
The shell of a Hilbert-space operator. II 
By CHANDLER DAVIS in Toronto (Canada) 

As in the first article [3], the subject is relations between an operator A on Hilbert 
space § and a certain subset of real 3-space, whose definition (1. 3) is reproduced 
below. The main purpose of the present article is to give new information on what 
subsets of 3-space can arise from the construction. The paper concludes with discussion 
of a natural conjecture concerning the relation between the shell and spectral sets 
(§12); of thé classes Ce of Sz.-Nagy and Foia§, and of the relationship between 
the shell and the property of being similar to a contraction. I want to express my 
appreciation for conversations with E. DURSZT, which led to significant improvements 
in the paper. 

References to §§1—8 are to the first article; the sections of the present paper 
are numbered beginning with §9. 

Recall that the "shell" of an operator A is the set of all points 

for x, y£§> and y = Ax. (Notations: x*y is the complex inner product; so the first 
. component £ in (1. 3) is a complex number thought of as the first two real components 
of (p(y, Jt)£R3.) More generally, if 91 is a closed linear relation in its shell 
is the set of all points (1. 3) for ( j , The shell is denoted s(A) or 
i(2l); B denotes the unit ball in R3, and S its boundary. 

Let us first, consider 2-dimensional All relations 91 then fall into a few types, 
whose shells will be classified completely. 

Type 1. Normal operators. The shell, as was already pointed out in §4, Example 1, 
is the convex hull of the points of S which correspond under stereographic projection 
(1. 1) to points of the spectrum. 

Because of Thm. 5. 1, it is natural to include also under Type 1 all relations 

(1.3) 
M 2 + M 2 ' N l 2 + M 2 

2**>> - M 2 + M 2 

9. Operators on 2-space 
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which are Möbius transforms of normal operators. This gives two types of "multi-
valued operators": one relation with one-point spectrum namely 

(9-1) {Cf,0) :?<=§}; 

and a class of relations with two-point spectra, namely 

(9.2) {aY, x): xÇ9?} + {Cv, 

for arbitrary fixed ÀÇ.C and 1-dimensional subspace 9Î, giving spectrum {A, 
Thm. 5. 1 says that, for either (9. 1) or (9. 2), the shell is the convex hull of the points 
corresponding to the spectrum. 

In the rest of the classification it is natural similarly to put together relations 
which are Möbius transforms of each other. 

Type 2. Operators with two-point spectrum. By Thm. 5. 1, we can choose any 
two points of C, then pass to the general case by Möbius transformation. The 
simplest choice computationally — not conceptually! — is a(3i) = {0, This 
occurs for the relation 
<9.3) {(0,x):x€9î} + { ( j , 0 ) : j € S } , 

9Î and S being fixed distinct 1-dimensional subspaces. Let 6 be the number Ç[0, n/2] 
such that, for every «Ç9Î and vÇ<S, \v*u\ =cos 0\\u\\ ||t>||. Then clearly (since (y, 

Iii2 

if and only if je € 9Î and j"(21) is the ellipsoid of revolution—liL—+h2 = 1. 
cos2 0 

(In the ¿-coordinates this is ô2ô3=cos2d ôtôA.) The case 6 = n/2 is convenient 
to exclude, because the ellipsoid degenerates ; but it is already described by (9. 2) 
anyway. The other extreme case, 0 = 0, will be treated later as Type 4. 

