Uber dreifaktorisierbare Grlippgn.- I

Von J, SZEP in Budapest und G. ZAPPA in Firenze

Es sei G eine Gruppe und H eine echte Untergruppe von G. Es seien H,, H,, ..
.séimt'liche Konjugierte von H in G. Bekanatlich ist das Produkt H=H, H, ... eine
Gruppe [1]. Es gilt auBerdem der Satz: '

Ist G eine nichtnilpotente endliche Gruppe, so hat G eine nilpotente Untergruppe
H mit der Eigenschaft H=G[1].

Im Fall H=G benétigt man aber nicht notwendigerweise alle Konjugierte von
H um mit Hilfe des Produkts die ganze Gruppe G darzustellen. ORE zeigte, daB3 das-

* Produkt von zwei Konjugierten einer Hc G die Gruppe G nicht darstellt, also
ist die minimale Anzahl der Konjugierten von H drei, um die ganze Gruppe zu
erhalten. . . : ‘ '

Es erhebt sich die Aufgabe, die Struktur der ,,dreifaktorisierbaren” Gruppen
G=H,H, Hy zu untersuchen, wobei H,, H,, H, konjugierte (echte) Untergruppen
von G sind. ' _ ' ,

Eine Zusammenfassung der Ergebnisse dieser Arbeit wurde in [4] verdffent-
licht. '

I
Definition. Man nennt die Gruppe G dreifaktorisierbar, wenn in G eine
echte Untergruppe H existiert, fiir die
). G=aHa 'HbHb='  (a,b€G)
gilt. Die Faktorisation (1) heif}t eine Dreifaktorisatibn.

Satz 1. Eine Gruppe G ist dreifaktorisierbar (mit H) dann und nur dann, wenn
es ein Eleme_znt- acG gibt mit _ '
' G=Ha 'HaH.

Beweis. Es ist ausreichend, den Fall ,,nur dann” Zu beweisen. Wir_nehmen an,
daB (1) gilt. Dann ist

G=a"'Gb=a"'aHa " *HbHb 'b=Ha 'HbH.
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Es existieren also drei E]emente h1 > Hys h3 von H mit 1 —hla lhzbh_,, Daraus folgt
b-hz ahy 1h3 , und so erhalten wir

G=Ha 'HbH=Ha" 1th ah11h31H Ha 'HaH.
Bemerkung. Ist ‘G eine n-faktorisierbare Gruppe, d.h. gilt
G=H,..H,,

wobei H, ..., H, konjugierte Untergruppen sind, so kann ‘man erreichen, daB
im Produkt der erste und der letzte Faktor identisch werden. Der Beweis erfolgt
dhnlich wie im Fall-des Satzes 1.

I

Jetzt werden wir einige Kriterien fiir dle Ex1stenz eines Normalkomplements'
von H herleiten.

Satz 2. Es sei G eine endliche Gruppe von dé( Form G=Ha *HaH, wobei H
eine Hall-Untergruppe und a ein Element von G sind. Dann gilt Ng(H)=H.

Beweis. Es sei II die Menge der verschiedenen Primzahlen in der Ordnung
von H und x ein Element von Ng(H). Es gilt

x=hya-thyahy - (hy, hy, hy € H).

Es ergibt sich a=*h,a=h7xh5* € N;(H). Das Element a~*h,a ist ein II-Element
und mit H vertauschbar. Die Gruppe {H, a~'h,a} ist eine II- Untergruppe von G.
H lst eine Hall-Untergruppe von G, also gilt

{H,a ‘h,a}=H, dh. a 'hyacH.
Daraus folgt x€ H.

Satz 3. Es sei G eine endliche Gruppe und H eine Hall-Untergruppe von G, die
im Zentrum ihres Normalisators enthalten ist. Dann existiert ein Normalteiler N von
G mit G=HN, HNN=1.

Beweis. Es sei II die Menge der verschiedeneﬁ Primzahlen D1y D2y s Dy i
der Ordnung von H. Es sei P; die p;-Sylowgruppe von H (i=1, ..., r) und xENG(P)
Die Gruppe H ist abelsch und auBerdem ist HS C(Py), also gllt '

x~1HxC C(x~* P,x) = C(P).

