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Introduction 

The investigation of partially ordered algebraic systems dates back to that 
of fully ordered fields. One gets from the full order to the partial one by disregarding 
the trichotomy of the relation. In this paper the full order will be weakened in another 
way. 

The trichotomy, the antisymmetry and the transitivity of a relation give, already, 
the full order of the different elements. One can suppose in this case reflexivity, 
too, practically without any loss of generality. In fact, a little reduction of a full 
order always has to be reflexive. Therefore, we shall deal with reflexive relations 
only. We shall consider reflexive relations on sets, groups, and fields. 

1. Reflexive relations on a set 

Let I2 denote the two-element Boolean algebra with the lower bound 0 and 
the upper bound 1. We shall consider these elements as natural numbers, too. 
A relation R on a set if will be regarded as a mapping 

R\ SfY.Sf-* 

of the Cartesian product of two copies of S? into I2. The relation R on if is called 
reflexive if R(a, a) — 1 holds for each a^Sf. 

The reflexive relations on SF form a complete Boolean algebra with the lattice 
operations 

S = f\Rv and R = y R, 
V V 

where 
S(a, b) = min (Rv(a, b)) and R(a, b) = max (Rv(a, b)). 



234 E. Fried 

The complement R' of R is defined in the following manner: R'(a, b) = 
= 1 -R(a,b) if a^b (a, b € S f ) , and R'(a,a) = \ for any 

Instead of R(a, b) = 1 one usually says that the relation R(a, b) is valid. 
We shall consider the following properties of a relation. 
1) Antisymmetry, which means that the relations R(a, b) and R(b, a) are not 

valid simultaneously, providing a ^ b . 
2) Trichotomy, which means that exactly one of the following relations: 

a = b; a¿¿b and R(a, b); a ¿¿b and R(b, a) is valid. 
3) Transitivity, which means' that the validity of R(a, b) and R(b, c) implies 

R(a, c). 
4) A property, which can be called the dual to transitivity, will be referred 

to as layerity; this means that from the validity of R(ci, b) follows R(a, c) or R(c, a), 
for any c. 

The considerations are much easier if these properties are required only for 
different elements. At the same time their meanings change only slightly. We shall 
identify these new properties not by numbers, but by matrices. 

Let a, b and c be different elements of a given set y , and, further, let R be 
a reflexive relation on S f . We shall say that R has the property: 

Q Antisymmetry if and only if R(a, b) + R(b, a) ^ 1 holds, 
Trichotomy if and only if R(a, b)+R(b, a) S 1 holds, 

Q Transitivity if and only if R(a, b)=R(b, c) = 1 implies R(a, c)= 1, 
Layerity if and only if R(a, b) = R(b, c) = 0 implies R(a, c) = 0. 

We shall use the sum of the suitable matrices for denoting the properties of 
a relation. Thus, R is an (^)-relation (where the elements of this matrix are 
either 0 or 1) if and only if R has those properties out of (^ t?v?ty t ry ™y

c
e
h
ruymy) i n 

whose place a number 1 stands. 
One can immediately see: 

P r o p o s i t i o n 1. R' is an (®Jj)-relation if and only if R is a relation. 

P r o p o s i t i o n 2. If each Rx is an (j^)-relation then so isR = \/ Rv. 
V 

P r o p o s i t i o n 3. If each Sv is a {^-relation then so is S = V Sv. 
V 

Though a full order has all these properties, one never assumes layerity. 
This shows that this property is a consequence of the other ones. More generally: 

Theorem 1. Each (¿°)-relation is a (J^-relation, and each relation 
is a (J J)-relation. 

Proof . It is sufficient, by Proposition 1, to prove the first part only. Let the 
different elements a, b, and c of Sf be so chosen that Rib, c) = 1 and R(a, c) = 0 
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hold. Then we get, using antisymmetry, R(c,b) = 0, and, invoking layerity, 
R(a,b) = 0; i.e. R(a, b) = R(b, c) = 1 is possible only in case R(a, c) — I. 

Using Szpilrajn's result, which states that each partial order is an intersection 
of full orders (see [3]), one obtains 

T h e o r e m 2 . Any Q\)-relation is a union of full orders. 