Let us also give explicitly the shell of an operator with two-point spectrum 
{Â, —A}, 0<A. (The shell of any Type 2 operator can then be obtained from one 
of these by some rigid rotation of B.) By suitable choice of coordinate system in 
we may take the matrix of A to be 

fO l/y.) 
(9.4) ^ V o J 

for some x ^ l . The shell is the ellipsoid whose upper /¡-intercept is thé point 

whose lower /i-intercept is 
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and whose horizontal sections it is convenient to give parametrically as follows. 

with fixed r > 0 and variable real <5, then <p(Ax, x) traces an ellipse If * — I iö xre 
1 

at height 
„ _ l + A 2 ( x 2 + r2) 

r2x2 + l + A2(x2 + r2) 

and with axes terminating respectively at 

2Ar(x2 + l) 

(9.6) 
c = ± 

C = ±i 

r2x2 + l+A2(x2 + r2) ' 
2Ar(x2-l) 

r2x2+l+A2(x2 + r2) 

In particular, of course, eigenvectors are obtained by choosing re'd=± 1. This 
leads to the particular points 

(cf. (1. 1)), in agreement with Thm. 2. 2. 
In the particular case A=l , the ellipsoid is a prolate ellipsoid of revolution 

about its major axis, joining the points (±1 ,0) . This is the case where it is obtained 
by rigid rotation from the shell of (9. 3). 

An operator on 2-space with two-point spectrum can be specified, up to iso-
morphisms of § and Möbius transformations of the operator, by a single real 
parameter describing its "departure from normality". This parameter appeared 

x 2
 — 1 

as 0 above and then as x. The relation between the two is cos 6 = — . 
• x2 + l 

Type 3. Operators with one-point spectrum. If a(A) = {0} then A may be 

represented by the matrix g ^j . This is obtained as the limit of (9. 4) as 

with XX = Q fixed. That is, we keep the ellipsoid's upper ¿-intercept fixed at 

0, ——I while its two points of tangency (9. 7) both approach T(0) = (0, — 1). 1 + 8 2 ) 
It is easy to see from (9. 6) that the eccentricity of horizontal sections approaches 0. 
Of course it is easy to compute directly that 

(9. 8) ^J = {(C, A): 0 2 ( l + e 2 ) l i | 2 + ((l + 02)/i + l)2 - b l -

under Möbius transformations of the operator, all these are evidently equi-
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valent. Any 21 in the 2-dimensional case with one-point spectrum is equivalent 
to one of these under a Möbius transformation giving a rigid rotation of B. 

Type 4. Operators with spectrum the extended plane. This is an abuse of 
language. For any fixed 1-dimensional subspace 5R of let 21 be the relation 
9t © 91 g § © By Def. 2. 1 and Def. 2.4, < (̂21) because 21 is not an operator, 
i.e., 9 t (2 I _ ^{O} . But also for any z£ C, 91(21-z3) may be shown to be non-zero: 
choose x£9l and it follows that (zx, x)£ 21, (0, x ) e 2 1 - z 3 ; therefore z£op(21). 

In this case it is easily seen that j(2I) is the whole unit sphere S. This is the 
limiting case of Type 2 in which the parameter 0 occurring there approaches 0; 
that is, the subspaces SR and <3 coalesce in (9. 3). It may also be regarded as the 
limiting case of Type 3 for Q — 

The above classification is complete in the following sense. 

Theorem 9. 1. Assume that dim = dim 21 = 2. If c7(2I) = C then 2i = 9i©9i 
for some l-dimensional 91 g Otherwise, for suitably chosen Möbius transformation p, 
and Suitably chosen coordinate system in ju(2l) is an operator with matrix 

f0 0) (0 0) fO llx) [ooj " lioj or U oj <*sl>-
Proof . Assume cr(2l) = C. Then both 91(21) and 91(21"1) are non-zero, so 

that 91(21)"*)®91(21) is a subspace of § © § having dimensionality at least 2; 
and it is g2i . By hypothesis it must be of dimensionality 2 and be =21. That 
is, 21 is of Type 4. Now all the assertions of the theorem can be obtained at once 
from the foregoing analysis. 

It remains to compile the facts on the more pathological cases where dim 2t ^ 
pi dim § = 2. These depend upon considerations applicable regardless of the dimen-
sionality of so I now allow § to be arbitrary. 

