Some characterizations of two-sided regular rings

By S. LAJOS and F. SZÁSZ in Budapest

To Professor L. Rédei on his seventieth birthday

Throughout this paper by a ring we mean a not necessarily commutative but associative ring and by the radical of the ring we mean the Jacobson radical [6]. Following J. VON NEUMANN [14] we shall say that the ring A is regular if for every element a of A there exists an element x in A such that axa = a. It is well known . that the class of regular rings plays a very important rôle in the abstract algebra, in the theory of Banach algebras (cf. C. E. RICKART [17]) and in the continuous geometry [15]. An interesting result is that the ring of all linear transformations of a vector space over a division ring is a regular ring. Some ideal-theoretical characterizations of regular rings were obtained by L. Kovács [8] and J. Luh [12]. The regularity criterion of Kovács reads as follows. An associative ring A is regular if and only if the relation

(1)

$R \cap L = RL$

holds for every left ideal L and for every right ideal R of A.

Following E. HILLE [5] a ring A is called a *two-sided* ring if every one-sided (left or right) ideal of A is a two-sided ideal of A. Clearly every division ring is a two-sided ring, and so is every commutative ring. It is easy to see that there exists a two-sided ring which is neither commutative nor a division ring. Two-sided rings, called *duo rings*, were investigated by E. H. FELLER [3] and G. THIERRIN [22]. Thierrin proved, using the classical method of N. H. McCoy [13], that every two-sided ring can be represented as a subdirect sum of subdirectly irreducible two-sided rings.

A. FORSYTHE and N. H. McCoy [4] proved the assertion that a nonzero regular ring A is a subdirect sum of division rings if and only if the ring A does not contain nonzero nilpotent elements. Their proof uses among others the following lemmas: (1) If a nonzero idempotent element e of a subdirectly irreducible ring A lies in the center of A, then e is the identity element of A. (2) If a nonzero subdirectly irreducible regular ring does not contain nonzero nilpotent elements, then it is a division ring.

A ring A is called strongly regular (see R. F. ARENS and I. KAPLANSKY [2])

if to every element a of A there exists at least one element x of A such that $a=a^2x$. It can be seen that every strongly regular rings is regular (see T. KANDÔ [7]), and in a strongly regular ring $a=a^2x$ if and only if $a=xa^2$.

In a paper of the second author [18] it was proved that a ring with minimum condition on principal right ideals is a discrete direct sum of division rings if and only if the ring has no nonzero nilpotent elements. It is clear that this class of rings contains only regular two-sided rings.

The first named author has recently obtained ideal-theoretical characterizations of two-sided regular rings which are analogous to his characterizations of semilattices of groups [9], [10], [11]. His earlier criteria are also contained in the following result.

Theorem. For an associative ring A the following conditions are mutually equivalent:

(I) A is a two-sided regular ring.

(II) $L \cap R = LR$ for every left ideal L and for every right ideal R of A.

(III) The intersection of any two left ideals is equal to their product and the same holds for right ideals too.

(IV) $L \cap I = LI$ and $R \cap I = IR$ for every left ideal L, for every right ideal R and, for every two-sided ideal I of A.

(V) A is regular and a subdirect sum of division rings.

(VI) A is a regular ring with no nonzero nilpotent elements.

(VII) A is strongly regular.

(VIII) The intersection of any two left ideals coincides with their product.

(IX) The intersection of any two right ideals coincides with their product.

(X) $L \cap I = LI$ holds for every left ideal L and for every two-sided ideal I of A.

(XI) $R \cap I = IR$ holds for every right ideal R and for every two-sided ideal I of A.

Proof. (I) \Rightarrow (II). Let A be a two-sided regular rings. Then A satisfies the relation

(2)

$$L \cap R = RL$$

for every left ideal L and for every right ideal R of A by the regularity criterion of Kovács. In case of two-sided rings this is equivalent to condition (II).

(II) \Rightarrow (I). Let A be an associative ring having the property (II). In the case of R=A the condition (II) implies

 $A \cap L = LA,$

that is, every left ideal L of A is also a right ideal of A. Similarly in case L=A relation (II) implies

$$(4) A \cap R = AR,$$

224

Two-sided regular rings

thus the right ideal R of A is a two-sided ideal of A. Therefore A is a two-sided ring. Finally (II) implies relation (2) which is equivalent to the regularity of A.