Proof . Let J? be a (oJ)-relation. It follows, from Proposition 1, that R' is 
a partial order. Szpilrajn's result and Propositions 1 and 3 complete the proof. 

We define the rank of an (^-relation R by r(R) = a + b + c + d. 
Two special cases of the (jtjj)-relations are familiar, namely the partial orders, 

which are the (¡^-relations, and the tournaments, i.e. the (¿¿)-relations. Both of 
them have rank two and the full order has rank four. So, it seems to be useful 
to consider all types of relations whose ranks are at least two. 

1. r(R) = 4 is equivalent for R to be a full order. 
2. r(R) = 3 is possible, by Theorem 1, if and only if R is either a (¡^-relation 

or a (°})-relation. These are complements to each other. The first one will be called, 
as a special partial order, layerwise order and the second one will be called an over-
order since it is, by Theorem 2, an "extension" of some full order. 

3. r(R) — 2 is possible, also by Theorem 1, in four cases. A (¿¿)-relation is 
a tournament, the complement of which is also a tournament. The other relation 
whose complement has the same type is the (°°)-relation, which will be called a 
layer relation. Finally, a partial order is a (J°)-relation, and its complement is 
a- (oJ)-relation. 

' There are two trivial cases, namely the two bounds of the Boolean algebra, 
of the reflexive relations. One of them is the trivial order which maps each pair 
of distinct elements to 0. The other relation which sends each pair to 1 will be 
called full overorder. 

The considerations of tournaments and partially. ordered sets are familiar, 
while the consideration of (£J)-relation is dual to that of the partially ordered 
sets. 

Now, we are going to describe the layer-relations, especially the overorders 
and the layerwise orders. 

Let if be a set with a reflexive relation R and to each element x of if let there 
be given a set i f x with a reflexive relation Rx. Let further J i f x denote the set 

• xtsr 
of pairs (a, x) with x£if and a £ if x endowed with the relation R* for which 

R*((a,x),(,b,y)) = 1 

if and only if 

either x^y and R(x, = 1 or x=y and Rx(a,b) = 1. 

J i f x will be called the join of i f x over i f . 
xZ.9-

4 A 
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The set if with the relation R and the set if' with the relation R' will be called 
similar (to each other) if there exists a one-to-one mapping <P: if — i f ' such that 
R'(<l>(a), <P(b)) = R(a, b) for every a,b£if. 

Theorem 3. If if is a set with a layer R on it, then it is similar to a join of 
sets, which are either trivially ordered sets or fully overordered ones, over a fully 
ordered set. 

Proof . The theorem is obvious if if has no more than two elements. There-
fore, we suppose that if has at least three elements. Let the distinct elements a 
and b of if be chosen so that R(a, b) = R(b, a), and let x^if be different from 
both a and b. From R(a, b) = R(b, x) it follows R(a, b) = R(a, x), which means that 
either both of R(a, x) and R(b, x) are equal to R(a, b) or both of them are different 
from it. A similar result holds for R(x, a) and R(x, b). 

Now, let a, b and c be different elements of if such that Rip, b) — R(b, a) and 
Rib, c) = R(c, b) are valid. Then it follows that Rib, c) = R(a, c) and R(c, b) = R(c, a), 
and similarly that R(b, a) = R(c, a) and R(a, b) = R(a, c). That is, these values are 
equal to each other. Thus, the relation ,,S(a, b) = 1 if and only if R(a, b) — R{b, a)" 
is such an equivalence that from S(a, b) = S(c, d) = 1 follows Ria, c)=-Rib, d). 

Let i f x denote the set of elements of if for which S(a, JC) = 1 holds. Let, further, 
if be the set of all sets i f x . 

As was proved, R is on each if K either a trivial order or a full overorder. Further, 
the relation R(ifx, i f y ) = R(x, y) does not depend on x and y and gives a full 
order of i f . 

One can easily see that if is similar to J_ifx (where x denotes the set i f x 
xZy 

regarded as an element of if and i f - = i f x ) with the one-to-one mapping x — (x, if x). 

Theorem 4. Each overordered (layerwise ordered) set is similar to a join 
of fully overordered (trivially ordered) sets over a fully ordered set. 