10. Geometry of the shell 

If dim 21 = 0, 21 = {(0,0)} and s(2l) is empty. 
If dim 21 = 1, 2T consists of scalar multiples of a single pair (>•, x), so i(2l) is 

the single point cp(y, x), which may be any point of B. 

Theorem 10. 1. If dim 21 = 2, then ^(91) is an ellipsoid (perhaps degenerate). 
If dim 21 >2, then .y(9t) is convex. 

The idea with which the following proof begins is the same as that which under-
lies Thm. 3. 2, but the presentation seems superior to the one I used there. 

Let <3 be any subspace g2I, of dimensionality m, which for convenience is 
assumed finite. Denote by CM the Hilbert space of w-component column-vectors 
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with the usual inner product; by W, a linear isometry on Cm onto <5. Since <5 g £j© Jrj, 
we may consider any Ww (w£ Cm) as an ordered pair (Wtw, W2w); then the Ws 

are contractions mapping Cm into and W\WX + W2W2 = 1. 
Now an arbitrary point of B may be represented by positive-homogeneous 

coordinates §2 , S3, t>4), with and S4 real, with S3=5Z, with d253Sd1S4 

and with <5X + d A > 0 ; see §5 for details. In particular the representation is such that 
the ¿-coordinates of any <p(y, x) (x, y 6 §) are (y*y, x*y, y*x, x*x). Instead of 
identifying points of B with rays in a 4-dimensional cone, it is equivalent to identify 
them with points of a section of the cone — say, by confining attention to those 
(<?!, 52 , (53, <54) for which d^+d^ — 1. The last equation means in the case of 
(p(y, x) that we deal only with pairs so ||j>||2 +||x||2 = 1, that is, unit vector in § © f j . 

In these terms, consider an arbitrary point of arising from a vector-pair 
in the range of W. Its ¿-coordinates will be of the form 

(<?!, 52, <53, <54) = (w* W? Wx w, w* W2* WL w, w* Wf W2 w, w* W2* W2 w) = 

= ( t r ( 0 ? * W l W w * ) , tr(W?W,ww*), tr (W*W2ww*), t r (W2*W2ww*)) = <P(ww*), 

where $ is the linear map into C4 from the space ®(C") defined by 

$(H) = (tr(W*WlH), t r ( W Z W j H ) , t r ( W t W 2 H ) , U{W*2W2H)). 

Actually we need consider only hermitian H\ they comprise a real subspace of 
93(C"'), on which 0 is a real-linear operator; and 4> automatically maps to points 
(<51; (52, <53, <54) satisfying = 5 l 9 <54 = 54 , S3 = 52. If JETSO then from the Schwarz 
inequality 5253^5i54.. Our H are still more special, being of the form ww*, w £ Cm. 
The condition that <51+54 = 1 as desired, is that 

1 = w*WfW1w+w*W^W2w = w*w. 

Conclusion: .s(S) is the image under a real-linear map of the set of projectors of 
rank 1 in 23 (Cm). 

Any two non-collinear points of 91 belong to a 2-dimensional subspace S g S i . 
We can go through the above construction with m —2. Hence, any two points of 
¿(91) belong to a subset of i(9I) which is the image of an ellipsoid by a real-linear 
map (this is Thm. 3. 2); namely, s(<5) is the image under <i> of {ww*\ w£ C2, ||w|| = 1}, 
which in matrix form is the set of all 

( cos0 1 i i f cos 26 eia sin 29\ 
( 1 0 1 ) U - s i n 0 j ( c O S 0 e"0sin0) — ~2~t~~2 s i n 29 —cos.20J' 

and the last matrix clearly gives, as 0 and co vary, a sphere of radius t[2 in the Frobenius 
norm. 