(I) \Leftrightarrow (III). The proof is similar to the above proof of the equivalence (I) \Leftrightarrow (II). (I) \Rightarrow (IV). The proof is analogous to that of (I) \Rightarrow (II).

 $(IV) \Rightarrow (I)$. Let A be a ring with property (IV). In case I = A we have

This means that any left ideal L of A is also a right ideal of A. Consequently the intersection of any two left ideals is equal to their product by (IV). Similarly it can be proved that every right ideal is a two-sided ideal of A and, the intersection of any two right ideals coincides with their product. Therefore (IV) implies (III), and we have already proved the implication (III) \Rightarrow (I), thus (IV) implies (I).

 $(I) \Rightarrow (V)$. Let A be an arbitrary regular two-sided ring. By the regularity of A the Jacobson radical J of A coincides with the ideal (0). Suppose that $J \neq (0)$. Then every nonzero principal right ideal of A contains a nonzero idempotent element e and the quasi-regularity condition

(6)
$$e+x-ex = 0$$

multiplied on the left by e yields
(7) $e=0,$

which is a contradiction to the supposition $e \neq 0$. Therefore we have J=(0). Hence the intersection of all modular maximal right ideals I_{α} of A equals the ideal (0), that is

(8)
$$\bigcap I_{\alpha} = (0).$$

Since A is a two-sided ring, every right ideal I_{α} is two-sided, hence the factor ring A/I_{α} has no nontrivial right ideals. By the modularity of I_{α} the factor ring A/I_{α} is a division ring and, the relation (8) implies the condition (V).

 $(V) \Rightarrow (VI)$. The proof is almost trivial, and we omit it.

 $(VI) \Rightarrow (VII)$. Let A be an arbitrary regular ring with no nonzero nilpotent elements. By the mentioned paper of FORSYTHE and McCoy every idempotent element of A belongs to the center of A. Suppose that a = axa for $a \in A$, $x \in A$. Then the idempotent element e = ax commutes with the element $a \in A$, therefore $a = a^2x$. Similarly the idempotent element f = xa also commutes with a consequently $a = xa^2$, that is, A is strongly regular.

 $(VII) \Rightarrow (I)$. Let A be an arbitrary strongly regular ring. Then the relation $a \in a^2A$ for every $a \in A$ implies the fact that A has no nonzero nilpotent elements because in case $a^n = 0$ one can conclude

(9) $a \in a^2 A \subseteq (a^3)_r \subseteq a^2 \cdot a^2 A \subseteq (a^5)_r \subseteq a^6 A \subseteq \dots$, whence a = 0. We must yet prove that A is a two-sided ring. To this purpose it is enough to show that every principal right ideal of A is a two-sided ideal. By the regularity of A every principal right ideal of A can be generated by an idempotent element e of A. Let now a be an arbitrary element of the principal right ideal (e) generated by e. Then we have $e^2 = e$ and a = ea which imply

(10)
$$(ar-a)^2 = 0.$$

Since A has no nonzero nilpotent element, we have ae = a and hence $a \in (e)_l$ which implies the inclusion $(e)_l \subseteq (e)_r$. The converse inclusion $(e)_i \subseteq (e)_r$ can be proved similarly; consequently $(e)_r = (e)_l$, which means that A is indeed a two-sided regular ring. Therefore condition (I) holds.

(VII)⇔(IX). This result was proved by V. A. ANDRUNAKIEVIČ [1].

(VIII) \Leftrightarrow (IX). By a left-right duality and by the mentioned result of ANDRUNA-KIEVIČ it is sufficient to prove that the condition $a \in Aa^2$ for every element $a \in A$ is equivalent to one of $a \in Aa^2$ for every element a of A. It was proved in the part (VII) \Rightarrow (I) that in the case $a \in a^2A$ ($\forall a \in A$) the ring A has no nonzero nilpotent elements and, hence every idempotent element lies in the center of A by FORSYTHE and McCOY. Therefore $a = a^2x$ implies a = axa and $a = xa^2$. The proof of the converse statement is similar.

 $(I) \Rightarrow (X)$. The proof is similar to that of $(I) \Rightarrow (II)$.

 $(X) \Rightarrow (I)$. First in case I = A condition (X) implies that every left ideal L of A is a two-sided ideal. Therefore assertion (X) implies (VIII), which is equivalent to (I).

 $(I) \Rightarrow (XI)$. The proof is the same as in the case $(I) \Rightarrow (II)$.

