On the socle of an object in categories

RICHARD WIEGANDT in Budapest

To Professor L. Rédei on his 70th birthday

1. Introduction

In this paper for a class \mathcal{M} of objects we shall define the \mathcal{M} -socle of an object and the \mathcal{M} -closure of a subobject, and we shall establish some connections between these notions.

To motivate the origin of these researches, let us mention their ring-theoretical background. According to the Wedderburn—Artin Structure Theorem, a semisimple Artinian ring coincides with its socle which is defined by the sum of all its simple ideals. Moreover, if a (complete) direct sum of simple rings with unity is equipped with the Tychonoff topology, then its socle is a dense ideal. Hence it is an evident purpose to discuss those rings whose socle is a dense ideal.

Following [1], [3], [5] and [6], the definitions of socle and density as well as the results and proofs can be given in a quite general manner; we prove our theorems for objects of a category satisfying a certain system of axioms. After the preliminaries, in § 3 we shall prove that a semi-simple object whose socle is a dense subobject, is a special subdirect sum of simple objects, further any special object can be embedded as a dense subobject in a special semi-simple object a in such a way that they have the same socle, and this socle is a dense ideal of a. A ring-theoretical example will illustrate that this latter statement is sharp in the sense that the socle of a special semi-simple object is not necessarily a dense ideal (§ 4).

2. Preliminaries

Let \mathscr{C} be a category. The objects and maps of \mathscr{C} will be denoted by small Latin and small Greek letters, respectively. In this paper we adopt the notions and notations of [1], [3], [5] and [6], and we assume that the reader is familiar with them, in particular, with the concepts of monomorphism, epimorphism, subobject, kernel, ideal, image, etc. As it was done in [3], [5] and [6], we shall suppose that the category \mathscr{C} satisfies some additional requirements. In the following we recall these axioms briefly. We suppose that

C possesses zero objects;

every map has a kernel;

every map has a normal image, and any subobject of the image has a complete counter image;

the image of an ideal by a normal epimorphism is always an ideal;

every family of objects has a (complete) direct sum and a free sum;

the class of all subobjects of any object is a complete lattice, and the set of all ideals of an object is a complete sublattice of this lattice.

In what follows, the normal image (c, v) of a map $\alpha = \mu v: a \rightarrow b$ will be called briefly the image of α .

The conditions supposed before involve the validity of the *First Isomorphism Theorem* which states the following (cf. for instance [6] Theorem 2, 1):

Let $(k, \varkappa) \leq (m, \mu)$ be two ideals of an object $a \in \mathscr{C}$ and let $\alpha: a \rightarrow b$ be a normal epimorphism with Ker $\alpha = (k, \varkappa)$. If (m', μ') is the image of (m, μ) by α and $\gamma: a \rightarrow c$, $\gamma': b \rightarrow c'$ are normal epimorphisms with Ker $\gamma = (m, \mu)$ and Ker $\gamma' = (m', \mu')$ respectively, then c and c' are equivalent objects, i.e. the commutative diagram

$$k \rightarrow m \rightarrow m'$$

$$\downarrow \mu \qquad \downarrow \mu'$$

$$k \xrightarrow{\times} a \xrightarrow{\alpha} b$$

$$\downarrow \gamma \qquad \downarrow \gamma'$$

$$c \qquad c'$$

can be completed by an equivalence $\xi: c \rightarrow c'$.

Let \mathcal{M} be an abstract property of simple objects of \mathscr{C} , i.e. there is chosen a class \mathcal{M} of simple objects of \mathscr{C} consisting of the objects having property \mathcal{M} such that if a and b are equivalent objects then $a \in \mathcal{M}$ implies $b \in \mathcal{M}$. (An object a is called *simple* if its only ideals are $(0, \omega)$ and (a, ε_a)). An ideal (p, π) of an object a will be called an \mathcal{M} -minimal ideal of a, if $p \in \mathcal{M}$ holds.

Definition 1. The *M*-socle (s_a, σ_a) of an object $a \in \mathscr{C}$ is the union of all *M*-minimal ideals of *a*, and the zero ideal $(0, \omega)$ if *a* has no *M*-minimal ideals.