If dim 21 = 2, then take S = 9 I , and that finishes the first part of the proof. 
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If dim 91 >2, we will be finished once we have seen that, for every 2-dimensionaI 
S g 9 l and corresponding ellipsoid s(S) g s(9l), the inner domain of s(<£) (if any) 
also belongs to j(9t). Choose any 3-dimensional subspace 91 so S g 9*^91, and 
extend the isometry W:C2-*8 to an isometry C3—5R, still denoted by W. The 
only change entailed in the above is that (10. 1) is bordered by a third row and 
third column consisting of zeroes. Now the set {ww*:w£C3, ||w|| = l} contains 
the set of all matrices 

(10.2) 
cos 0 sin <p 

?~"°sin0sin^ 
cos q> 

(cos 6 s in q> eit0 s in 9 s in q> cos <p) ( O g i p s n/2), 

which is a 3-cell containing the set (10. 1). Therefore £(21), which is the image of 
(10. 1) under <P, is not essentially imbedded in the image of (10. 2) under <P, hence not 
essentially imbedded in i(9I). This is enough to complete the proof. 

We can now also complete the classification of shells in the special case 
dim § = 2. 

Corol lary. If dim 21 > dim § = 2, then ¿(91) is all of B. 

Proof. Since we now know that j(2l) is convex, it is enough to prove that it 
contains all of S. Now the two subspaces 91 and {0}©§ of the 4-dimensional 
space $ © § have dimensionalities totalling >4, hence they have non-trivial inter-
section; that is, 91(91) is non-zero; that is, (0, — l)£s(9l). For any Möbius trans-
formation ¡i, /¿(91) also has dimensionality dim 91 and the same argument applies: 
(0, — 1) € s(m(9I)). But the Möbius transforms of (0, —1) comprise all of S, and 
the proof is complete. 

As in the case of numerical range, there is also a rather trivial converse. 

T h e o r e m 10. 2. Any convex Subset of B is the shell of some relation. 
It is convenient to use the following fact, a sort of generalization of § 4, 

Example 1. 

Lemma 10. 1. Let § be the orthogonal direct sum ©p$p, where each §p is 
a Hilbert space and p ranges over some index set K. Let the relation 91 on § fee the 
direct sum of relations 2Ip on §p. Then i(9I) is the convex hull of the s(9ip). 

Proof. An arbitrary point (y, x) of 91 is obtained by setting x = Ip^pxp, 
y=Zp%pyp; here for each p,(yp> xp) is an arbitrary non-zero point of Slp but may 
be subjected to ]|xp|]2 + \\yp\}2 = 1 without loss of generality, and the coefficients 
are arbitrary subject to < 0 0 but may be subjected to Z\£p\2 = 1 without 
loss of generality. Now x*y=Zp\i,p\2x*pyp, a generalized convex combination; 
and similarly for and y*y with the same coefficients. For the images under the 
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mapping (1.3) one computes that (p(y, x)=Zp\£p\2<p(yp, xp). This is obviously 
in the closure of the convex hull of the .s(2Ip); I omit the rather standard geometric 
argument which shows it is in the convex hull itself. 

P roof of Thm. 10.2. Let K be a convex subset of B. For each point p 
of K, let §>p be a 2-dimensional Hilbert space, and let be a relation on &p spanned 
by the single pair (yp , xp), where xp and yp are so chosen in §>p that <p(yp, xp) = p 
and ||*p||2 + ||jp||2 = l. Application of the Lemma completes the proof. 

This construction is admittedly artificial. It can be modified in several respects, 
but an essential feature is the large dimensionality of the co-domain §©D(2l). 
In the case of an everywhere-defined bounded operator, the shell is significantly 
less arbitrary; see Thm. 3. 3 and § 11. It would be interesting to find a satisfactory 
necessary and sufficient condition for a subset of B to be shell of some everywhere-
defined bounded operator. 

11. Cones containing the shell 

Throughout this section, we consider everywhere-defined bounded operators. 
Although the shell (for instance, that of a normal operator) may have sharp 

edges or vertices, these can occur only on S; in the interior of B, the shape of the 
boundary of the shell must be snub. 