Proof . Let R be an overorder on the set i f . Then for a?±b (both in i f ) 
R(a, b)=R(b, a) means, in view R(a, b) + R(b, a)^ 1, that R(a,b) = 1. Thus, no 
subset i f x , given in Theorem 3, is trivially ordered. A similar consideration can be 
used to establish the case of layerwise order. 

Theorem 3 shows that the maximal fully overordered and trivially ordered 
subsets of a set with a layer relation on it are indeed situated in layers. 
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2. Reflexive relations on a group 

One always means by a relation on a group an isotone relation, i.e. a relation 
R for which 

R(ax, bx) = R(ya, yb) = R(a, b) 

hold, for any elements a, b, x, y of . 
Therefore a relation on a group is completely defined by the set &R containing 

those elements x for which R(e, x)=\, where e marks the unity of the group <§. 
3PR must be a set invariant under two-sided isotonity, which means a~10>Ra<^z0'R 

for each a in (S. The reflexivity of R is equivalent to e<=0>R. Both 0>
R,<~)0>R= {e} 

and 0>
R.\J2PR = lS are valid, i.e. 0>R. and & r uniquely determine each other. 

The elements of the positive cone £?R will be called positive. 
Now, we are going to study the reflection of the given properties of relation R 

in the positive cone 
It is only a matter of routine to prove 
P ropos i t ions 4, 5, 6, 7: 
R is antisymmetric if and only if SPR n^R

 1 = {e}. 
R is trichotomic if and only if U (?R

1 = (S. 
R is transitive if and only if 3?R is a semigroup, i.e. if it is closed under the multipli-

cation in 'S. 
R is layered if and only if 0*R is prime, which means that no product of two elements 

of the complement of SPR belongs to the positive cone unless this product equals e. 

We shall first consider the tournaments on groups. Similarly to the situation 
in case of a full order, one cannot define tournaments on every group. 

Theorem 5. A necessary and sufficient condition in order that there exists a 
tournament on a group (S is that the inverse of any element a^eofS be not conjugate 
to a. 

Proof. Let [a] denote the set of conjugates of an element a of the group 
If R is a tournament on & then of the elements a and a - 1 one belongs to and 
the other to Thus, using the normality of 0* R, we see that the set [a] is contained 
either in S?R or in namely in that which does not contain a~l(a?±e). 

Conversely, let us choose just one of the sets [a] and [a - 1] for each Let 
8? consist of the elements of the sets chosen, 3P U 1 = ?& is obvious, whiles Pi = 
= {e} easily follows from the disjointness of the sets [a] and [a-1] for a^e. 

Coro l l a ry 1. One can define a tournament ori a group if and only if different 
elements have different Squares, and on a commutative group if and only if it has no 
elements of order two. 
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Proof . One can write the equalities a~l =x~}ax and a = e in the forms 
(ax)2 = x2 and {ax) = x, respectively. Theorem 5 proves the first assertion and the 
second one is a trivial consequence of it. 

Coro l la ry 2. One can define a tournament on a group only if the group has 
no element of order two. For torsion groups this condition is also sufficient. 

Proof . (By L. REDEI) The necessity is, by Corollary 1, obvious. If the order 
of each element of a torsion group is odd then to each pair x and y of elements 
of this group there exists an odd number n such that x"=yn = e hold. Thus, x2=y2 

entails 
n+1 ' n+1 

X = Xn+ 1 = ( x 2 ) ~ = (y2) 2 = yn + i = y, 

proving sufficiency. 

Next, we shall consider layers on a group. 

Theorem 6. A layer on a group is either an overorder or a layerwise order. 

Proof . Let J? be a layer on the group <S. Then both g? = 0>R and 
are normal subsemigroups since R' is also a layer on ^..Assume for a a n d 
that a~x£SP and are both valid. &UM = <S entails that ah belongs to one 
of these sets, e.g. to 0>. So, it follows from b = a~l{ab)£0> and from 0>f\SL = {e} 
that b is equal to e. Thus, we have either or Hence either 
0>f)0>-1 = {e} or 0>\J0>-' = <§ is valid. . 

One can define, in such a manner as for ordered groups, the lexicographic 
product of two groups with reflexive relations. One can easily verify that a reflexive 
relation on a group induces both on a normal subgroup and on the factorgroup 
by the given normal subgroup a reflexive relation such that the automorphisms 
of the normal subgroup, induced by the inner ones of the group, send the positive 
cone of the normal subgroup into itself. 