The class \mathcal{M} defines also a closure operation on the lattice of all subobjects of an object a. An ideal (m, μ) of an object $a \in \mathscr{C}$ will be called an \mathcal{M} -maximal ideal, if (m, μ) is the kernel of an epimorphism $\alpha: a \rightarrow b$ such that b belongs to \mathcal{M} . The set of all \mathcal{M} -maximal ideals forms the so called structure \mathcal{M} -space M_a of the object a.

Definition 2 (cf. [6]). The *M*-closure (l, λ) of a subobject (l, λ) of $a \in \mathscr{C}$ is the intersection of all *M*-maximal ideals (m, μ) containing (l, λ) . If there does

246

not exist such an ideal, then we put $(l, \lambda) = (a, \varepsilon_a)$, and we say that (l, λ) is an *M*-dense subobject of a.

It is obvious that the \mathcal{M} -closure operation is a closure operation*) indeed, but it need not be topological. The \mathcal{M} -closed ideals are just the so called \mathcal{M} -representable ideals (cf. [3]).

Throughout this paper we shall suppose that the class \mathcal{M} is a modular class of simple objects, i.e. that

(i) if (p, π) is an *M*-minimal ideal of an object *a*, then there is a unique *M*-maximal ideal (m, μ) of *a* such that $(p, \pi) \cap (m, \mu) = (0, \omega)$;

(ii) if (l, λ) is an ideal of an object a and (q, ϑ) is an *M*-maximal ideal of l, then $(q, \vartheta\lambda)$ is an ideal of a.

In [5] we defined the *M*-radical *M*-rad *a* of an object *a* as the intersection of all its *M*-maximal ideals. The *M*-radical means just the BROWN—MCOY radical determined by *M*, since it is provided that *M* is a modular class (cf. SULIŃSKI [3]). The objects having zero *M*-radicals, are called *M*-semi-simple objects.

Proposition 1 ([5] Theorem 3, 6, c)). If α : a - b is a normal epimorphism such that \mathcal{M} -rad $a = \text{Ker } \alpha$, then the object b is \mathcal{M} -semi-simple.

In this note we shall use the notions of (complete) direct sum, discrete direct sum and special subdirect sum, respectively. We recall their definitions. An object $g \in \mathscr{C}$ is said to be a (complete) direct sum of the objects a_i , $i \in I$, if there are epimorphisms $\pi_i: g \to a_i$ such that for each object $h \in \mathscr{C}$ and for any system of maps $\alpha_i: h \to a_i$, $i \in I$, there is a unique map (the canonical map) $\gamma: h \to g$ such that $\gamma \pi_i = \alpha_i$ holds for all $i \in I$. Now any object a_i can be embedded in g as an ideal by a monomorphism ϱ_i such that $\varrho_i \pi_i = \varepsilon_{a_i}$ and $\varrho_i \pi_j = \omega$ $(i \neq j; i, j \in I)$. This direct sum will be denoted by $g = \prod_{i \in I} a_i (\pi_i, \varrho_i)$.

We need also

Proposition 2 ([6] Corollary to Theorem 3). If a is a direct sum of objects belonging to \mathcal{M} , then any \mathcal{M} -closed ideal of a is a direct summand of a.

Let (a, α) be the union of all ideals (a_i, ϱ_i) of $g = \prod_{i \in I} a_i(\pi_i, \varrho_i)$. Then the object *a* is called a *discrete direct product* of the objects a_i (cf. [1]).

An object b is said to be a special subdirect sum of objects a_i , $i \in I$, if

(1) there is a family of maps $\vartheta_i: a_i \to b, \tau_i: b \to a_i, i \in I$, such that $\vartheta_i \tau_i = \varepsilon_{a_i}$ and $\vartheta_i \tau_i = \omega$ for $i \neq j; i, j \in I$;

^{*)} In the structure \mathcal{M} -space M_a^* , too, there is defined a closure operation (cf. SULIŃSKI [3]). If $N \subseteq M_a$, then the closure \overline{N} of N is the set of all \mathcal{M} -maximal ideals which contain the intersection of all ideals belonging to N. It is remarkable that there is a Galois connection between the closed subsets of M_a and the \mathcal{M} -closed ideals of a defined by the correspondence $\overline{N} - (l, \overline{\lambda}) = \bigcap_{n \in \mathbb{N}} (m, \mu)$.