How can we express this geometric idea precisely? A first, qualitative expres-
sion is suggested by the known fact [9, Satz l(i)] that every corner of the boundary 
of the numerical range belongs to the approximate point spectrum. That fact can 
be slightly strengthened, becoming the following property of the shell. 

Theorem 11. 1. Let p be a point of B\S which belongs to the boundary 
d(s(A)). Assume there is no segment having both endpoints in S and lying entirely in 
s(A). Then s(A) has a unique supporting plane at p. 

We know the case of whole segments as edges of the boundary does occur (§ 4), 
so it was necessary to exclude it. 

Proof . Suppose there are distinct supporting planes at p, and let / denote 
their line of intersection. The hypotheses imply that at least one point of intersection 
of / with S is not in s(A). Since everything so far is invariant under the transformations 
considered in § 5, we are free to assume without loss of generality that this point 
is the north pole (0, 1) and that I is the vertical axis £ = 0. 

Then A is a bounded operator such that some (0, h) (Ji =— 1) is in s(A); say, 
(0,h) = <p(y,x), with y=Ax, x^0. Then by definition (1. 3), /z> — 1 means 
and £ = 0 means y_Lx. This must be shown to contradict the hypothesis that s(A) 
has two vertical supporting planes through / (that is, by Thm. 3. 1, that dw(A) has 
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a corner at 0). For this, it is enough to show that the set of numbers (.x + tei5y)*• 
•A(x + telSy) (for / > 0 and real <5) is not contained in any proper sector in C with 
opening -en. » 

Now by the choice of x and y, 

(11.1) (x + teidy)*A(x + teidy) = teiSx*Ay + te~idy*y + t2y*Ay, 

where the second term is non-zero. Let <50 be such a value of 5 as to make the coefficient 
of t non-zero. (Such a value exists; indeed, if perchance ei3'x*Ay + e~i3'y*y = 0 
then we can take <50 = 51+n/2 and get \eiiox*Ay + e~idoy*y\ = 2y*y^0.) Then 
as the points (11. 1) for 5 = S0 and 5 — d0 + n approach 0 along a line or 
parabola, from opposite sides. This completes the proof. 

I now turn to the more delicate quantitative version. Whereas Thm. 11. 1 says 
s(A) cannot have a sharp point at p£B\S, the following theorems say that even 
a slightly rounded point is impossible, and give exact information on how blunt 
it must be. We start with a supporting plane at p; since there is no loss of generality 
in taking this plane horizontal, the hypothesis begins by fixing the norm of A. 

Theorem 11.2. Assume I f , for some real constants r and k such 

that r + k^Q^r — k, s(A) is contained in the cone |£| S r + kh, then S I ^ is also 
l0" °J 

contained in that same cone. 

In other words, the special operator satisfies all inequalities of the form 

which can be satisfied by any operator of the same norm. 
This theorem has an equivalent, more explicit formulation, which follows. 

For simplicity, I state only the case g = l. 

Theorem 11.3. Assume |M|| = 1. Let n / 2 > 3 S a r c sin (1/3). Then for every 
e^O, there exists (£, h)£s{A) for which }'2 cos 9|C| -t-sin 9 (2h +1) S 1 — e. Equiv-
alent^, for every £>0 there exists non-zero x € § for which 

(11. 3) (1 +8)2/2 cos 9 \x*Ax\ S (1 +sin 3)||x|!2 + (l - 3 sin 9)|Mx||2. 

In this formulation, it is easy to see that the case 3 = arc sin (1/3) is just the 
known fact [8, p. 33] that the numerical radius of an operator of norm 1 is S J. 
The limiting case 9 -+n/2 is tautological. The other cases of the theorem are believed 
to be new. 

