A semiring whose Green's relations do not commute

By MIREILLE P. GRILLET in Manhattan (Kansas, U. S. A.)

We call Green's relations on a semiring R the equivalence relations defined thus: $a \mathscr{L} b(a \mathscr{R} b)$ if and only if a and b generate the same principal left (right) ideal, $\mathscr{D}=\mathscr{L} \vee \mathscr{R}$ and $\mathscr{H}=\mathscr{L} \cap \mathscr{R}$. The relations \mathscr{L} and \mathscr{R} commute for a large class of semirings which includes semirings with a commutative addition or with a globally idempotent (or weakly reductive) multiplication. In these cases, they have properties analogous to the properties of Green's relations in semigroup theory and apply to the study of ideals of a semiring (cf. [2]). However \mathscr{L} and \mathscr{R} do not commute in general and the purpose of this paper is to give a counterexample, which we have been unable to obtain by more elementary methods.

Our example is the semiring R generated by the two elements set $\{b, d\}$ and subject to the relations:

$$
b=d^{2} b+2 d b+b=b+2 b d+b d^{2}
$$

Since these relations can also be written under the form: $b=d(d b+b)+d b+b=$ $=b+b d+(b+b d) d$, it is clear that in R the relation: $d b+b \mathscr{L} b \mathscr{R} b+b d$ holds. We shall prove that there exists no element e of R such that $d b+b \mathscr{R} e \mathscr{L} b+b d$.

1. It is possible to construct R as the quotient of the free semiring F on the set $\{b, d\}$ by the smallest congruence on F containing the binary relation \mathscr{G} consisting of the two pairs:

$$
\begin{equation*}
\left(b, d^{2} b+2 d b+b\right), \quad\left(b, b+2 b d+b d^{2}\right) \tag{1}
\end{equation*}
$$

However, to obtain a suitable description of R, we need to refine this construction by using the construction of F itself which we first recall briefly (cf. [3]).

Let S be the free multiplicative semigroup on $\{b, d\}$, i.e. the set of all monomials $x_{1} x_{2} \cdots x_{n}\left(n>0, x_{i} \in\{b, d\}\right.$. Then consider the free additive semigroup W on S which is the set of all sums $w_{1}+w_{2}+\cdots+w_{n}$ where $n>0$ and $w_{i} \in S$ with addition defined by juxtaposition. The multiplication in S can be extended to a associative multiplication of W in the following way:

$$
\left(w_{1}+\cdots+w_{n}\right)\left(w_{1}^{\prime}+\cdots+w_{p}^{\prime}\right)=\sum_{i=1}^{n}\left(\sum_{j=1}^{p} w_{i} w_{j}^{\prime}\right)
$$

for all $w_{i}, w_{j}^{\prime} \in S$. We shall denote by $S^{1}\left(W^{0}\right)$ the set resulting from the adjunction of a formal identity to the multiplicative (additive) semigroup $S(W)$.

Finally let \mathscr{D} be the transitive closure of the binary relation \mathscr{F} defined as the set of all pairs having either the form (w, w) with $w \in W$ or (x, y) or (y, x) with

$$
x=u+\sum_{i=1}^{m}\left(\sum_{j=1}^{n} w_{i} w_{j}^{\prime}\right)+v, \quad y=u+\sum_{j=1}^{n}\left(\sum_{i=1}^{m} w_{i} w_{j}^{\prime}\right)+v,
$$

where $m, n>0, w_{i}, w_{j}^{\prime} \in S$ for all i, j and $u, v \in W^{0}$. Then $F=W / \mathscr{D}$ is the free semiring on $\{b, d\}$.