Daraus folgt, da ‘H und x~!Hx abelsche (nilpotente) Hall- Untergruppen von
C(P,) sind. Nach einem Satz von WIELANDT [3] sind die Untergruppen H und x~ Hx
in" C(P,) konjugiert. Dann existiert ein y€ C(P) mit y~!(x~!Hx) y=H, d.h. es
gilt (xy)~! Hxy=H. Daraus folgt xy€ Ng(H). H ist eine abelsche Gruppe, und es -
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gilt xy € C(P), d.h. x€ C(P,). Das Element x.ist ein beliebiges Element von N;(P)).
also gilt Ng(P)=C(P) und P,S Z(Ng(P)). Nach BURNSIDE enthilt G genau ein
pi-Normalkomplement und so ist G eine p;-nilpotente Gruppe. Der Durchschnitt
der p;-Normalkomplemente (i —1, 2, ..., r) ist ein Normalkomplement N von H in
G, dh. G=NH, NNH=1. ' : BRI

Aus Satz 2 und 3 folgt der

Satz 4. Es sei G eine dreifaktorisierbare endliche Gruppe: G= Ha~' HaH, wobei
H eine abelsche Hall-Untergruppe von G(acG) Ist Dann glbt es ein Normalteiler N
von G derart, da} G=HN, HNN=1. :

~ Im Satz 4 ist die Gruppe H eine abelsche Gruppe Diese Annahme kann man
nicht durch ,,nilpotent” substituieren. Dazu betrachten wir die Gruppe S;. S, hat
eine Untergruppe H von der Ordnung 8 (also ist H nilpotent), auBerdem hat S,
die Dreifaktorisation S, =Ha~ YHaH(a€ S,). Doch hat S, kemen Normalteiler mit
‘dem Index 3.

Die Substitution der abelschen Untergruppe durch eine mlpotente Gruppe
_ist auch in dem Fall nicht moglich, Wenn die Ordnung von G ungerade ist. Betrach-
ten wir dazu die Gruppe G mit der Ordnung 37-7, die folgendermaBen definiert ist:

a = 1 (i=1...7, b=1 =1, aa.a,=1,
aa;=aa Gj=1,...,7, b lab=ay,, (i=1,..,6),
b"ia7b=a1, c“ach:az, cTlaye = a,, ¢ 'azc = as, clase = ay,
c~lasc=as, clage=as, ¢ la;c=a;, ¢ ‘he=b2 "

Die Elemente a,, ..., a,,c erzeugen eine Untergruppe H von der Ordnung
37 (also ist H eine nilpotente Hall-Gruppe), auBerdem gllt G=Hb" leH Doch G
" hat keinen Normalteiler von der Ordnung 7. '

Trotzdem gibt es eine Verallgemeinerung des Satzes 4 fur den Fall, dal -H
ungerade ist. Im Beweis der Verallgemeinerung brauchen wir einen Satz von THOMPSON
[2]. Es bezeichne J(P) die im Satz von THompsON auftretende Gruppe wobei P
eine Sylow-Gruppe bedeutet. (J(P) ist die mit den abelschen Untergruppen er-
‘zeugte Untergruppe von P, fiir die die Anzahl der Basisgeneratoren maximal ist.)

Satz 5. Es sei G eine endliche Gruppe und H efne nilpotente Hall-Gruppe von
G. Es seien p,, ..., p, die in der Ordnung von H auftretenden verschiedenen Prim-
. zahlen und P; die p;-Sylow-Gruppe von H. G habe die folgenden Eigenschaften:

a) Ng(H)=H, b) J(P)=P, ¢ P/SZ(P)

(i=1,2,..,9). Ist H von ungerader Ordnung, so gzbt es einen Normaltetler N von G,
derart, daﬂ G=HN, HNN=1. :
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Beweis 1. Ist 7D H eine Untergruppe von G, soist {H"} =T." Im entgegenge-
setzten Fall giibe es ein x€ T mit x¢ {HT}. Es giltaber x=! {H"}x={HT}, und nach
WIELANDT gibt esein y € {H T} sodaB y~!x~'Hxy=H,d.h. xye No(H)=HE {HT}.
Daraus folgt x€ {H7}, was ein Widerspruch ist.

