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1. Introduction

In this paper for a class .# of objects we shall define the .#-socle of an object
and the .#-closure of a subobject, and we shall establish some connections between
these notions..

To motivate the origin of these researches, let us mention their ring-theoretical
background. According to the Wedderburn—Artin Structure Theorem, a semi-
simple Artinian ring coincides with its socle which is defined by the sum of all its
simple ideals. Moreover, if a (complete) direct sum of simple rings with unity is
equipped with the Tychonoff topology, then its socle is a dense ideal. Hence it is
an evident purpose to discuss those rings whose socle is a dense ideal.

Following [1], 3], [5] and [6], the definitions of socle and density as well as
the results and proofs can be given in a quite general manner; we prove our theorems
for objects of a category satisfying a certain system of axioms. After the preliminaries,

“in § 3 we shall prove that a semi-simple object whose socle is a dense subobject,
is a special subdirect sum of simple objects, further any special object can be embedded
as a dense subobject in a special semi-simple object  in such a way that they have
the same socle, and this socle is a dense ideal of a. A ring-theoretical example
will illustrate that this latter statement is sharp in the sense that the socle of a special
semi- 51mple object is not necessarily a dense ideal (§ 4).

2. Preliminaries

Let € be a category. The objects and maps of ¢ will be denoted by small Latin
and small Greek letters, respectively. In this paper we adopt the notions and nota-
tions of [1], [3], [5] and [6], and we assume that the reader is familiar with them,
in particular, with the concepts of monomorphism, epimorphism, subobject, kernel, -
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ideal, image, etc. As it was done in [3], [5] and [6], we shall suppose that the categohy
¥ satisfies some additional requirements. In the following we recall these axioms
briefly. We suppose that

% possesses zero objects;

every map has a kernel;

. every map has a normal image, and any subobject of the image has a complete
counter image; -

‘the image of an ideal by a normal epimorphism is always an ideal;

every family of objects has a (complete) direct sum and a free sum;

. the class of all subobjects of any object is a complete lattice, and the set of all
ideals of an object is a complete sublattice of this lattice. '

In what follows, the normal image (c, v) of a map a=puv: a—~b will be called
briefly the image of o. . :

The conditions supposed before involve the validity of the First Isomorphism
Theorem which states the following (cf. for instance [6] Theorem 2, 1):

Let (k, x)=(m, 1) be two ideals of an object a€ % and let a: a—b be a normal
epimorphism with Ker a=(k, »). If (m’, i) is the image of (m, u) by o and y: a—c,
y': b—+c" are normal. epimorphisms with Ker y=4(.m, @) and Kery =(m’, p)
respectively, then ¢ and ¢’ are equivalent objects, i.e. the commutative diagram

k.—_»m—»fn’

I [Py
k>alb
v
c c

can be completed by an equivalence &: c~c'.

Let .# be an’ abstract property of simple objects of %, i.e.. there is chosen .
a class # of simple objects of % consisting of the objects having property
such that if @ and b are equivalent objects then a€.# implies be.#. (An object
a is called simple if its only ideals are (0, w) and (g, ¢,)). An ideal (p, n) of an object
a will be called an #-minimal ideal of a, if p¢€.# holds.

Definition 1. The #-socle (s,, 6,) of an object a€% is the union of all
#-minimal ideals of a, and the zero ideal (0, w) if @ has no .#-minimal ideals.

The class .# defines also a closure operation on the lattice of all subobjécts
of an object a. An ideal (m, p) of an object a € % will be called an .#-maximal ideal,
if (m, p) is the kernel of an epimorphism o«: a —b such that b belongs to .#. The
set of all .#-maximal ideals forms the so called structure M-space M, of the object a.

Definition 2 (cf. [6]). The #-closure (I, 1) of a subobject (, 1) of ac¥
is the intersection of all .#-maximal ideals (m, u) containing (/, A). If there does
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not ‘exist such an ideal, then we put (I, 7)=(a, ¢,), and we say that (/, 2) is an
A{-dense subobject of a. 4

It is obvious that the .#-closure operation.is a closure operation*) indeed,
but .it need not be topological. The .#-closed ideals are just the so called .#-re-
presentable ideals (cf. [3]).

Throughout this paper we- shall suppose that the class M is a modular class of
simple objects, i.e. that

(i) if (p, m) is ‘an #-minimal ideal of an object a, then there is a unique
-maximal ideal (m, u) of a such that (p, 1) N(m, ©)=(0, w);

(ii) if (/, ) is an ideal of an object @ and (g, 3) is an .#-maximal ideal of /,
then (g, 94) is an ideal of a.

