Systems of equations over semigroups

By ROZÁLIA JUHÁSZ in Szeged

To Professor L. Rédei on his seventieth birthday

In her papers [3], [4], M. ERDÉLYI has studied systems of equations over noncommutative groups. Although her results were achieved in a group theoretical way, analogous statements can be proved for semigroups too. Namely we are going to characterize compatible systems of equations over semigroups and give a criterion for a semigroup to be n-algebraically closed. Moreover, we present simple descriptions for algebraically closed and weakly algebraically closed semigroups.

For the notions and notations of this paper not defined here, see CLIFFORD— PRESTON [2].

1. Preliminaries. Let S be an arbitrary semigroup, and $X = \{x_{\gamma}: \gamma \in \Gamma\}$ a set of symbols which will be fixed in the sequel. Any relation on the free product $S * \mathscr{F}_X$, where \mathscr{F}_X denotes the free semigroup on X, will be called a *system of equations over* S with unknowns from X. Systems of equations will be denoted by small Greek letters or they are given in the form

(1)
$$f_{\lambda}(x_{\gamma}) = g_{\lambda}(x_{\gamma}) \quad (\lambda \in \Lambda, \gamma \in \Gamma).$$

More exactly, let (1) be the detailed description of a system ρ of equations over S in that case if for all $\lambda \in \Lambda$, $f_{\lambda}(x_{\gamma})$ and $g_{\lambda}(x_{\gamma})$ are elements of $S * \mathscr{F}_X$, and any pair of elements (u, v) with $u, v \in S * \mathscr{F}_X$ belongs to ρ if and only if there exists a $\lambda \in \Lambda$ such that $u = f_{\lambda}(x_{\gamma})$ and $v = g_{\lambda}(x_{\gamma})$.

Let T be a semigroup containing S. We call the system $\{t_{\gamma}: \gamma \in \Gamma\}$ a solution of (1), if for each $\lambda \in \Lambda$ we have $t_{\gamma} \in T$ and $f_{\lambda}(t_{\gamma}) = g_{\lambda}(t_{\gamma})$. A system ϱ of equations over S will be said to be *compatible (strongly compatible)* if there exists a semigroup containing S (containing S as an ideal), in which ϱ has a solution.

A semigroup S will be called *algebraically closed (weakly algebraically closed)* if every compatible (strongly compatible) system of equations over S has a solution in S. Furthermore, let n be an arbitrary infinite cardinal. We say that S is n-algebraically

5*

closed if every compatible system of equations over S consisting of fewer equations than n has a solution in S.

A subsemigroup S of a semigroup T will be called a *retract* of T if there exists an idempotent endomorphism of T onto S (cf. [1]). A semigroup T is a *pure extension* of its subsemigroup S if every system of equations over S which has a solution in T has a solution in S, too. It is clear from the definitions above that a semigroup S is algebraically closed if and only if any semigroup T containing S is a pure extension of S.

Let S be a subsemigroup of T and φ a congruence on T. If for any $s_1, s_2 \in S$, $s_1 \equiv s_2(\varphi)$ implies $s_1 \equiv s_2$ then we say that φ separates S.

Since a relation on a set M is a subset of $M \times M$, we may speak of the power of a relation. Let T be a semigroup and σ a congruence on T. We say that σ is an *n*-congruence if there exists a relation with cardinality n on T which generates σ . Let now S be a subsemigroup of the semigroup T and let $t_{\gamma} \in T$ ($\gamma \in \Gamma$) be elements, such that $S \cup \{t_{\gamma} : \gamma \in \Gamma\}$ generates T. In this case we say that $\{t_{\gamma} : \gamma \in \Gamma\}$ generates T over S. Using the notation $X = \{x_{\gamma} : \gamma \in \Gamma\}$, there exists a homomorphism φ of $S * \mathscr{F}_X$ onto T such that for all $s \in S$, $s\varphi = s$ and for all $\gamma \in \Gamma$, $x_{\gamma}\varphi = t_{\gamma}$ hold. If the congruence φ_1 on $S * \mathscr{F}_X$ corresponding to φ is an *n*-congruence, then we say that T is an *n*-extension of S. Naturally, it is possible that T is an *n*-extension and an *m*-extension of S with distinct cardinals n and m. φ and φ_1 will be called the canonical homomorphism and canonical congruence for $\{t_{\gamma} : \gamma \in \Gamma\}$, respectively.