We shall now describe R as the quotient of W by a suitable congruence. First let $\left(w, w^{\prime}\right) \in \mathscr{G}^{*}$ if and only if $\left(w, w^{\prime}\right) \in \mathscr{G}$ or $\left(w^{\prime}, w\right) \in \mathscr{G}$. Observe that the binary relation \mathscr{G}^{*} consists of four pairs and is symmetric. Then let \mathscr{B} be the binary relation on W defined by:

$$
\mathscr{B}=\left\{\left(u+s w t+v, u+s w^{\prime} t+v\right) ; \quad u, v \in W^{0}, \quad s, t \in S^{1}, \quad\left(w, w^{\prime}\right) \in \mathscr{G}^{*}\right\} .
$$

Also let $P=\mathscr{B} \cup \mathscr{F}$. Then we have the following:
Lemma 1. The smallest congruence \mathscr{C} on W containing both \mathscr{G} and \mathscr{D} is the transitive closure of \mathscr{P}. Furthermore $R=W / \mathscr{C}$.

Proof. Clearly any congruence on W which contains both \mathscr{G} and \mathscr{D} must also contain $\mathscr{G}^{*}, \mathscr{B}, \mathscr{P}$ and therefore the transitive closure \mathscr{C}^{\prime} of \mathscr{P}. Thus $\mathscr{C}^{\prime} \subseteq \mathscr{C}$. To show the inverse inclusion, we shall successively prove that \mathscr{C}^{\prime} contains both \mathscr{G} and \mathscr{D}, and that \mathscr{C}^{\prime} is a congruence on W.

Trivially \mathscr{C}^{\prime} contains \mathscr{G}; also, since $\mathscr{F} \subseteq \mathscr{P}$, certainly the transitive closure \mathscr{C}^{*} of \mathscr{P} contains the transitive closure \mathscr{D} of \mathscr{F}.

Since both \mathscr{B} and \mathscr{F} are symmetric and \mathscr{F} is reflexive, \mathscr{C}^{\prime} is an equivalence relation. Also both \mathscr{B} and \mathscr{F} admit the addition of W, so does \mathscr{P} whence \mathscr{C}^{\prime} is an additive congruence on W. It is left to show that \mathscr{C}^{\prime} is also a multiplicative congruence. To this end it suffices to prove that \mathscr{P} has the following property: if $z \in W$ and $(x, y) \in \mathscr{P}$; then $(z x, z y) \in \mathscr{C}^{\prime}$ and $(x z, y z) \in \mathscr{C}^{\prime}$.

Observe first that, since \mathscr{D} is a congruence on W containing \mathscr{F}, for all $(x, y) \in \mathscr{F}$ and $z \in W$, we have: $(z x, z y) \in \mathscr{D}$ and $(x z, y z) \in \mathscr{D}$. Thus, since $\mathscr{D} \subseteq \mathscr{C}^{\prime},(z x, z y) \in \mathscr{C}^{r}$ and $(x z, y z) \in \mathscr{C}^{\prime}$ for all $(x, y) \in \mathscr{F}, z \in W$.

On the, other hand, let $x=u+s w t+v$ and $y=u+s w^{\prime} t+v$ be such that u, $v \in W^{0}, s, t \in S^{1}$ and $\left(w, w^{\prime}\right) \in \mathscr{G}^{*}$. If first $z \in S$, then

$$
(z x, z u+z s w t+z v) \in \mathscr{D}, \quad\left(z y, z u+z s w^{\prime} t+z v\right) \in \mathscr{D}
$$

by distributivity modulo \mathscr{D}. Also $\left(z u+z s w t+z v, z u+z s w^{\prime} t+z v\right) \in \mathscr{B}$. Since \mathscr{C}^{\prime}, is an additive congruence containing both \mathscr{B} and \mathscr{D}, it follows that $(z x, z y) \in \mathscr{C}^{\prime} ;$ similarly $(x z, y z) \in \mathscr{C}^{\prime}$.

