differ only by an even
number which completes the proof.

‘3. Let a = db+b and ¢ = b+bd. Also denote by = the canonical projection
_of W to R=W/%. We wish to show that there exists no element y of W such that
the relation n(a) Zn(y) #n(c) holds in R Assume that on the contrary such an
element y exists.
Since n(a) and n(y) generate the same principal right ideal of R, there exist
V1> Vs os Yy Q15 Qs --.y Gy € W1, (where W1 is obtained by adjunction of a formal
1dent1ty to W) such that

<2j : [y, 2@,.]5%_ and (d, Z yaj]e%.

"Using the distributivity modulo €, we may first assume that y;, a; E St for all 7, j;
also it follows from (2) that

@ o [&; Zl [_Zl ay;a,.]]e%.

Lemma 4. With the above notation, y, =a,=1; furthermore, for all i,j>1,

yl':dqf'and a;=d% fo_r some q;, qJ’- =0. Finall_y, 2 ay; € K.

i=1
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Proof. Let x = Z; (Z (dby,a,+by,aj)) Since a = db+b, by distributivity
J=

modulo ¥ and in view of (3), we see that (a, x)¢%. Thus x€K by Lemma 2. In parti-
cular, by,,a;,=b for some iy, jo. Then we must have ip=j,=1: otherwise there .
would exist some i; =iy, j; =j, such that i; =i, or j, #jo; then by, a, would be a
monomial of x; which is not divisible on the left by d; this is impossible for x€ K.
Therefore y, =a,=1.

Furthermore, for all i, j>1, by,a;=ba; and by;a, =by, are monomials of
x,, whence a;=d% and y,=d% for some g;, q;>0. The last statement follows.

Lemma 5. For any ye W such that n(a) Z n(y) £ n(c), (3, db.+b+bd)€‘€.

Proof. With the above notation, Lemma 4 implies that (2’ ay,) =db. Since

i=1

( ¥, Z ay,) €% holds by formula (2) and 3 ay;€ K by Lemma 4, applying Lemma 2,
i=1 . . i=1
‘we obtain (y;+b, db+b)€€. A similar reasoning using n(y) £ n(c) would imply

(b+y,, b+bd)€€. Since € is an additive congruence, it follows that
 (pdb+bibd)eE
which completes the proof.

Finally consider z= 3 (dba;+ ba; + bda;). First Lemma 5 and formula (2) imply

. =1 _
that (a,z)€¥%. Also, using Lemma 4, it is easy to check that A, = {j; j>1, ¢;=1} U {1}
and B,={j;j>1,q;= 1}. Thus |4, and |B,| are of different parity which contradicts
(a, z) €% in view of Lemma 3. Therefore there exists no y € W such that 7 (a) 92 n(y)

,‘? 7(c) and we have proved:

Theorem 6. The Green s relations of the semiring R generated by the set {b, d}
and subject to the relations d?b+2db+b = b = b+2bd+bd* do not commute.
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