Now, let J f be a normal subgroup of the group <S. Further, let there be given 
a reflexive relation R on Jf and a reflexive relation R on g/Jr. Let & consist of 
all elements of ^ for which 

either a£0>R or a i J T and 

is valid! 
It is easy to verify that & is the positive cone of a reflexive relation on ^ if 

and only if is sent by any inner automorphism of ^ into itself. (This is valid 
especially in the cases 0>

R — {e} and 0>
R='&.) In this case <§ will be called the 

lexicographical extension of Jf by H/Jf. 



Ordered algebraic systems 239. 

Theorem 7. Each overordered group is a lexicographical extension of a fully 
overordered group by a fully ordered one. Any lexicographical extension of a fully 
overordered group by a fully ordered one is an overordered group. 

Proof . Denote by & the positive cone of an overorder on the group (S. The 
induced relation the normal subgroup J f = 3PV\S?~X is, obviously, a full overorder, 
and from Theorem 3 it follows that the induced relation on H\Jf is a full order 
which is clearly compatible with multiplication. The second assertion is obtained 
by the special choice 0>

R=<S. 
One can easily prove, by using the complementary relation, that 

Theorem 7à. Each layerwise ordered group is a lexicographical extension of 
a trivially ordered group by a fully ordered one. Any lexicographical extension of 
a trivially ordered group by a fully ordered one is a layerwise ordered group. 

It follows directly from the definition that 

Coro l l a ry Those elements of a layerwise ordered group which are neither 
positivé nor negative (i.e. inverses of positive ones) are pseudoidentities (see [1]). 

3. Reflexive relations on a field 

The relations R and R' defined on the underlying set of a field are equivalent 
in that sense that the addition or multiplication with an element is compatible with 
the first relation if and only if it so is with the second one. So for the sake of con-
venience the unit element will be assumed to belong to the positive cone. 

P ropos i t i on 8. Let R be a reflexive relation on the additive group Sf^ of 
the field S7. If the multiplication with an element of this field is isotone (antitone) 
then this element (the negative of this element) belongs to the positive cone. 

Proof . The first assertion follows from R(0, a) = R(0, I) and the second 
one from R(0, -a) = R(-1, 0) = R(0, 1). 

From the compatibility of the multiplication with a reflexive relation on the 
additive group of a field follows, by Proposition 8, that the relation is a full over-
order. Therefore we shall require the isotonity only for the positive elements. This 
means that the positive cone must be closed under multiplication. Conversely, 
if 0*. is a subset of the field -IF, containing 0 and closed under multiplication then 
the relation 

"R(x, y) = \ if and only if y-x Ç 

gives, obviously, a reflexive relation on Such relations will be called reflexive 
relations on the field SF. 
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Clearly, the results formulated in Propositions 4 to 7 are valid for fields, more 
exactly, for the additive group of fields. 

We shall first consider tournaments on a field. 

Theorem 8. One can define a tournament on a field 3F if and only if ¡F has 
no element whose square is equal to — 1. 

Proof . Let R be a tournament on SF. Then, we get as a consequence of the 
trichotomy that either R(0, a)-I or i?(0, - a) = R(a, 0) = 1 holds. For any 
a£ , R(0, a2) = 1 is implied in both cases. From R(0, 1) = 1 follows, again by 
trichotomy, that i?(0, —1) is not equal to 1. This means that — 1 is not the square 
of any element of the field. 

Now, for the proof of the second part, let us suppose that J5" has the property 
required. Let J* x denote the multiplicative group of !F and let J t £ denote the 
set of squares of elements of By hypothesis, the subgroup J t £ of does 
not contain —1. Let Jt x be chosen as a maximal group extension of Jt£ which 
does not contain — 1. Then for any a 6 J r X from Jt x it follows that — 1 Z{a, Jt x], 

i.e. — 1 =am where m£Jt x, since a 2^Jt x. So, a = — w?-1 lies in { — 1, Jt x), 

from which, for Jt = {0} U Jl x, it follows: 

(i) Jt is closed under multiplication (and division), 

(ii) JtC\ — Jt = {0}, 

(iii) JtK)^Jt = & r. 

