
A semiring whose Green's relations do not commute 
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We call Green's relations on a semiring R the equivalence relations defined 
thus: aSCb (a9!b) if and only if a and b generate the same principal left (right) ideal, 
3>=<eN9t and 3/e = 2?f\0l. The relations JS? and 91 commute for a large class of 
semirings which includes semirings with a commutative addition or with a globally 
idempotent (or weakly reductive) multiplication. In these cases, they have properties 
analogous to the properties of Green's relations in semigroup theory and apply 
to the study of ideals of a semiring (cf. [2]). However ¿2? and 91 do not commute in 
general and the purpose of this paper is to give a counterexample, which we have 
been unable to obtain by more elementary methods. 

Our example is the semiring R generated by the two elements set {b, d) and sub-
ject, to the relations: 

b = d2b + 2db + b = b+2bd + bd2. 

Since these relations can also be written under the form: b = d(db + b)+db+b = 
= b + bd + (b + bd)d, it is clear that in R the relation: db+b <£b9l b + bd holds. 
We shall prove that there exists no element e of R such that db+b 9le<£ b+bd. 

1. It is possible to construct R as the quotient of the free semiring F on the 
set {b, d) by the smallest congruence on /"containing the binary relation <$ consist-
ing of the two pairs: ' . 
(1) (b,d2b + 2db + b), {b,b + 2bd+bd2). 

However, to obtain a suitable description of R, we need to refine this construc-
tion by using the construction, of F itself which we first recall briefly (cf. [3]). 

Let S be the free multiplicative semigroup on {b, d], i.e. the set of all mono-
mials xtx2 ••• xn ( « > 0 , X i d { b , d ) . Then consider the free additive semigroup W 
on S which is the set of all sums vv14-w2-l— +wn where « > 0 and wt£S with 
addition defined by juxtaposition. The multiplication in S can be extended to a 
associative multiplication of W in the following way: 

n i p 
. (w, + ••• + w„)(w[ + ••• + w'p) = 2 L Z wiw'j 

;= 1 U = i 
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for all wt, w'j£S. We shall denote by S1 ( W ° ) the set resulting f rom the ad junc-
tion of a formal identity to the multiplicative (additive) semigroup S ( f F ) . 

Finally let 3 be the transitive closure of the binary relation J5" defined as the 
set of all pairs having either the fo rm (w, w) with w£ W or {x,y) or (y, x) with 

m ( n ^ n m N 

x = u+ 2 \ 2 w i w ' j \ + v, y = u+'2I 2.wtwj\ + v> 
; = 1 ) J = l ' ( i = l ) 

where m, n > 0 , wi; w) £ S for all / , / a n d u, v£ W°. Then F= W/3 is the free semiring 
on {b, d). 

We shall now describe R as the quotient of W by a suitable congruence. First 
let (w,w')£^* if and only if (w, w') £ 3? or (w', w) £ <8. Observe tha t the binary 
relation consists of four pairs and is symmetric. Then let J 1 be the binary 
relation on W defined by : 

@ = {(u + swt + v, u + sw't + v); u,v£W°, s,t£S\ (w,w')£&*). 

Also let P = U !F. Then we have the following: 

L e m m a 1. The smallest congruence % on W containing both and 3 is the 
transitive closure of 3P. Furthermore R=Wj' 

P r o o f . Clearly any congruence on W which contains bo th 'S and 3 must 
also contain 'M, & and therefore the transitive closure of 0>. Thus c 
To show the inverse inclusion, we shall successively prove tha t contains bo th <3 
and 3, and that is a congruence on W. 

Trivially contains also, since ¿F^SP , certainly the transitive closure of 
& contains the transitive closure 3 of 3F. 

Since bo th US and J* are symmetric and 2F is reflexive, is an equivalence 
relation. Also bo th 0H and !F admit the addit ion of W, so does 0> whence is an 
additive congruence on W. I t is left to show that is also a multiplicative con-
gruence. To this end it suffices to prove that 0> has the following proper ty : if z£ W 
and (x,y)£0>, then (zx, zy) £ T and (xz, yz) £ 

Observe first that, since 3 is a congruence on W containing J5", for all (x, y)£!F 
and z£W, we have: (zx, zy)£3 and (xz, yz)£3. Thus, since 3 Q , (zx, zy)£rfir 

and (xz, yz)£%J' for all (x, y) £ z£W. 
On the. other hand, let x — u + swt + v and y = u + sw't + v be such that u, 

v£ W°, s, t£Sl and (w, w')£^*. If first z£S, then 

(zx, zu + zswt + zv) £ 3, (zy, zu 4- zsw' t + zv)£3 

by distributivity modulo 3. Also (zu + zswt + zv, zu + zsw' t + zv)£g$. Since is an 
additive congruence containing both 3ft and 3, it follows that (zx, zy)£'£'; similarly 
(xz,yz)£<€'. 
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If now z£.W so that z = zl+z2 +—Yzr for some r>0 and zt£S. By the 
above, (z,x, z;j>) for all i. Since 

zx = z1x + z2x + --- +zrx and zy — zty + z2y+.—Vzry, 

and is an additive congruence, we obtain (zx, zy) d . Similarly (xz, yz)G/€'. 
It is routine to check that R = W / ( t f , which completes the proof . 