If now $z \in \dot{W}$ so that $z=z_{1}+z_{2} \dot{+} \cdots+z_{r}$ for some $r>0$ and $z_{i} \in S$. By the above, $\left(z_{i} x, z_{i} y\right) \in \mathscr{C}^{\prime}$ for all i. Since

$$
z x=z_{1} x+z_{2} x+\cdots+z_{r} x \text { and } z y=z_{1} y+z_{2} y+\cdots+z_{r} y
$$

and \mathscr{C}^{\prime} is an additive congruence, we obtain $(z x, z y) \in \mathscr{C}^{\prime}$. Similarly $(x z, y z) \in \mathscr{C}^{\prime}$.
It is routine to check that $R=W / \mathscr{C}$, which completes the proof.
2. Let \dot{K} be the set of all elements $x=x_{1}+x_{2}+\cdots+x_{r}\left(r>0, x_{i} \in S\right)$ of W having the following two properties:
(A) for all $i, x_{i}=d^{p_{i}} b d^{q_{i}}$ for some $p_{i}, q_{i} \geqq 0$;
(B) there exists k such that $1 \leqq k \leqq r, \cdot p_{k}=q_{k}=0, p_{i}>0$ if $i<k$ and $q_{i}>0$ if $i>k$.

It is convenient to write the elements of K under the form $x=x_{\lambda}+b+x_{\rho}$, where x_{λ}, x_{e} have the obvious meaning. Observe that all monomials of x_{λ} are divisible on the left by d and all monomials of x_{e} are divisible on the right by d.

Lemma 2. Let $x \in K$ and $x^{\prime} \in W$ satisfy $\left(x, x^{\prime}\right) \in \mathscr{C}$. Then $x^{\prime} \in K$. Furthermore $\left(x_{\lambda}+b, x_{\lambda}^{\prime}+b\right) \in \mathscr{C}$ and $\left(b+x_{\varrho}, b+x_{Q}^{\prime}\right) \in \mathscr{C}$.

Proof. Clearly, it is enough to show that \mathscr{P} has these properties. We consider successively the two cases $\left(x, x^{\prime}\right) \in \mathscr{F}$ and $\left(x, x^{\prime}\right) \in \mathscr{B}$. We may also assume $x \neq x^{\prime}$.

1) Let $\left(x, x^{\prime}\right) \in \mathscr{F}$ and $x \in K$. Then we can write for instance:

$$
x=u+\sum_{i=1}^{m}\left(\sum_{j=1}^{n} w_{i} w_{j}^{\prime}\right)+\dot{v}, \quad x^{\prime}=u+\sum_{j=1}^{n}\left(\sum_{i=1}^{m} w_{i} w_{j}^{\prime}\right)+v
$$

for some $u, v \in W^{0}, w_{i}, w_{j}^{\prime} \in S$. We shall study only the case when $u, v \in W$, the cases when $u=0$ or $v=0$ being simpler. Clearly, since x satisfy (A), and x, x^{\prime} have same monomials up to the order, then x^{\prime} satisfy (A) too.

Write $u=u_{1}+u_{2}+\cdots+u_{m^{\prime}}, v=v_{1}+v_{2}+\cdots+v_{n^{\prime}}$ with $m^{\prime}, n^{\prime}>0, u_{i} ; v_{j} \in S$. Since $w_{i}, w_{j}^{\prime} \in W^{2}$, but $b \notin W^{2}$, certainly $w_{i} w_{j}^{\prime} \neq b$, so that $x \in K$ implies that either $b=u_{k}$ for some $k=1,2, \ldots, m^{\prime}$ or $b=v_{k^{\prime}}$ for some $k^{\prime}=1,2, \ldots, n^{\prime}$.

Assume that $b=u_{k}$ for some k; then $x_{\lambda}=u_{1}+\cdots+u_{k-1}$ and

$$
x_{e}=u_{k+1}+\cdots+u_{m^{\prime}}+\sum_{i=1}^{m}\left(\sum_{j=1}^{n} w_{i} w_{j}^{\prime}\right)+v
$$

Then set $x_{\lambda}^{\prime}=x_{\lambda}$ and

$$
x_{e}^{\prime}=u_{k+1}+\cdots+u_{m^{\prime}}+\sum_{j=1}^{n}\left(\sum_{i=1}^{m} w_{i} w_{j}^{\prime}\right)+v
$$

Clearly, since all monomials of x_{λ} are divisible on the left by d, so are all monomials of x_{λ}^{\prime}; also $\left(x_{\lambda}+b, x_{\lambda}^{\prime}+b\right) \in \mathscr{F}$ trivially. Now, looking at the above expressions of x_{e} and x_{e}^{\prime}, we see that $\left(b+x_{e}, b+x_{\rho}^{\prime}\right) \in \mathscr{F}$; in particular x_{ρ} and x_{ρ}^{\prime} have the same
monomials up to the order which implies that all monomials of x_{ρ}^{\prime} are divisible on the right by d, since the monomials of x_{0} have this property. We therefore obtain that $x^{\prime}=x_{\lambda}+b+x_{\rho}^{\prime}$ satisfies (B) whence $x^{\prime} \in K$.