Hence the relation 
"i?(cr,6) = l if and only if b-a£Jt" 

is a tournament on J5". 
One can easily verify the following: 

P r o p o s i t i o n 9. For a tournament R on a field the following assertions are 
equivalent: (i) R is a partial order, (ii) R is a full order, (iii) R is transitive, (iv) 
is closed under addition. 

P r o p o s i t i o n 10. A full order on a field is also a tournament. 

These results show that tournaments can be regarded as an immediate gener-
alization of full orders. 

It is useful to give some examples. 

Example 1. Let <2. be the field of rationals. To determine a tournament R 
on J is necessary and sufficient to decide, for each prime p, whether p or — p should 
belong to ^ V All combinations of such decisions define exactly one tournament 
on 
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Example 2. The field 3F = — 2) is not a formal-real one; i.e. there exists 
no full order on since ( / —2)2 +1 2 = — 1. However, one can give tournaments 
on SF, for i(E J^. One can construct the tournaments on SF using example 1. 

Example 3. Let SF be a finite field with characteristic p and with order pk. 
The group is cyclic, and thus there exists a tournament on J5" if and only if 
the order of is not divisible by four. This is the case if and only if p = 3 (mod 4) 
and k is an odd number. In this case the tournament is uniquely determined, 
since the negative of a non-square is a square. 

. Example 4. Let J2" be a field of characteristic p. There exist tournament on 
3F if and only if p = 3 (mod 4) and the degree of any algebraic element of is an 
odd number. The tournament is uniquely determined if and only if J5" is an (absolute) 
algebraic field. 

Example 5. Let !F be any real-closed field. In this case not only the full order <• 
but also the tournament on SF is uniquely determined. 

Examples 3 and 4 show that tournaments are able, to some extent, to substitute 
for the full order if this latter does not exist. The last three examples suggest that 
a tournament on a field is uniquely determined if and only if the negatives of the 
non-squares are all squares. The proof is quite similar to the proof of Theorem 8. 

There is, however, a further similarity between tournaments and full orders. 
For tournaments one can build a theory analogous to the theory of real-closed 
fields. 

Call a field a T-field if one can define a tournament on it, and a T-closed 
field if it has no proper algebraic extension which is also a T-field. 

The following assertions hold: 
1) One can define a uniquely determined tournament on a T-closed field! 
2) Each element of a ^-closed field is either a square or a negative of a square. 
3) Each polynomial of odd degree over a /"-closed field has a root in the field. 
4) One obtains an algebraically closed field from the field J27 by the proper 

adjunction of a root of the polynomial jc2 + 1 if and only if SF is a T-closed field. 
5) A T-closed field is a real-closed one if and only if it has characteristic 0. 

The characteristic of the other T-closed fields has form 4k + 3. 
Now, let R be a layerwise order on the field SF with positive cone 2P. 

As was shown, those elements of which are neither negative nor positive are 
just the pseudoidentities of the additive group of J5". For an element a of SF- the 
property a + 0> = is equivalent to either being a pseudoidentity or being 0. 
Thus, 0 and the pseudoidentities of the additive group J 5 "ca l l ed the small elements 
of the layerwise order, form a subgroup J f of 
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Propos i t i on 11. In a layerwise ordered field the inverse of a small element 
cannot be small. 

Proof . Let us suppose that both a and a~l lie in J f . Then, on the one hand, 
a — a~l belongs to J f . and, on the other hand, a —a= (1 +a)( l — SP 
since, by the assumption, both 1 +a and 1 —a~1 lie in the positive cone. This is, 
however, a contradiction, a —a'1 = 0 not being possible. 

Theorem 9. Each layerwise order on a field has a unique extension to a full 
order. 

Proof . Let R be a layerwise order on the field J2" with positive cone SP and 
with Jf being the set of small elements. If a is an elements of Jf then, by 
Proposition 11, either or — a~i£0> is fulfilled. If R has an extension to 
a full order then in this full order either a or — a is a positive element. Thus, the 
uniqueness is proved. It still remains to prove that one can get a full order by extend-
ing R. 

In order to verify this we shall define the positive cone SP of the full order as 
follows : 

Let a£0> if and only if there exists an element pdSP, different from 0, such 
that ap belongs to SP. 