2. Let K be the set of all elements x = x x + x 2 H \-xr ( r > 0, x ^ S ) of W 
having the following two properties: 

(A) for all i,xi = dPibdqi for some p^q^0; 
(B) there exists k such that I s k ^ r , pk = qk = 0, />¡>0 if i<k and qt>0 if 

i>k. 

. It is convenient to write the elements of K under the form x = xx + b + xg, 
where xx, xe have the obvious meaning. Observe that all monomials of xk are divis-
ible on the left by d and all monomials of xe are divisible on the right by d. 

L e m m a 2. Let x£K and x ' £ W satisfy (x,x')€@. Then x'£K. Furthermore 
(xA + b, x\ + b) € # and (b + xe, b + x'e) 6 

P r o o f . Clearly, it is enough to show that SP has these properties. We consider 
successively the two cases (x, x ) € J5" and (x, x') £ 38. We may also assume x ^ x'. 

1) Let (x, x')£and x£K. Then we can write, for instance: 

m r n \ n Y m 

x = u + 2 \ 2 w i w ' j x' ="+ 2 \ 2 w i w ' j +y> 
;=i 0 = i ; = u i = i ) 

for some u, v £ W°, vv;, w'jt S. We shall study only the case when u,v£W, the cases 
when u = 0 or v = 0 being simpler. Clearly, since x satisfy (A), and x, x' have same 
monomials up to the order, then x' satisfy (A) too. 

Write u = ui+u2-\ hum>, v — vl + v2-\ h i y with m', « ' > 0 , uitVj£S. 
Since Wi, w'j£ W2, but b$ W2, certainly wiw) ^ b , so that x£K implies that either 
b = uk for some k=\,2, ...,m' or b — vk- for some k' = 1, 2, ..., n'. 

Assume that b — uk for some k; then xA = H Vuk-i and 

m ( n 

xe = uk+l + - - + u m - + 2 \ 2 w i w ' j 
. >•=i 0 = 1 

Then set x\ = xx and 
n / m 

X't = Uk+l+---+"m-+ 2 \ 2 W i W j 
j = l U = l 

Clearly, since all monomials of xA are divisible on the left by d, so are all monomials 
of x'x\ also (xx + b, x'x + b)£tF trivially. Now, looking at the above expressions of 
x e and x'e, we see that (b + xe, b + x'e)£^; in particular xe and x'e have the same 
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monomials up to the order which implies that all monomials of x'e are divisible 
on the right by d, since the monomials of xe have this property. We therefore obtain 
that x' = xx + b+x'e satisfies (B) whence x'£K. 

The case when b = vk- for some k' is treated similarly. 

2) Let now (x , x') £ and x£K; then x = u + swt + v, x' = u + sw' t + v for 
some u, v£W°, i , / f S 1 , (w, Two subcases are to be considered: 

a) If or 1, then swt£W2 so that no monomial of jh-7 can be equal 
to b. Thus x £ ^ i m p l i e s b = uk for some monomial uk of u (and hence I/T^O) or that 
b = vk, for some monomial vk< of v (and hence v^O). 

If first u = u1 + •••+«„,- ( m ' > 0, and b = uk for some 1 s t s m ' , then set 

XX=.u1+u2+--+uk_l = x\, 

— \-um. + swt + v, 

Xe~uk+1~\ bum. + sw't + v. 

All possible forms of w£W such that (w,w')£@* for some w'dW are: 
b,b + 2bd+bd2,d2b + 2db +b\ hence sbt figures as a monomial of swt in all cases; 
since x£K, and since swt is a term of a sum equal to xg, s = dp, t = dq for some p^O 
and q>-0. Then it is obvious to check on all possible forms of swt and sw't that 
all their monomials are of the form dp'bdq' with / a 0 and q' >0. Since the set of 
monomials of x„ and x'e can differ only by monomials of swt and sw't, x£K implies 
that x'£K. Obviously (xx + b, x[ + b)£0> since xk = x'x\ also (b+xe, b + x'e)£3S 
is obvious on the form of xe and x'B. 

The case when b = vk- for some monomial vk' of v is treated in a similar way. 
b) If finally i = i = l , then the different possible forms of x£K are: u+b+v, 

u + b + v, u + d2b+ 2db+ b + v, u + b + 2bd + bd2+ v; they correspond respectively 
to the following forms of x ' : u + d2b + 2db + b + v, u + b + 2bd + bd2, u+b + v, 
u + b + v. I t is then easy to check on these forms that the result holds also in this case. 