The equivalence of the various formulations is fairly easy to verify. The result 
for M|| = l implies the generalization for arbitrary ||/4j| by the transformation 

(11.2) X\x*Ax\ =s \\x\\2 + x\\Ax\\ 2 (A > 0, x g O ) 
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procedure of § 5. Also, for the particular operator 
0 0 
1 0 

we can get equality in 

(11. 3) with 8 = 0, but the x which achieves this is, up to a scalar multiple, unique; 
from this one proves the equivalence of Thm. 11.2 with Thm. 11. 3. Leaving to 
the reader the mechanical filling in of these details, I turn to the essential part, the 
proof of Thm. 11. 3. 

By the same sort of approximation procedure as in Thm. 3. 3, we see that it 
is enough to prove the conclusion with e = 0 and to do so under the assumption 
that s(A) is closed. In particular, we may assume that ||̂ 4|| is attained. 

The shell of — A is obtained from the shell of A upon rotation about the 

//-axis through a half-turn. By Lemma 10. 1, the shell of the convex 

hull of the shells of A and —A. Accordingly, it lies in every cone symmetric about 
the h-axis that s(A) does. That means that we can assume without loss of generality 
that (0 ,0 )£s(A) , that is, that there exists a vector such that ||x0]| = || Ax0\\ = 1 
and xlAx0 = 0. 

Let us look at the space as the direct sum of the 1-dimensional subspaces 
A'q Xq S3 and Ax0(Ax0)*9> with an orthogonal complement. Thus we write 

T 0 a V*' 

(11.4) — 
0 > A = 1 0 0 
,0 .0 u B 

where a is a number, u and v are vectors in the complementary subspace, and B is 
a contraction operating on that subspace. (In writing the expression for A, I have 
been justified in setting some entries equal to zero by the hypothesis ||/4|| = 1.) 

The procedure will be as follows. Assuming the reversed inequality 

(11.5) 2 /2 cos 9 \x*Ax\ S (1 +sin 9)||x||2 + (1 - 3 sin9)Mx|[2 

for all * £ it will be deduced that equality is attained, which constitutes proving 
the Theorem. It will also be deduced that A has a certain special form — that is, 
the extremal case in the Theorem will be identified. 

As it turns out, it suffices to consider vectors of the form x = If we 

substitute this into (11. 5), we find on the left side a positive multiple of |a|?/ 
while on the right side all terms depend only upon the moduli of £ and t]. This 
allows us to replace \<x%t] + £ f j \ by — (|a| +1) Re for both expressions assume 
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the same maximum (namely, (|a| +l)|£»f|) when arg c, and arg>7 are varied. The 
transformed inequality may be written 

__ (2 — 2 s in 9 / 2 cos 9 ( | a | +1) H £ ) 

( 1 1 . 6 ) + i + s i n 9 + ( l - 3 s i n 9 ) ( | a P + | M I 2 ) J U 

(assumed for all £,t]). Remember that 1—3 sin 9SO; therefore if the hermitian 
form in (11. 6) is positive, so is the form 

(2 — 2 sin 9 j/2cosS(|a | + iy| 
( 1 1 ' ? ) [ j /2cos9( |a | + l) 1 -f- sin 9 J" 

This has positive diagonal entries, to be sure, but its determinant is 2 cos2 ,9-
•(1 — (|a| + l)2), which is never positive, and is zero if and only if a = 0. 

Summing up, our assumption has implied that the form (11. 6) is degenerate, 
as desired; that a = 0; and that (11.7) must actually be the same as the form in 
(11. 6). Except in the limiting case sin 9 = 1/3 (to which I will return presently), 
this implies that u = 0. 

Now we can infer that u = 0 in (11.4) without any further computation. 
Indeed, replace A, x 0 , Ax0, u respectively by A*, Ax0, x0, v; all the hypotheses 
are unaffected, so the argument that u = 0 yields also that v = 0. 