In [5) we defined the .#-radical .#-rad a of an object a as the intersection of
all its .#-maximal ideals. The ./#-radical means just the. BROWN—McoyY radical
determined by .#, since it is provided that M is a modular class (cf. SuLidski [3)).
The objects having zero .#-radicals, are called .#-semi-simple objects. '

Proposition I ([5] Theorem 3, 6, c)). If a: a—b is anormal epimoiphism such
that #{-rad a=Ker a, then the object b is M -semi-simple.
" In this note we shall use the notions of (complete) direct sum, discrete direct
sum and special subdirect sum, respectively. We recall their definitions. An object
g€¥ is said to be a (complete) direct sum of the objects a;, i€/, if there are epi-
morphisms 7;: g —~a; such that for each object #€% and for any system of maps
o;: h—a;, i€1, there is a unique map (the canonical map) y: h —~g such that yr, =«
holds for ali i€/. Now any object @; can be embedded in g as an ideal by a mono-
morphism g; such that ¢;m;=¢, and ¢;n;=w (ij; i, j€I). This direct sum will
be denoted by g= ﬂa (;, Q)

We need also

Proposition 2 ([6] Corollary to Theorem 3). If a is a direct sum of objects
belonging to ., then any M -closed ideal of a is a direct summand of a. i

Let (a, «) be the union of all ideals (g;, g;) of g= ]]a(n,, 0,). Then the

Ob_]t.,Ct a is called a discrete direct proa’uct of the objects g; (cf [1D.

An object b is said to be a special subdirect sum of objects a;, i€l, if

(1) there is a family of maps 9;:a;,~b, 7;: b—a;, i€/, such that 9;7,=s,
and 1;=w for isj; i, j€T; - ' ‘

*) In the structure .#/-space M., too, there is defined a closure operation (cf. SuLiNsk1 [3]).
If NS M, then the closure N of N is the set of all .#/-maximal ideals which contain the intersection
of all ideals belonging to N. It is remarkable that there is a Galois connection between the closed

subsets of M, and the .4 -closed ideals of a defined by the correspondence N~ (L, A)= [ (m, w).
. . (m,p)€



248 . R. Wiegandt

(2) if at;= p1; for each icl, where a:c—b, B: c—b, then a=f follows.
This special subdirect sum will be denoted by b= Z’a 3, 7). In the ring-

theory the notion of special subdirect sum is due to MCCOY [2], this deﬁmtlon was
given by TSALENKO [4].

The annihilator (m*, u*) of an J#/-maximal ideal (m, p) is the intersection
N(m;, ;) of all #-maximal ideals (m;, u,-)#(m, ). SuLiNski [3] has proved

Proposition 3 ([3] Prop. 5,4). Let (m, ) be an M-maximal ideal of an
~ Jl-semi-simple object a. If rhe annihilator (m ) # 0, w), then (m*, p*) is an
A -minimal ideal of a.

Let @ be an #-semi-simple object and let D, be the set of ‘all A{-maximal
ideals such that (m*, u*)#(0, w). The object a is called special if the intersection
of all .#-maximal ideals belonging to D, is (0, w). (Cf. SULINSKI [3]). An essential
connection between special .#-semi-simple objects and special subdirect sums
is established in

Proposition 4 (SuLiNski [3] Theorem 5,7). An .#-semi-simple object a
is special if and only if a is a special subdirect sum Z'a (9;, 1)) of some objects”

a; € A, moreover (a;, 3,), i€l are all M-minimal ideals of a.

The last statement turns out from the proof of Theorem 5,7 of [3].

3. Dense socles

Let .# be a modular class of objects.-Thé M-socle of an object a €% will be
denoted. by (s,, ¢,), and its .#-closure by (§,, &,). This section is devoted to the
investigation of objects' whose .#-socle is an #-dense ideal. First we prove

Theorem 1. Let ac¥ be an .#-semi-simple object. If the -socle of a is
M -dense in a, ie. (5,,06,)=(a,zs,), then the object a is special.

Proof. If @ has no .#-minimal ideals, then (s,, 0,)=(0, w) and (5,,6,)=
=(a, ¢,) imply that the structure .#-space of a is the void set, and so (g, ¢,)=
= #-rad a. Since a is also .#-semi-simple, we have (q, ¢,) =(0, w).

If (p, n) #(0,w) is an #-minimal ideal of a, then by (I) there exists a unique
-maximal ideal (m, p) of a such that (p, =) N (m, p)=(0, w). So (p, n) is contained
in any other .#-maximal ideal (m;, ), i€1, of a, and therefore we obtain

(0> (.0) = (P, TC) = Q (mh H’l) = (m*: M*)3
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where (m*, u*) denotes the annihilator of (m, w). Taking into account Proposition 3,
(m*, u*) is an #-minimal ideal of 4, and so it follows (p, 7) =(m*, u*).

Consider the intersection (d, §) of all .#-maximal ideals having non-zero
annihilator. By the consideration made above (d, §) cannot contain .#-minimal
* ideals. Suppose (d, 8)#(0, w). Now because of the #-semi-simplicity of a, there
exists an .#-maximal ideal (m,, ;) whose annihilator is zero. Therefore (mo, o)
contains every .#-minimal ideal of a, so we obtain

(S’n ,.6‘1) = (m0> /10) =< (a7 8a),

contradicting our assumption. Hence (d 0)= (0 ) is valid which means that a is

special.
The following generallzatlon of Theorem 1 is also true.