2. Ist P, ein Normalteiler von G, dann ist G p;-nilpotent. Es gilt G=P;S
(1P, |S)=1. Es sei H; = P, X+ XP;_{XP;y X+ XP,. Dann ist {HF}SS.
Es gilt aber {Hf}=3S, weil im entgegengesetzten Fall P,{H}={H®)} CG gelten
wiirde, was wegen 1 unmogllch ist.

3 CG(Z(P)) ist p;- mlpotent -Der Beweis erfolgt durch Induktion. Wegen
2 kann man annehmen, daB Z(P)cCP; ist. Gilt C4(Z(P))cG, dann gelten
unsere Bedingungen fiir Cg(Z(P,)), also ist Cg(Z(P;)) nach Induktion p;-nilpotent.
Gilt C¢(Z(P))=G, so betrachten wir die Gruppe G/Z(P,). Fiir G/Z(P;) gelten
unsere Bedingangen (P,./Z (P;) ist eine abelsche Gruppe, d.h. J(P)/Z(P)) = P)/Z(P)))-
Nach Induktion ist G/Z(P;) p;-nilpotent, also existiert eine Untergruppe ¥ mit
V=Z(P)S= Z(P)XS, die ein Normalteiler von G ist. Wegen p,’{|S| ist .S das Pi-
Komplemem in G

4, NG(J(P)) ist p; mlpotent Wegen J(P,)=P; und 2 gilt die Behauptung.

Bezughch 3 und 4 ergibt sich nach dem Satz von Thompson daB G p;-nilpotent
ist. Dies gilt fiir i=1, ..., s also erhalten wir den Satz. _

Nach Satz 2 und 5 bekommt man den’

Satz 6. Es sei G einé dreifaktorisierbare Gruppe G=Ha 'HaH, wobei H eine
nilpotente Hall-Gruppe von G mit ungerader Ordnung ist. Es seien p,, ..., p, die in
der Ordnung von H vorkommenden verschiedenen Primzahlen. Es sei P; die p;-Sylow-
Gruppe von H. Nehmen wir an, daf3 J(P)=P; (i=1, ..., s) und P; S Z(P) gilt. Dann
gibt es einen Normalteiler N von G derart, dap G=HN, HN\N=1. :

Bemerkungen. Fiir den Fall der Gruppe von der Ordnung 37-7 gilt in unserem
Gegenbeispiel J(H)=J(P)={a,, ..., a;} d.h. J(P)=P. ,

. Wir bemerken noch, daB zwischen den dreifaktorisierbaren Gruppen auch
cinfache Gruppen existieren. Dazu betrachten wir die alternierende Gruppe As
(liber 5 Ziffern); in dieser bilden die Permutationen, die eine Ziffer unveréndert
lassen, eine Untergruppe H von der Ordung 12, und es gilt G=Ha~! HaH, wobei
acGein geelgnetes Element ist.

m
Wir beschiftigen uns jetzt mit aufiésbaren dreifaktorisierbaren endlichen

Gruppen und stellen simtliche maximale Dreifaktorisationen von solchen Grup-
pen vor. ‘
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Definition. Es sei G eine dreifaktorisierbare Gruppe G =Ha~! HaH (a€G).
Man nennt die Dreifaktorisation von G maximal, wenn es keine Gruppe H, <G
gibt, fiir die G=H,b~*H,bH, (6€G) mit HCH, gilt.

Der Kern der Untergruppe H von G ist N H;, wobei H; samtliche- Konjuglerte
von H in G durchlauft.

Definition. Man sagt, die Untergruppe HCG in G sei antinormal, wenn .
NH;=1 gilt, d.h. wenn H keinen echten Normalteiler von G enthalt. _
Ist M der Kern von H, so sieht man leicht, daB H/M antinormal in G/M ist.
Es ergibt sich leicht der

Satz 7. Es sei G= Ha“HaH eine endliche drelfaktor1s1erbare Gruppe und M
der Kern von H. Dann gilt :

GIM= (H/M)(aM) YHIM)(aM)(HIM).