2. Results. The following theorem which characterizes the compatible systems of equations, is an analogue of some earlier results for modules, rings and groups (cf. [5], [6], [9] and the Lemma in [4]).

Theorem 1. A system ϱ_0 of equations given by (1) over a semigroup S is compatible if and only if the congruence ϱ on $S * \mathcal{F}_X$ generated by ϱ_0 separates S.

Proof. Let ϱ_0 be compatible. We may suppose without loss of generality that ϱ_0 is reflexive and symmetric. Let now $s, t \in S$ and $s \equiv t(\varrho)$. We have to prove that s = t. In accordance with Theorem 1.8 in [2] there exist a natural number n and elements $s_0 = s, s_1, ..., s_n = t$ in $S * \mathscr{F}_X$ such that for any $j (1 \leq j \leq n)$ the following assertion holds: there exists a $\lambda_j \in \Lambda$ and elements $h_j, k_j \in (S * \mathscr{F}_X)$ for which the equalities $s_{j-1} = h_j \cdot f_{\lambda_j}(x_p) \cdot k_j$, $s_j = h_j \cdot g_{\lambda_j}(x_p) \cdot k_j$ are fulfilled.

Let now T be a semigroup containing S in which ϱ_0 has a solution and let $\{t_\gamma: \gamma \in \Gamma\}$ be such a solution. We may assume that $\{t_\gamma: \gamma \in \Gamma\}$ generates T over S. Denote by φ the canonical homomorphism for $\{t_\gamma: \gamma \in \Gamma\}$; then for any $\lambda \in \Lambda$, by the definitions of φ and the t_γ 's, $f_\lambda(x_\gamma)\varphi = f_\lambda(x_\gamma\varphi) = f_\lambda(t_\gamma) = g_\lambda(t_\gamma) = g_\lambda(x_\gamma\varphi) = g_\lambda(x_\gamma\varphi) = g_\lambda(x_\gamma)\varphi$ holds. Hence for j = 1, ..., n, we have $s_{j-1}\varphi = h_j\varphi \cdot f_{\lambda_j}(x_\gamma)\varphi \cdot k_j\varphi = h_j\varphi \cdot g_{\lambda_j}(x_\gamma)\varphi \cdot k_j\varphi = s_j\varphi$ and thus $s = s\varphi = s_0\varphi = s_1\varphi = ... = s_n\varphi = t\varphi = t$.

Systems of equations over semigroups

In order to prove the sufficiency let χ denote the natural homomorphism of $S * \mathscr{F}_X$ upon $S * \mathscr{F}_X/\varrho$. Since ϱ separates S, χ is an embedding of S into $S * \mathscr{F}_X/\varrho$. On the other hand, $\{x_{\gamma}\chi: \gamma \in \Gamma\}$ is a solution of ϱ_0 in $S * \mathscr{F}_X/\varrho$. Indeed, for any $\lambda \in \Lambda$, we have $f_{\lambda}(x_{\gamma}\chi) = f_{\lambda}(x_{\gamma})\chi = g_{\lambda}(x_{\gamma})\chi = g_{\lambda}(x_{\gamma}\chi)$. Hence ϱ_0 is compatible.

Our next aim is to give a description of the algebraically closed and weakly algebraically closed semigroups. To this purpose first we prove a preparatory

Lemma. Let S be a subsemigroup of a semigroup T. S is a retract of T if and only if T is a pure extension of S (cf. Theorem 1 in [4]).