Theorem 2. If a€% is an object satisfying (3,, 6.)=(a, &), and a: a—b
is a normal epimorphism with. Ker a = .#-rad a, then b is a special A{-semi-simple
object. :

Proof. ‘At first we remark that (5,, &,) = (b, (¢,) holds. Otherwise, there would
be an #-maximal ideal (m’, u") of b containing all of its .#-minimal ideals. Thus
the First Isomorphism Theorem implies that the complete counterimage (11, u*)
of (m’, W) is an ./#-maximal ideal of a containing (s,, 6,) which is a contradiction.
Since - by Proposition. 1 b is M- -semi- snmple the statement follows lmmedlately
from Theorem 1. :

Though the converse statement of Theorem 1 is not true (see Theorem 4),
we can prove an embeddlng theorem as follows.

Theorem 3. Let a€% be an M -semi- simple object. If a is special, then a
can be embedded by a monomorphism o in an object ¢ such that

1) ¢ is a special A-semi-simple objecr moreover, it is a dtrect sum of objects :
belonging to M ; .

2) the M -socles of a and c are the same in the sense that (s,, o tx) (s;, o'c),

3) (a, o) as well as (s,, 6.) are M -dense subobjects of ¢ (i.e. (a,®)=(5., 6,) =
=(c, &) holds).

Proof. Since a is special, by Proposition 4 a is a special subdirect sum
Zal 3;, 1) of ob]ects a; €M, and (¢;, 3) are all of the .#-minimal ideals of a.
Thus the #-socle (s,,0,) of a is just U(a,, 9,) "Consider the canonical map

a—-c= ]]Ia (G, 0). If we set (k,x)= Keroz then x1,=xam;=w=wrt; is valid

. & .

for all i€ l. So by the definition of the special subdirect sum we get %=, hence
o is a monomorphism. Moreover, ¢ is a special .#-semi-simple object.
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Now we turn to prove (s,,6,0)=(s,, d,). Obviously (a;, Sid)z(a,., @) is an
#-minimal ideal of ¢ for each i€/, and so (s,, 0,0)=(s., 6,) holds. Suppose
(85, 0,0) #(s,, 6,). Then there exists an .#-minimal ideal (p, n) of ¢ differing from
each (a;, 0,). By (i) there exists a unique .#-maximal ideal (m, y) of ¢ satisfying.
(p, ®)yN(m, W) =(0, w). Thus (p, ) is contained in any other .#-maximal ideal

of c. Since m;= [[ a;(m;, ¢;) can be embedded in ¢ by a monomorphism p; as
i#jel

an ./-maximal ideal, so we obtain (p, n)= N(m;, ;) =(0, w) which is a contra-
diction. Hence (s,, o,0)=(s,, 0,) is proved.

To show 3), assume '(§c, g.)<(c, g.). Now ¢ has an #-maximal ideal (m, u)
containing the .#-socle (s., o.) of ¢. According to Proposition 2, (m, ) is a direct
summand of ¢, and so c=mXp (¢,, ¢,; 1, n) holds. Since (m, u) is #-maximal,
pEM and (p,n) is an #-minimal ideal of ¢ satisfying (p, n)N(m, w)=(0, w)
and (m, 1) does not contain all .#-minimal ideals of ¢. This is a contradiction,
therefore (5., 6.)=(c, ¢,) is valid. Since (s,, 6.)=(s,, 0,0)=(a,®) and (5., 0,) is
/-dense in ¢, so also (a, o) is an #-dense subobject of c.

4. Special object without dense socle

Let %, be the category of rings. In this section the objects (i.e. the rings)
will be denoted by capital Latin letters. If .# denotes the classe of all simple rings
with unity, then .# is a modular class of objects of %, and the .#-radical becomes
the well-known Brown—McCoy radical. The .#-socle of a ring means the sum -
of all its simple ideals with unity.

We shall show that Theorem 3 is sharp in the following sense.

‘ Theorem 4. In €, there does exist a special M-semi-Simple ring A such that
. the M-socle S of A is not M-dense in A.

Let F be a field (which is clearly a simple ring with unity) and form the complete
direct sum B= ﬁE of infinitely many copies of F. Consider the ring 4 consisting
of all vectors bL=(1 .» b;, ...)€ B for which b;=b; whenever i, j=n, for some natural
number n, depending on b. Clearly 4 contams ‘the dlscrete direct sum M= U F,

i=1
of mﬁmtely many copies of F as an ideal, and so A i a special subdlrect sum

AZ’F

) The factoring A/M obv1ously consists of the cosets (a, ...,q,...)+ M, and
therefore A/M = F is valid. Since F is a field, so M is a -maximal ideal of A.
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Let P be an arbitrary .#-minimal ideal of 4. If 0p=(..., p;, ...)EP, then
* at least one component p; differs from 0. For any »€ F and b, =(0,...,0, bp;%,0,...) €4

. we have (0, ...,0, b,0,...) = byp € P, therefore the i-th component F; of 4 is contained

in P, and so P=F holds. Hence the .#-socle of A is just the discrete direct sum
M= U F which is not dense in A4.

Thus this construction proves the statement.
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