R. Wiegandt

(2) if $\alpha \tau_i = \beta \tau_i$ for each $i \in I$, where $\alpha: c \rightarrow b$, $\beta: c \rightarrow b$, then $\alpha = \beta$ follows.

This special subdirect sum will be denoted by $b = \sum_{i \in I} a_i (\vartheta_i, \tau_i)$. In the ringtheory the notion of special subdirect sum is due to McCoy [2], this definition was given by TSALENKO [4].

The annihilator (m^*, μ^*) of an \mathcal{M} -maximal ideal (m, μ) is the intersection $\bigcap (m_i, \mu_i)$ of all \mathcal{M} -maximal ideals $(m_i, \mu_i) \neq (m, \mu)$. SULIŃSKI [3] has proved

Proposition 3 ([3] Prop. 5, 4). Let (m, μ) be an *M*-maximal ideal of an *M*-semi-simple object a. If the annihilator $(m^*, \mu^*) \neq (0, \omega)$, then (m^*, μ^*) is an *M*-minimal ideal of a.

Let a be an \mathcal{M} -semi-simple object and let D_a be the set of all \mathcal{M} -maximal ideals such that $(m^*, \mu^*) \neq (0, \omega)$. The object a is called *special* if the intersection of all \mathcal{M} -maximal ideals belonging to D_a is $(0, \omega)$. (Cf. SULIŃSKI [3]). An essential connection between special \mathcal{M} -semi-simple objects and special subdirect sums is established in

Proposition 4 (SULIŃSKI [3] Theorem 5,7). An *M*-semi-simple object a is special if and only if a is a special subdirect sum $\sum_{i \in I} a_i(\vartheta_i, \tau_i)$ of some objects $a_i \in \mathcal{M}$, moreover (a_i, ϑ_i) , $i \in I$ are all *M*-minimal ideals of a.

The last statement turns out from the proof of Theorem 5,7 of [3].

3. Dense socles

Let \mathcal{M} be a modular class of objects. The \mathcal{M} -socle of an object $a \in \mathscr{C}$ will be denoted by (s_a, σ_a) , and its \mathcal{M} -closure by $(\bar{s}_a, \bar{\sigma}_a)$. This section is devoted to the investigation of objects whose \mathcal{M} -socle is an \mathcal{M} -dense ideal. First we prove

Theorem 1. Let $a \in \mathscr{C}$ be an \mathscr{M} -semi-simple object. If the \mathscr{M} -socle of a is \mathscr{M} -dense in a, i.e. $(\bar{s}_a, \bar{\sigma}_a) = (a, \varepsilon_a)$, then the object a is special.

Proof. If a has no \mathcal{M} -minimal ideals, then $(s_a, \sigma_a) = (0, \omega)$ and $(\bar{s}_a, \bar{\sigma}_a) = (a, \varepsilon_a)$ imply that the structure \mathcal{M} -space of a is the void set, and so $(a, \varepsilon_a) = \mathcal{M}$ -rad a. Since a is also \mathcal{M} -semi-simple, we have $(a, \varepsilon_a) = (0, \omega)$.

If $(p, \pi) \neq (0, \omega)$ is an *M*-minimal ideal of *a*, then by (1) there exists a unique *M*-maximal ideal (m, μ) of *a* such that $(p, \pi) \cap (m, \mu) = (0, \omega)$. So (p, π) is contained in any other *M*-maximal ideal (m_i, μ_i) , $i \in I$, of *a*, and therefore we obtain

$$(0,\omega) \neq (p,\pi) \leq \bigcap_{i \in I} (m_i,\mu_i) = (m^*,\mu^*),$$

where (m^*, μ^*) denotes the annihilator of (m, μ) . Taking into account Proposition 3, (m^*, μ^*) is an *M*-minimal ideal of *a*, and so it follows $(p, \pi) = (m^*, \mu^*)$.