Die Gruppe H/M ist antinormal in G/M, also reduziert s1ch die Untersuchung
der maximalen Drelfaktorlsatlonen der G auf den Fa]l m ‘dem die Untergruppe H
antinormal ist. ‘
. Wir beweisen den

Satz 8. Es sei G eine endliche auflésbare Gruppe. G besitzt eine maxiniale Drei-
Y faktorisation G = Ha=' HaH (a € G, H ist antinormal in G) dann und nur dann, wenn die
Jfolgenden Bedingungen erfiillt ‘sind:

a) G=HN, wobei N ein minimaler Normalteller von G ist mit HON=1 und
Co(N)=N.

b) Es gibt ein be N derart, daﬂ Jjedes Element von N mit den Elementen der
Menge L, die aus den Konjugierten von b in H besteht, wemgstens in einer Weise in
der Form ll 112 (11, LeL) da)stellbar ist.

Bewels. Zuerst beweisen wir den Fall »dann”.- Wir nehmen an, daf}

G=Ha ! HaH (HcG) eine endliche aufldsbare Gruppe mit antinormaler H ist;
“ferner sei Ha~'HaH eine maximale Dreifaktorisation. Es sei N ein minimaler

Normalteiler von G. Man kann annehmen, daBB N #G. Es gilt G=HN (H ﬂ_N; 1),
weil man im Fall HNc G die Dreifaktorisation G=(HN)a~! HNa)HN erhalten
wiirde, was der Maximalitdt der Dreifaktorisation widerspricht; aulerdem wider-
spricht der-Fall HAN=1 der antinormalen Eigénschaft von H.

Die Untergruppe Cg (N) ist ein Normalteiler von G, also ist Ng(H N CG(N))2H
und Ng(HN Ce(N))=2 N. Daraus folgt No(HNCe(N))=G. H ist antinormal in
G, also ist HNCg(N)=1 oder HN Cg(N)=H. Im letzten Fall wire H normal in
G, was unmdglich ist. So bleibt der Fall HN Cg(N)=1, d.h. der Index von Cg(N)
in G stimmt mit |H| iiberein. So folgt C;(N) =N und damit ist a) bewiesen.

12 A
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Das Element a kann man in der Form a=/hb (h€ H, b€ N) schreiben, also gilt
G=Ha 'HaH=Hb~*HbH. Es sei n ein beliebiges Element von N. Es gilt n=
=h,b=th,bhy (hy, h,, hy€H). N ist ein Normalteiler von G, also folgt aus
n=(h b= hy=YY(h hybhs *hy ) (h hyhs), daB h hyhs€N gilt. Wegen h hyhs€H
folgt Ay hyhy=1. Es seien Ayl =h,, (A h)"' =hs; so bekommt man

n=hy b= hyh51bhs=(hy'bhy)~1h3bhs,

d.h. n=I7, mit [, =hi'b hy€L, l,=hs'b hs€ L. Damit haben wir b) bewiesen.

Wir beweisen nun den Fall ,,nur dann” des Satzes. Wir nehmen an, daB a)
und b) gelten, @ ein Element von L ist, und fir beliebiges n¢ N gilt: n=I7!/,, mit
Iy, I,€L. Also folgt n=(h7'ah,)~ ' (h; 'ah,) fiir geeignete h,, h, von H. Deshalb
gilt n=hyla"‘h hy' ah,€ Ha=' HaH, und so ergibt sich

NS Ha 'HaH, G=HNSHHa 'HaH=Ha"'HaH,

d.h. G hat eine Dreifaktorisation.

[st diese Dreifaktorisation nicht maximal, so gibt es eine Untergruppe X G,
Hc X mit G=Xb~' XbX (b€G). In diesem Fall ist D=XNN 1 ein Normalteiler
von X und auch von N, d.h. XNN ist ein Normalteiler von G. Es ist klar, daf} -
D31, D Nund daB3 N kein minimaler Normalteiler ist, was der fritheren Annahme
widerspricht, daB N ein minimaler Normalteiler in N ist. Also ist die Dreifaktorisa-
tion G=Ha ! HaH maximal. Somit ist der Satz bewiesen.
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