I. SP is closed under addition and multiplication. 
a, b^SP entails the existence of elements p, q of SP, different from 0, such that 

both pa and qb lie in SP. From pq^SP, pq^O, pq(a + b) = q(pa) + (p(qb) £ SP and 
(pq)(ab) = (pa)(qb) 6 SP one can infer that both a + b and ab belong to SP. 

II. SP<^0>. 
Indeed, in the definition of SP, one can chose, for any a^SP, the unity as p 

since both 1 and 1 a lie in SP. 
III. ^ n - 9 = {0}. 
From a, — a^SP it follows the existence of a p^SP, different from 0, such that 

both pa and —pa are elements of SP. This is possible, however, only in case pa = 0, 
implying a = 0. 

IV. SPU = 
From II it follows 0> U — & g SP U — SP. Let a be a small element. Proposition 11 

implies that either a - 1 or —a"1 belong to SP. Then, using o(a_1) = (—a)( — a - 1 ) = 
= we obtain that adS? or -a^SP, respectively. & = SP\J -SPUJf 
completes the proof. 

Let ffl be a convex subring of the fully ordered field SF containing the unity. 
Let SL be the set of the inverses of the positive elements of 3k completed by 0. 
Clearly, 3, is a subset of the positive cone SP. The partial order the positive cone 
of which is equal to 1 will be called a coursening of the given full order. 
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Theorem 10. The layerwise orders of a field are just the coarsenings of the 
full orders of this field. 

Proof . Let 2. and 0 be the positive cones of a layerwise order and its extension 
to a full order on the field SF, respectively. Denote by JHX the elements of 21 less 
0 and by 0t the set ( J* ) " 1 U {0} U-(J2*)" 1 . Let, further on, a^b denote the 
relation b — a£0, and let a < 6 mean that a ^ è but b^a. 

1) Suppose that a£{âx)~l and 0 < 6 < a . These mean that d~l£â and 
a — b,b£0. From ab{b~l — a)£0 it follows, by an argument used in the proof 
of Theorem 9, that b~x £0\i.e. b~l — a - 1 either belongs to SL or is a small element. 
In the both cases, we obtain b~l = {b~l — a~l) + a~l £2., proving the convexity 
of St. 

2) M is clearly closed under multiplication. 
3) Let a and b elements of (.g*) -1. If both of them are small elements then 

both their sum and their difference belong to 0t. Now, let us suppose that 0 < i > ^ a 
and that a is not a small element. This means that a belongs to and both a — b 
and b + a are positive and less than 3a. Thus ( 3 a ) i s a positive element. If it were 
a small element then a~1 would also be a small element, i.e. a would not belong; 
to J x , and this would be a contradiction. Using convexity, we get that 0 is closed 
under addition and subtraction. 

Now, let a full order and a coursening of it be given with the positive cones 
'0 and 2, respectively. 2 is closed under multiplication, as this is an obvious con-
sequence of its definition. Let a S b be positive elements of M. Then, from a + b S 2b 
it follows 0^ab(a + b)~l ë 2 ; i.e. 2 is closed under addition. 

If ab{a + b)~l £01 then one of a and b must be positive. Assume a^b. If both 
2ab , (a-b) J , 

of them are positive then the positivity of b = b and the convexity 
a + b \a + b) 

ab 
of M prove b £ 01. If b does not lie in 0 then we have a < —b since is a positive 

a + b 

element. From this the positivity of— a = a\ follows, implying a£0t. 
a + b \ b + a) 

These prove, however, that SL is the positive cone of a relation on the field, and 
this relation must be a layerwise order. 

T h e o r e m 11. There is no proper overorder on a field, i.e. each overorder on 
a field is either a full order or a full overorder. 

Proof . One can prove in fact more. Let R be a reflexive and trichotomic relation 
on thé field i.e. 0R U - 0R = OF. If R is not a tournament on SF then there 
is an element a, "different from 0, for which both a£0R and —a£0R are fulfilled. 
This entails by virtue of the consequence of trichotomy that one of a - 1 and —a - 1 
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belongs to S?R, and that — 1 which implies — ¡Pr^SPr . This means that a reflexive 
and trichotomic relation on a field is either a tournament or a full overorder. 
Theorem 1 completes the proof. 
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