The case when $b=v_{k}$, for some k^{\prime} is treated similarly.
2) Let now $\left(x, x^{\prime}\right) \in \mathscr{B}$ and $x \in K$; then $x=u+s w t+v, x^{\prime}=u+s w^{\prime} t+v$ for some $u, v \in W^{0}, s, t \in S^{1},\left(w, w^{\prime}\right) \in \mathscr{G}^{*}$. Two subcases are to be considered:
a) If $s \neq 1$ or $t \neq 1$, then $s w t \in W^{2}$ so that no monomial of $s w t$ can be equal to b. Thus $x \in K$ implies $b=u_{k}$ for some monomial u_{k} of u (and hence $u \neq 0$) or that $b=v_{k}$, for some monomial $v_{k^{\prime}}$ of v (and hence $v \neq 0$).

If first $u=u_{1}+\cdots+u_{m^{\prime}}\left(m^{\prime}>0, u_{i} \in S\right)$ and $b=u_{k}$ for some $1 \leqq k \leqq m^{\prime}$, then set

$$
\begin{aligned}
& x_{\lambda}=u_{1}+u_{2}+\cdots+u_{k-1}=x_{\lambda}^{\prime}, \\
& x_{Q}=u_{k+1}+\cdots+u_{m^{\prime}}+s w t+v, \\
& x_{\underline{Q}}^{\prime}=u_{k+1}+\cdots+u_{m^{\prime}}+s w^{\prime} t+v .
\end{aligned}
$$

All possible forms of $w \in W$ such that $\left(w, w^{\prime}\right) \in \mathscr{G}^{*}$ for some $w^{\prime} \in W$ are: $b, b+2 b d+b d^{2}, d^{2} b+2 d b+b$; hence $s b t$ figures as a monomial of swt in all cases; since $x \in K$, and since $s w t$ is a term of a sum equal to $x_{g}, s=d^{p}, t=d^{q}$ for some $p \geqq 0$ and $q>0$. Then it is obvious to check on all possible forms of $s w t$ and $s w^{\prime} t$ that all their monomials are of the form $d^{p^{\prime}} b d^{q^{\prime}}$ with $p^{\prime} \geqq 0$ and $q^{\prime}>0$. Since the set of monomials of x_{g} and x_{g}^{\prime} can differ only by monomials of swt and $s w^{\prime} t, x \in K$ implies that $x^{\prime} \in K$. Obviously $\left(x_{\lambda}+b, x_{\lambda}^{\prime}+b\right) \in \mathscr{P}$ since $x_{i}=x_{\lambda}^{\prime}$; also $\left(b+x_{e}, b+x_{e}^{\prime}\right) \in \mathscr{B}$ is obvious on the form of x_{ϱ} and x_{ρ}^{\prime}.

The case when $b=v_{k^{\prime}}$ for some monomial $v_{k^{\prime}}$ of v is treated in a similar way.
b) If finally $s=t=1$, then the different possible forms of $x \in K$ are: $u+b+v$, $u+b+v, u+d^{2} b+2 d b+b+v, u+b+2 b d+b d^{2}+v$; they correspond respectively to the following forms of $x^{\prime}: u+d^{2} b+2 d b+b+v, u+b+2 b d+b d^{2}, u+b+v$, $u+b+v$. It is then easy to check on these forms that the result holds also in this case.