The following lemma will be needed later on : 

L e m m a 3. Let x — x , +x2 + — \ - x r , with /- > 0 and xLf S for all i, be such that 
(db + b,x)£ cd. Then the two sets Ax = {/; x ; = bd) and Bx = {/; Xj = dbd} have an even 
cardinality. 

P r o o f . The result holds certainly for x = db + b, for then Ax — Bx = ®. Clearly, 
it is enough to show that if (x, and |Ax\ and \BX\ are even, so are \AX.\ and 
| Bx.\. 

This is clear if (x, x')£ J5", for then x and x' have the same monomials up to 
the order. 

Let now (x, x ' )£38 so that x = u + swt + v, x' = u + sw't + v for some //, v£ W°, 
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s = d", t = dq with p,q^0 (for x,x'£K) and (w, w')£($*. Then we have: \AX\ = 
= 14,1 + 1^,1 + 14,1. I*, I = l^l + I^J + lBJr'also \AX. | = 14,1 + 1^1+14,!, 
\BA = l ^ l + l ^ l + l^ l - Thus it is enough to show that \Aswt\ and \ASW,,\ 
(|5SW,| and |5SW-,|) differ only by an even number. This is done by direct inspec-
tion of the pairs (swt, sw't). Observe that it is enough to consider pairs (w, 
(since the result is symmetric in x and x') and integers p, qS 1. The cases which are 
left to study are given by the following table: 

swt sw't 

5 = t = 1 j 
b b + 2bd+bd2 

5 = t = 1 j 
b d2b + 2db + b 

i bd bd+2bd2 + bd3 

s =\, t = d\ 
bd d2bd + 2dbd+bd 

db db + 2dbd+dbd2 

s = d, t = 1 j 
db d3b + 2d2b + db 

f dbd dbd+ 2dbd2 + dbd3 

s — t - d\ 
dbd d3bd+2d2bd+dbd 

It is clear by the table that \Asytt\ and |/4sw. f |(|5swl | and \BSH,,t\) differ only by an even 
number which completes the proof. 

3. Let a = db+b and c = b + bd. Also denote by n the canonical projection 
of W to R = W W e wish to show that there exists no element y of W such that 
the relation n(a) @n{y) ¿fit(c) holds in R. Assume that on the contrary such an 
element y exists. 

Since 7t(a) and n(y) generate the same principal right ideal of R, there exist 
yt, y2, ..., yr, a1, a2, ar' £ W1, (where W1 is obtained by adjunction of a formal 
identity to IF) such tha t : 

(2) and 

Using the distributivity modulo we may first assume that y^a^S1 for all i,j; 
also it follows from (2) that 

(3) [ a , 2 [ Z a y i a j j ^ . 

L e m m a 4. With the above notation, yl=al = 1; furthermore, for all i,j> 1, 
r 

y^d"' and Oj = d") for some q\, q] > 0 . Finally, 2 a>'i£K-
¡=i 
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P r o o f . Let x = 2 I 2 (dby^: + byidj)]. Since a = db + b, by distributivity 
•j=i '1=1 ' 

modulo W and in view of (3), we see that (a, x) g Thus x £ K by Lemma 2. In parti-
cular, byioajo = b for some / 0 , ,/0. Then we must have i0 = /0 = 1: otherwise there 
would exist some i\ Si0, j\ S j 0 such that ^ / ' 0 or v, ^ j 0 ; then by, al would be a 
monomial of xx which is not divisible on the left by d; this is impossible for x£K. 
Therefore yx = a1 = 1. 

Furthermore, for all 1, by1aj — baj and byial=byi are monomials of 
xe, whence aj — dqj and yt = d«' for some qu q] > 0 . The last statement follows. 

L e m m a 5. For any y£ W such that n(a) 0t n(y) n(c), (y, db + b + bd)£<#. 

P r o o f . With the above notation, Lemma 4 implies that =db. Since 

I y, 2 ayn ^ holds by formula (2) and 2 ay^K by Lemma 4, applying Lemma 2, 
V i = l / i= l 
we obtain (yx + b, db + b) £<€. A similar reasoning using n(y) S£n(c) would imply 
(b+ye, b + bd)d%>. Since r-€ is an additive congruence, it follows that 

(y, db + b + bd) £ % 
\ 

which completes the proof. 
r' 

Finally consider z= 2 (dbaj + baj + bdaj). First Lemma 5 and formula (2) imply 
j = t 

that Also, using Lemma 4,i t is easy to check that Az = {j;j>-l, q'j = 1} E/{1} 
and B2 = {j; j>\,q)~ 1}. Thus \A,\ and \BZ\ are of different parity which contradicts 
(a, z) Cg'in view of Lemma 3. Therefore there exists no y£ W such that n{a) 3k n(y) 

n (c) and we have proved: 

T h e o r e m 6. The Green's relations of the semiring R generated by the set {b, d\ 
and subject to the relations d2b + 2db + b = b = b + 2bd+bd2 do not commute. 
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