Consider the intersection (d, δ) of all *M*-maximal ideals having non-zero annihilator. By the consideration made above (d, δ) cannot contain *M*-minimal ideals. Suppose $(d, \delta) \neq (0, \omega)$. Now because of the *M*-semi-simplicity of *a*, there exists an *M*-maximal ideal (m_0, μ_0) whose annihilator is zero. Therefore (m_0, μ_0) contains every *M*-minimal ideal of *a*, so we obtain

$$(\bar{s}_a, \bar{\sigma}_a) \leq (m_0, \mu_0) < (a, \varepsilon_a),$$

contradicting our assumption. Hence $(d, \delta) = (0, \omega)$ is valid which means that a is special.

The following generalization of Theorem 1 is also true.

Theorem 2. If $a \in \mathscr{C}$ is an object satisfying $(\bar{s}_a, \bar{\sigma}_a) = (a, \varepsilon_a)$, and $\alpha: a \to b$ is a normal epimorphism with Ker $\alpha = \mathcal{M}$ -rad a, then b is a special \mathcal{M} -semi-simple object.

Proof. At first we remark that $(\bar{s}_b, \bar{\sigma}_b) = (b, (\varepsilon_b)$ holds. Otherwise, there would be an *M*-maximal ideal (m', μ') of *b* containing all of its *M*-minimal ideals. Thus the First Isomorphism Theorem implies that the complete counterimage (m, μ^*) of (m', μ') is an *M*-maximal ideal of *a* containing (s_a, σ_a) which is a contradiction. Since by Proposition 1 *b* is *M*-semi-simple, the statement follows immediately from Theorem 1.

Though the converse statement of Theorem 1 is not true (see Theorem 4), we can prove an embedding theorem as follows.

Theorem 3. Let $a \in C$ be an *M*-semi-simple object. If a is special, then a can be embedded by a monomorphism α in an object c such that

1) c is a special *M*-semi-simple object, moreover, it is a direct sum of objects belonging to M;

2) the M-socles of a and c are the same in the sense that (s_a, σ_aα) = (s_c, σ_c);
3) (a, α) as well as (s_c, σ_c) are M-dense subobjects of c (i.e. (ā, ā) = (š_c, σ_c) = = (c, ε_c) holds).

Proof. Since *a* is special, by Proposition 4 *a* is a special subdirect sum $\sum_{i \in I} a_i(\vartheta_i, \tau_i)$ of objects $a_i \in \mathcal{M}$, and (a_i, ϑ_i) are all of the \mathcal{M} -minimal ideals of *a*. Thus the \mathcal{M} -socle (s_a, σ_a) of *a* is just $\bigcup_{i \in I} (a_i, \vartheta_i)$. Consider the canonical map $\alpha: a \to c = \prod_{i \in I} a_i (\pi_i, \varrho_i)$. If we set $(k, \varkappa) = \operatorname{Ker} \alpha$, then $\varkappa \tau_i = \varkappa \alpha \pi_i = \omega = \omega \tau_i$ is valid for all $i \in I$. So by the definition of the special subdirect sum we get $\varkappa = \omega$, hence α is a monomorphism. Moreover, *c* is a special \mathcal{M} -semi-simple object.

R. Wiegandt

Now we turn to prove $(s_a, \sigma_a \alpha) = (s_c, \sigma_c)$. Obviously $(a_i, \vartheta_i \alpha) = (a_i, \varrho_i)$ is an \mathcal{M} -minimal ideal of c for each $i \in I$, and so $(s_a, \sigma_a \alpha) \leq (s_c, \sigma_c)$ holds. Suppose $(s_a, \sigma_a \alpha) \neq (s_c, \sigma_c)$. Then there exists an \mathcal{M} -minimal ideal (p, π) of c differing from each (a_i, ϱ_i) . By (i) there exists a unique \mathcal{M} -maximal ideal (m, μ) of c satisfying $(p, \pi) \cap (m, \mu) = (0, \omega)$. Thus (p, π) is contained in any other \mathcal{M} -maximal ideal of c. Since $m_i = \prod_{i \neq j \in I} a_j(\pi_j, \varrho_j)$ can be embedded in c by a monomorphism μ_i as an \mathcal{M} -maximal ideal, so we obtain $(p, \pi) \leq \cap (m_i, \mu_i) = (0, \omega)$ which is a contradiction. Hence $(s_a, \sigma_a \alpha) = (s_c, \sigma_c)$ is proved.