The following lemma will be needed later on:
Lemma 3. Let $x=x_{1}+x_{2}+\cdots+x_{r}$, with $r>0$ and $x_{i} \in S$ for all i, be such that $(d b+b, x) \in \mathscr{C}$. Then the two sets $A_{x}=\left\{i ; x_{i}=b d\right\}$ and $B_{x}=\left\{j ; x_{j}=d b d\right\}$ have an even cardinality.

Proof. The result holds certainly for $x=d b+b$, for then $A_{x}=B_{x}=\emptyset$. Clearly, it is enough to show that if $\left(x, x^{\prime}\right) \in \mathscr{P}$ and $\left|A_{x}\right|$ and $\left|B_{x}\right|$ are even, so are $\left|A_{x^{\prime}}\right|$ and $\left|B_{x^{\prime}}\right|$.

This is clear if $\left(x, x^{\prime}\right) \in \mathscr{F}$, for then x and x^{\prime} have the same monomials up to the order.

Let now $\left(x, x^{\prime}\right) \in \mathscr{B}$ so that $x=u+s w t+v, x^{\prime}=u+s w^{\prime} t+v$ for some $u, v \in W^{0}$,
$s=d^{p}, t=d^{q}$ with $p, q \geqq 0$ (for $x, x^{\prime} \in K$) and ($\left.w, w^{\prime}\right) \in \mathscr{G}^{*}$. Then we have: $\left|A_{x}\right|=$ $=\left|A_{u}\right|+\left|A_{\text {swit }}\right|+\left|A_{v}\right|, \quad\left|B_{x}\right|=\left|B_{u}\right|+\left|B_{s w z}\right|+\left|B_{v}\right| ; \quad$ also $\quad\left|A_{x^{\prime}}\right|=\left|A_{u}\right|+\left|A_{s w^{\prime} t}\right|+\left|A_{v}\right|$, $\left|B_{x^{\prime}}\right|=\left|B_{u}\right|+\left|B_{s w^{\prime} t}\right|+\left|B_{v}\right|$. Thus it is enough to show that $\left|A_{s w t}\right|$ and $\left|A_{s w^{\prime} t}\right|$ ($\left|B_{s w t}\right|$ and $\left|B_{s w^{\prime} t}\right|$) differ only by an even number. This is done by direct inspection of the pairs $\left(s w t, s w^{\prime} t\right)$. Observe that it is enough to consider pairs $\left(w, w^{\prime}\right) \in \mathscr{G}$ (since the result is symmetric in x and x^{\prime}) and integers $p, q \leqq 1$. The cases which are left to study are given by the following table:

It is clear by the table that $\left|A_{s w t}\right|$ and $\left|A_{s w^{\prime} t}\right|\left(\left|B_{s w t}\right|\right.$ and $\left.\left|B_{s w^{\prime} t}\right|\right)$ differ only by an even number which completes the proof.
3. Let $a=d b+b$ and $c=b+b d$. Also denote by π the canonical projection of W to $R=W / \mathscr{C}$. We wish to show that there exists no element y of W such that the relation $\pi(a) \mathscr{R} \pi(y) \mathscr{L} \pi(c)$ holds in R. Assume that on the contrary such an element y exists.

Since $\pi(a)$ and $\pi(y)$ generate the same principal right ideal of R, there exist $y_{1}, y_{2}, \ldots, y_{r}, a_{1}, a_{2}, \ldots, a_{r^{\prime}} \in W^{1}$, (where W^{1} is obtained by adjunction of a formal identity to W) such that:

$$
\begin{equation*}
\left(y, \sum_{i=1}^{r} a y_{i}\right) \in \mathscr{C} \text { and }\left(a, \sum_{j=1}^{r^{\prime}} y a_{j}\right) \in \mathscr{C} \tag{2}
\end{equation*}
$$

Using the distributivity modulo \mathscr{C}, we may first assume that $y_{i}, a_{j} \in S^{1}$ for all i, j; also it follows from (2) that

$$
\begin{equation*}
\left(a, \sum_{j=1}^{r^{\prime}}\left(\sum_{i=1}^{r} a y_{i} a_{j}\right)\right) \in \mathscr{C} \tag{3}
\end{equation*}
$$

Lemma 4. With the above notation, $y_{1}=a_{1}=1$; furthermore, for all $i, j>1$, $y_{i}=d^{q_{i}}$ and $a_{j}=d^{q_{j}^{\prime}}$ for some $q_{i}, q_{j}^{\prime}>0$. Finally, $\sum_{i=1}^{r} a y_{i} \in K$.