If sin 9 = 1/3 then (11.6) says 2 S| |x| |2 . In this case we do have to resort 
Z) 

tovec to r sx= t] . If in particular = \r)\ = 1, then ||x||2 = 2 + ||w||2. Using (1.1; 4) 
IV 

\ / 

and the already-proved fact that a = 0, we find 

x*Ax = \v% w + £fj + t]\v* u + w* Bw. 

By proper choice of the arguments of £ and rj, we can ensure that the first three 
terms on the right have the same argument; then 

\v*w\ + \ + \w*u\-\w*Bw\ S \x*Ax\ s j M 2 = - l + i | | w | | 2 . 

This is unaffected if w is replaced by tw, for scalar t approaching 0. Therefore v*w = 
= w*u = 0, for every w; therefore w = y = 0. 

This completes the proof of the Theorem together with the following 
"uniqueness" assertion. 

T h e o r e m 11.4. Let 7 t / 2>9^a rc sin (1/3). Assume the norm of A is 1 and 

is attained. If( 11. 5) holds for all x, then A has K as an orthogonal direct summand. 



The shell of a Hilbert-space operator 311 

The case 9 = arc sin (1 /3) of this Theorem is due to J . P . WILLIAMS arid T. CRIM-

MINS [15]. 

It seems reasonable to hope that still more detailed information in the same 
direction could be found. For example 

Con jec tu re 11. 1 The conclusion of Thm. 11. 2 holds for 71/2 
Sarc sin ( — 1/3). 

(It fails outside that range because of the unitary operators.) 

Con jec tu re 11.2. Assume ||y4||=g. Assume the maximum h for h)£s(A) 
is attained at a unique point £ S\»S. Then the boundary of s(A) there has one principal 

curvature at least as small as that of s at its topmost point. 

(The other principal curvature may be greater, see § 9.) 

12. Spectral sets other than discs 

Recall that Thm. 7. 2 asserts that for a disc X (that is, for a subset X of C which 
is obtained from D = {z:\z\^\) by Möbius transformation) and any relation 91 
we have the following equivalence: X is a spectral set (s. s.) for 91 if and only if 
the shell s(9l) is contained in the convex hull of the stereographic projection z(X). 

What if X is simply some closed proper subset of C? For X to be s.s. for 91, 
it is still necessary that i(9l) be contained in the convex hull of z(X); this corresponds 
to the easy half of Thm. 7. 2., and the same proof applies. But is it sufficient? 

In this section I give a counterexample. 
As the set X, I will take. the set of those z in the unit disc D such that either 

\z\ = 1/5 or arg z is an integral multiple of 7:/10: a hub with 20 spokes. (If you prefer, 
the spokes could be given a non-zero thickness so that X would be the closure of 
its interior.) 

As the operator A, take . Then X is not s.s. for -A, by a remarkable 

result of C . BERGER [1]: every simply-connected spectral set of this operator contains 
the disk {z: 1/4}. 

To show that s(A) is contained in the convex hull conv (z(X)), it is easiest 
to work with the hub and the spokes separately. First, z(X)^z({z: | z | s l /5}) = 
= {((, h)£S: h^ —12/13}, so conv ( i ( I ) ) contains all points of B having 
h ^ —12/13. It remains to consider — 1 2 / 1 3 F o r each fixed h, in this 
ränge, the section of B is {£: |£|2 ^ 1 — h2} and the section of z(X) is a set of 20 points 
evenly spaced around the circumference. Therefore, the section of coriv (r(Z)) 
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includes all points with |£ |2S | cos 2 ^ - j (1 —h2). The points of s(A) are, by §4 

71 
or (9. 8), those with |£|2 S —2h—2h2. Accordingly, it must be shown that cos2 — s 

- 2 h 24 
S - . For the interval of h in question, the right-hand member is S — ; on 

1 k 25 
n ( n \ 2 \ 

the other hand, cos2 — S i — — > 1 , which completes the verification. 
20 [20 J 25 