To show 3), assume $(\bar{s}_c, \bar{\sigma}_c) < (c, \varepsilon_c)$. Now c has an *M*-maximal ideal (m, μ) containing the *M*-socle (s_c, σ_c) of c. According to Proposition 2, (m, μ) is a direct summand of c, and so $c = m \times p$ $(\varphi_1, \varphi_2; \mu, \pi)$ holds. Since (m, μ) is *M*-maximal, $p \in \mathcal{M}$ and (p, π) is an *M*-minimal ideal of c satisfying $(p, \pi) \cap (m, \mu) = (0, \omega)$ and (m, μ) does not contain all *M*-minimal ideals of c. This is a contradiction, therefore $(\bar{s}_c, \bar{\sigma}_c) = (c, \varepsilon_c)$ is valid. Since $(s_c, \sigma_c) = (s_a, \sigma_a \alpha) \leq (a, \alpha)$ and (s_c, σ_c) is *M*-dense in c, so also (a, α) is an *M*-dense subobject of c.

4. Special object without dense socle

Let \mathscr{C}_R be the category of rings. In this section the objects (i.e. the rings) will be denoted by capital Latin letters. If \mathscr{M} denotes the classe of all simple rings with unity, then \mathscr{M} is a modular class of objects of \mathscr{C}_R , and the \mathscr{M} -radical becomes the well-known Brown—McCoy radical. The \mathscr{M} -socle of a ring means the sum of all its simple ideals with unity.

We shall show that Theorem 3 is sharp in the following sense.

Theorem 4. In \mathscr{C}_R there does exist a special *M*-semi-simple ring A such that the *M*-socle S of A is not *M*-dense in A.

Let F be a field (which is clearly a simple ring with unity) and form the complete direct sum $B = \prod_{i=1}^{\infty} F_i$ of infinitely many copies of F. Consider the ring A consisting of all vectors $b = (..., b_i, ...) \in B$ for which $b_i = b_j$ whenever $i, j \ge n_b$ for some natural number n_b depending on b. Clearly A contains the discrete direct sum $M = \bigcup_{i=1}^{\infty} F_i$ of infinitely many copies of F as an ideal, and so A is a special subdirect sum $A = \sum_{i=1}^{\infty} F_i$.

The factoring A/M obviously consists of the cosets (a, ..., a, ...) + M, and therefore $A/M \cong F$ is valid. Since F is a field, so M is a *M*-maximal ideal of A.

Let P be an arbitrary \mathscr{M} -minimal ideal of A. If $0 \neq p = (..., p_i, ...) \in P$, then at least one component p_i differs from 0. For any $b \in F$ and $b_0 = (0, ..., 0, bp_i^{-1}, 0, ...) \in A$ we have $(0, ..., 0, b, 0, ...) = b_0 p \in P$, therefore the *i*-th component F_i of A is contained in P, and so P = F holds. Hence the \mathscr{M} -socle of A is just the discrete direct sum $\mathcal{M} = \bigcup_{i=1}^{\infty} F_i$ which is not dense in A.

Thus this construction proves the statement.

Bibliography

- [1] A. G. KUROSCH—A. CH. LIWSCHITZ—E. G. SCHULGEIFER—M. S. ZALENKO, Zur Theorie der Kategorien (Berlin, 1963).
- [2] N. H. McCoy, Subdirect sums of rings, Bull. Amer. Math. Soc., 53 (1947), 856-877.

[3] A. SULIŃSKI, The Brown-McCoy radical in categories, Fund. Math., 59 (1966), 23-41.

- [4] М. С. Цаленко, Правилные объединения и специальные суммы в категориях, Mam. сдорник, 57 (1962), 75—94.
- [5] R. WIEGANDT, Radical and semi-simplicity in categories, Acta Math. Acad. Sci. Hung., 19 (1968), 345-364.

[6] R. WIEGANDT, On compact objects in categories, Publ. Math. Debrecen, 15 (1968), 267-281.

(Received January 30, 1969)