Proof. Let $x=\sum_{j=1}^{r^{\prime}}\left(\sum_{i=1}^{r}\left(d b y_{i} a_{j}+b y_{i} a_{j}\right)\right)$. Since $a=d b+b$, by distributivity modulo \mathscr{C} and in view of (3), we see that $(a, x) \in \mathscr{C}$. Thus $x \in K$ by Lemma 2. In particular, $b y_{i_{0}} a_{j_{0}}=b$ for some i_{0}, j_{0}. Then we must have $i_{0}=j_{0}=1$: otherwise there would exist some $i_{1} \leqq i_{0}, j_{1} \leqq j_{0}$ such that $i_{1} \neq i_{0}$ or $j_{1} \neq j_{0}$; then $b y_{1} a_{1}$ would be a monomial of x_{λ} which is not divisible on the left by d; this is impossible for $x \in K$. Therefore $y_{1}=a_{1}=1$.

Furthermore, for all $i, j>1, b y_{1} a_{j}=b a_{j}$ and $b y_{i} a_{1}=b y_{i}$ are monomials of x_{Q}, whence $a_{j}=d^{q_{j}^{\prime}}$ and $y_{i}=d^{q_{i}}$ for some $q_{i}, q_{j}^{\prime}>0$. The last statement follows.

Lemma 5. For any $y \in W$ such that $\pi(a) \mathscr{R} \pi(y) \mathscr{L} \pi(c),(y, d b+b+b d) \in \mathscr{C}$.
Proof. With the above notation, Lemma 4 implies that $\left(\sum_{i=1}^{r} a y_{i}\right)_{\lambda}=d b$. Since $\left(y, \sum_{i=1}^{r} a y_{i}\right) \in \mathscr{C}$ holds by formula (2) and $\sum_{i=1}^{r} a y_{i} \in K$ by Lemma 4, applying Lemma 2, we obtain $\left(y_{\lambda}+b, d b+b\right) \in \mathscr{C}$. A similar reasoning using $\pi(y) \mathscr{L} \pi(c)$ would imply $\left(b+y_{e}, b+b d\right) \in \mathscr{C}$. Since \mathscr{C} is an additive congruence, it follows that

$$
(y, d b+b+b d) \in \mathscr{C}
$$

which completes the proof.
Finally consider $z=\sum_{j=1}^{r^{\prime}}\left(d b a_{j}+b a_{j}+b d a_{j}\right)$. First Lemma 5 and formula (2) imply that $(a, z) \in \mathscr{C}$. Also, using Lemma 4, it is easy to check that $A_{z}=\left\{j ; j>1, q_{j}^{\prime}=1\right\} U\{1\}$ and $B_{z}=\left\{j ; j>1, q_{j}^{\prime}=1\right\}$. Thus $\left|A_{z}\right|$ and $\left|B_{z}\right|$ are of different parity which contradicts $(a, z) \in \mathscr{C}$ in view of Lemma 3. Therefore there exists no $y \in W$ such that $\pi(a) \mathscr{R} \pi(y){ }^{*}$ $\mathscr{L} \pi(c)$ and we have proved:

Theorem 6. The Green's relations of the semiring R generated by the set $\{b, d\}$ and subject to the relations $d^{2} b+2 d b+b=b=b+2 b d+b d^{2}$ do not commute.

References

[1] A. H. Clifford and G. B. Preston, The algebraic theory of semigroups. I, II (Providence, 1961 and 1967).
[2] P. A. Grillet and M. P. Grillet, Completely 0-simple semirings, J. Nat. Sci. Math. (Lahore), 9 (1970), 285-291,
[3] M. P. Grillet, On free semirings (to appear).