 $(XI) \Rightarrow (I)$. The proof is similar to that of $(X) \Rightarrow (I)$.

The proof of our Theorem is complete.

Remark 1. If the condition

(11) $\bigcap_{\alpha} (R+I_{\alpha}) \subseteq R + \bigcap_{\alpha} I_{\alpha}$

holds for every right (and left) ideal R and for any system of two-sided ideals I_{α} of a ring A and A is a subdirect sum of division rings, then it can be proved by another method that A is a two-sided ring. Namely let us suppose that

(12)
$$\bigcap I_{\alpha} = (0)$$

holds for the two-sided ideals I_{α} of A, where the factor rings A/I_{α} are division rings. Then the images of the arbitrary right ideal R of A are two-sided ideals in the rings A/I_{α} . Furthermore the complete inverse images $R + I_{\alpha}$ of R are two-sided ideals in A by the first isomorphism theorem (see e.g. L. RÉDEI [16]). Then the condition (11) together with (12) implies

(13)
$$\bigcap (R+I_{\alpha}) \subseteq R.$$

But conversely we trivially have

(14) $R \subseteq \bigcap_{\alpha} (R+I_{\alpha}),$

whence

(15)
$$R = \bigcap_{\alpha} (R+I_{\alpha}).$$

Here the intersection $\bigcap_{\alpha} (R+I_{\alpha})$ is a two-sided ideal of A, and thus R is also a two-sided ideal. Therefore A is a two-sided regular ring. Condition (11) seems to be very similar to the modularity condition of a lattice (see G. SzAsz [21]).

Remark 2. We mention a nontrivial example for a two-sided regular ring which is neither a commutative nor a division ring. Let A be the direct sum of two non-commutative division rings. Then A has obviously the wished properties.

Bibliography

- [1] В. А. Андрунакиевич, О строго регулярных кольцах, Изв. Акад. Наук Молдавской ССР, 11 (1963), 75—77.
- [2] R. F. ARENS and I. KAPLANSKY, Topological representation of algebras, Trans. Amer. Math. Soc., 63 (1948), 457-481.
- [3] E. H. FELLER, Properties of primary noncommutative rings, Trans. Amer. Math. Soc., 89 (1958), 79-91.
- [4] A. FORSYTHE and N. H. McCOY, On the commutativity of certain rings, Bull. Amer. Math. Soc., 52 (1946), 523-526.
- [5] E. HILLE, Functional analysis and semi-groups (New York, 1948).
- [6] N. JACOBSON, Structure of rings (Providence, 1956).
- [7] T. KANDÔ, Strong regularity of arbitrary rings, Nagoya Math. J., 4 (1952), 51-53.
- [8] L. Kovács, A note on regular rings, Publ. Math. Debrecen, 4 (1955-56), 465-468.
- [9] S. LAJOS, On regular duo rings, Proc. Japan Acad., 45 (1969), 157-158.
- [10] S. LAJOS, Characterization of regular duo rings, to appear.
- [11] S. LAJOS, On semilattices of groups, Proc. Japan Acad., 45 (1969), to appear.
- [12] J. LUH, A characterization of regular rings, Proc. Japan Acad., 39 (1963), 741-742.
- [13] N. H. MCCOY, Subdirectly irreducible commutative rings, Duke Math. J., 12 (1945), 381-387.
- [14] J. v. NEUMANN, On regular rings, Proc. Nat. Acad. Sci. U.S.A., 22 (1936), 707-713.
- [15] J. v. NEUMANN, Continuous geometry (Princeton, 1937).
- [16] L. RÉDEI, Algebra. I (Budapest, 1967).
- [17] C. E. RICKART, General theory of Banach algebras (Princeton, Toronto, London, New York. 1960).

- [18] F. Szász, Über Ringe mit Minimalbedingung für Hauptrechtsideale. I, Publ. Math. Debrecen, 7 (1960), 54-64.
- [19] F. Szász, Über Ringe mit Minimalbedingung für Hauptrechtsideale. II, Acta Math. Acad. Sci. Hung., 12 (1961), 417–439.
- [20] F. Szász, Über Ringe mit Minimalbedingung für Hauptrechtsideale. III, Acta Math. Acad. Sci. Hung., 14 (1963), 447-461.
- [21] G. Szász, Introduction to lattice theory (Budapest, 1963).
- [22] G. THIERRIN, On duo rings, Canad. Math. Bull., 3 (1960), 167-172.

(Received May 15, 1969)