Proof. Let φ be an idempotent endomorphism of T onto S, and let (1) be a system of equations over S which has a solution $h_{\gamma}(\gamma \in \Gamma)$ in T. Then $h_{\gamma}\varphi(\gamma \in \Gamma)$ is also a solution of (1). Indeed, for any $\lambda \in A$, $f_{\lambda}(h_{\gamma}\varphi) = f_{\lambda}(h_{\gamma})\varphi = g_{\lambda}(h_{\gamma})\varphi = g_{\lambda}(h_{\gamma}\varphi)$ holds. Thus (1) has a solution in S too.

Conversely, suppose that T is a pure extension of S. Denote by $t_{\lambda}(\gamma \in \Gamma)$ the elements of $T \setminus S$. Then $\{t_{\gamma}: \gamma \in \Gamma\}$ generates T over S, and let φ be the canonical homomorphism for $\{t_{\gamma}: \gamma \in \Gamma\}$. The corresponding canonical congruence φ_1 is a system of equations over S, which has a solution in T, namely $\{t_{\gamma}: \gamma \in \Gamma\}$. Indeed, if $f_{\lambda}(x_{\gamma}) \equiv g_{\lambda}(x_{\gamma})(\varphi_1)$ then $f_{\lambda}(t_{\gamma}) = f_{\lambda}(x_{\gamma}\varphi) = f_{\lambda}(x_{\gamma})\varphi = g_{\lambda}(x_{\gamma})\varphi = g_{\lambda}(t_{\gamma}\varphi) = g_{\lambda}(t_{\gamma})$. In view of the purity of T it follows that φ_1 has a solution in S as well. Denote by $\{s_{\gamma}: \gamma \in \Gamma\}$ this solution. We now show that the mapping σ of T onto S defined by the equations $t_{\gamma}\sigma = s_{\gamma}$ for all $\gamma \in \Gamma$ and $s\sigma = s$ for all $s \in S$, is an idempotent endomorphism of T onto S. It is obvious that σ is an idempotent mapping of T onto S. Let us consider the elements $u, v, w \in T$ and let $u_1 = u_1(x_{\gamma}), v_1 = v_1(x_{\gamma}), w_1 = w(x_{\gamma}) \in S * \mathscr{F}_X$ satisfying $u_1\varphi = u, v_1\varphi = v, w_1\varphi = w$. Suppose that $u \cdot v = w$. Then $(u_1 v_1)\varphi = u_1\varphi \cdot v_1\varphi = u \cdot v = w = w_1\varphi$, whence $u_1v_1 \equiv w_1(\varphi_1)$ that is the equation $u_1(x_{\gamma}) \cdot v_1(x_{\gamma}) = w_1(s_{\gamma}) = w_1(s_{\gamma}) = w_1(x_{\gamma})\varphi \sigma = w\sigma = (u \cdot v)\sigma$. Thus φ is homomorphic.

We now prove that there exists only trivial algebraically closed semigroups, and give a simple characterization for weakly algebraically closed semigroups.

Theorem 2. The unique algebraically closed semigroup is the one element semigroup (cf. Theorem 3 in [4]).

Proof. Let S be an algebraically closed semigroup. Then S^0 is a pure extension of S. By our Lemma, S^0 admits an idempotent endomorphism φ onto S. Then 0φ is a zero element of S.

By a theorem of BRUCK ([2], Theorem 8. 45.), S can be embedded into a semigroup T without proper ideals. By Lemma of this paper, T admits an idempotent endomorphism ψ onto S. Let $T_0 = \{t \in T: t\psi = 0\varphi\}$. For any $t_0 \in T_0$ and $t \in T$, we

255

R. Juhász

have $(t_0 t)\psi = (t_0\psi)(t\psi) = (0\varphi)(t\psi) = 0\varphi$, hence $t_0 t \in T_0$ and similarly $tt_0 \in T$. Thus T_0 is an ideal of T, whence $T_0 = T$ follows. Consequently $t\psi = 0\varphi$ holds for all $t \in T$ and, since ψ is onto, S consists of the single element 0φ .

Theorem 3. A semigroup is weakly algebraically closed if and only if it has an identity element (cf. Theorem 5 in [3]).

Proof. Let S be weakly algebraically closed. Adjoining an identity element 1 to S, we get a semigroup T containing S as an ideal. Then T is a pure extension of S. By the Lemma, T has an idempotent endomorphism φ onto S. It is obvious that 1φ is an identity element of S.

Suppose now that S is a semigroup with identity 1. Let T be a semigroup containing S as an ideal. We have to prove that T is a pure extension of S. By the Lemma, it is sufficient to prove that S is a retract of T. Define the mapping φ of T into itself in the following manner: $t\varphi = t1$ for every $t \in T$. It is clear that φ maps T onto S, and the elements of S are invariant under φ . Furthermore, let t_1 and t_2 be any elements of T. Then $(t_1t_2)\varphi = (t_1t_2)1 = t_1(t_21) = t_1(1(t_21)) = (t_11)(t_21) = (t_1\varphi)(t_2\varphi)$. Thus φ is an idempotent endomorphism of T onto S, that is, S is a retract of T.

M. ERDÉLYI proved in [3] that a group is weakly algebraically closed if and only if it is complete. A similar parallelism between rings with identity element and complete groups has been discovered by J. SZENDREI [8].

Finally, we characterize n-algebraically closed semigroups. Note that for any infinite n, there exist non-trivial n-algebraically closed semigroups. The stronger fact that any semigroup can be embedded into an n-algebraically closed one can easily be proved, by the method of W. R. SCOTT [7].

Theorem 4. A semigroup is n-algebraically closed if and only if it is a retract of any of its m-extensions for all m < n (cf. Theorem 2 in [4]).

Proof. Suppose that S is a semigroup which satisfies the condition in the theorem. Let

(2)
$$f_{\lambda}(y_{\gamma}) = g_{\lambda}(y_{\gamma}) \quad (\lambda \in \Lambda, \gamma \in \Gamma)$$

be a compatible system of equations over S with $|\Lambda| = \mathfrak{m} < \mathfrak{n}$, and denote by Y the set $\{y_{\gamma}: \gamma \in \Gamma\}$. In virtue of Theorem 1 the \mathfrak{m} -congruence ψ on $S * \mathscr{F}_{Y}$ generated by the relation (2) separates S. Hence the natural homomorphism χ of $S * \mathscr{F}_{Y}$ upon $S * \mathscr{F}_{Y}/\psi$ induces an isomorphism of S into $S * \mathscr{F}_{Y}/\psi$. Thus, in the sequel we may use $\overline{S} = \{s\chi: s \in S\}$ instead of S.

We shall show that $S * \mathscr{F}_Y/\psi$ is an m-extension of \overline{S} . Observe that $\{y_{\gamma}\chi : \gamma \in \Gamma\}$ generates $S * \mathscr{F}_Y/\psi$ over \overline{S} . Consider the canonical homomorphism φ and the canonical congruence φ_1 for $\{y_{\gamma}\chi : \gamma \in \Gamma\}$. From $f(x_{\gamma}) \equiv g(x_{\gamma})(\varphi_1), f(x_{\gamma}), g(x_{\gamma}) \in \overline{S} * \mathscr{F}_X$

256

it follows $f(y_{\gamma})\chi = f(y_{\gamma}\chi) = f(x_{\gamma})\varphi = g(x_{\gamma})\varphi = g(y_{\gamma}\chi) = g(y_{\gamma})\chi$, that is $f(y_{\gamma}) \equiv g(y_{\gamma})(\psi)$ and vice versa. Thus φ_1 is an m-congruence. Therefore, \overline{S} is a retract of $S * \mathscr{F}_Y/\psi$ and, by the Lemma, $S * \mathscr{F}_Y/\psi$ is a pure extension of \overline{S} . Since (2) obviously has a solution in $S * \mathscr{F}_Y/\psi$ namely $y_{\gamma}\chi(\gamma \in \Gamma)$, (2) has a solution in \overline{S} too, and thus, \overline{S} is n-algebraically closed.

On the other hand, let S be n-algebraically closed. We shall show that any m-extension T of S ($\mathfrak{m} < \mathfrak{n}$) has an idempotent endomorphism onto S. Consider a set of elements $\{t_{\gamma}: \gamma \in \Gamma\}$ generating T over S, such that the canonical congruence φ_1 for $\{t_{\gamma}: \gamma \in \Gamma\}$ is an m-congruence, that is, there exists a relation ϱ of cardinality \mathfrak{m} on $S * \mathscr{F}_X$ generating φ_1 . We may assume that ϱ has the form (1). Then for all $\lambda \in \Lambda$, the canonical homomorphism φ for $\{t_{\gamma}: \gamma \in \Gamma\}$ satisfies $f_{\lambda}(x_{\gamma})\varphi = g_{\lambda}(x_{\gamma})\varphi$, whence $f_{\lambda}(t_{\gamma}) = g_{\lambda}(t_{\gamma})$. Thus the system ϱ consisting of $\mathfrak{m}(<\mathfrak{n})$ equations has a solution in T, namely $\{t_{\gamma}: \gamma \in \Gamma\}$. Since S is n-algebraically closed, ϱ has a solution in S as well, which will be denoted by $\{s_{\gamma}: \gamma \in \Gamma\}$.

Now define the correspondence σ of T into itself by the rule: for arbitrary $f(x_{\gamma}) \in S * \mathscr{F}_X$ let $f(t_{\gamma})\sigma = f(s_{\gamma})$. If $f(t_{\gamma})$ is equal to $g(t_{\gamma})$, then $f(x_{\gamma})$ and $g(x_{\gamma})$ are congruent under φ_1 and, now applying Theorem 1.8 of [2] (as in the proof of our Theorem 1) we get $f(s_{\gamma}) = g(s_{\gamma})$. Hence σ is a mapping which is obviously a homomorphism of T onto S. The idempotency of σ is also trivial. This completes the proof.

Theorems 1 and 4, and the Lemma may be formulated and proved for any equationally definable class of algebraic systems (instead of semigroups) in an analogous way. Theorem 2 permits no such generalization. Indeed, in the class of all abelian groups, satisfying the identity $x^p = 1$ (p prime), every group is algebraically closed.

References

- [1] R. BAER, Absolute retracts in group theory, Bull. Amer. Math. Soc., 52 (1946), 501-506.
- [2] A. H. CLIFFORD—G. B. PRESTON, The algebraic theory of semigroups. I—II (Providence, 1961—67).
- [3] M. ERDÉLYI, Systems of equations over noncommutative groups (Hungarian with English summary), Acta Univ. Debrecen, 6/2 (1959-60), 43-54.
- [4] M. ERDÉLYI, On n-algebraically closed groups, Publ. Math. Debrecen, 7 (1960), 310-315.
- [5] A. KERTÉSZ, Systems of equations over modules, Acta Sci. Math., 18 (1957), 207-234.
- [6] G. POLLÁK, Lösbarkeit eines Gleichungssystems über einem Ringe, Publ. Math. Debrecen, 4 (1955), 87–88.
- [7] W. R. SCOTT, Algebraically closed groups, Proc. Amer. Math. Soc., 2 (1951), 118-121.
- [8] J. SZENDREI, On rings admitting only direct extensions, Publ. Math. Debrecen, 3 (1953-54), 180-182.
- [9] O. VILLAMAYOR, Sur les équations et les systèmes linéaires dans les anneaux associatifs, C. R. Acad. Sci. Paris, 240 (1955), 1681-1683.

(Received November 6, 1969),