13. The classes Ce 

S Z . - N A G Y and FOIA§ [12], [13], [14], § 1 . 1 1 ] introduced certain classes of 
bounded, everywhere-defined operators A, called Ce (Q >0). We say A£Ce if there 
exists a unitary U on a Hilbert space ft =?£ such that A" — Q-pr U" (« = 1,2, ...). 
They proved this is equivalent to a restriction on the values of x*Ax and \\Ax\]. 
The latter condition was reformulated in [3, § 8] in terms of the shell, and the results 
may be summarized as.follows: 

A € Ce (e S 2) if and only if for all (£, h) £ s(A) 

(13.1) | e - i H C | s e - i - A . 

A£Ce (g>2) if and only if all (£, h)£s(A) satisfy (13. 1) and, in addition, 

(13.2) ^ g ^ i ^ j 7
 w h e n \C\sC2ol 

, Q(Q — 2 ) here Co IS the constant 
( e - i ) 2 

The cone to which a point is restricted by (13. 1) was named Ke; the cone-
with-ellipsoid-cap to which a point is restricted (for q>2) by (13. 1) and (13.2) 
together was named Ee. 

It may be pointed out that a number of results of DURSZT [4], BERGER and 
STAMPFLI [2], and FURUTA [5], [6] are contained in the above, or follow from it 
by application of general properties of the shell. 

For example, they proved that, for normaloid A, A £Ce if and only if . 

(13. 3) \\A\\ s 2-q 

1 (Q — 1), 

and that (13. 3) is sufficient for A£Ce even if A is not normaloid. Now in terms 
of the shell, a norm restriction says how high the shell may go: \ \Af^a restricts 
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s(A) to <(£,h):hs — >, as we see directly from (1. 3). A restriction on the 
I 1 + a J 

spectral radius says how high the part of the shell which approaches the boundary 
S may go: indeed, by Thm. 2.3, the hypothesis ax(A)^{z: \z\^a) keeps s(A) 
from intersecting S any higher up than i(a), that is, it restricts s(A) H S to lie in 
r - l + a 2 l 
j(C, h): h ^ 2 | . To say A is normaloid (has norm no greater than its spectral 

radius) is to say that at no point of s(A) does h get any higher than its maximum 
on s(A) D S. Accordingly, the above result of DURSZT, BERGER, STAMPFLI, and 
FURUTA comes right out of the shell characterization of Ce, once we observe that 
the values of h corresponding to the norm bound in (13. 3) are exactly the h-co-
ordinates of the intersection of Ke's boundary with S. 

For a second example, DURSZT'S result that ?|€C„., if and only if Q^P', 
U °J 

reduces to the straightforward observation that the ellipse (9. 8) is tangent to the 
boundary of KQ (and if 2, the circle of tangency lies below the circle |i|=(o> 
h = ( 1 - i g ) ; see (13. 2)). 

Finally, it is easy in terms of the shell to answer the natural question, what 
operators belong to the union of the classes Ce. DURSZT suggests the notation C„=uc e . 

Theorem 13.1. The following conditions are equivalent: 
(i )AtC„; 
(ii) <r„(A) Q D, the closed unit disc; and there does not exist any curve lying 

in which approaches S at a point on its equator tangentially from above; 
(iii) cr(A) Q D; and for each Q, the resolvent Rrew(A) = (reiB — A)~1 satisfies 

||i?r£,i0(^)|| =(r — l)-1 for r in a sufficiently small interval ]1, 1 +e[. 

By a curve approaching ((0 ,0) (|£0| = 1) "tangentially from above" is meant 
here a curve (£(/2), h) for h in some interval ]0, e[, such that 1 >Re (C(h)/Co) > 1 — o(A). 

Condition (iii) has been included because it is stated without reference to the 
shell. Condition (ii) is essentially all in terms of the shell, because a„(A) Q D is, 
as remarked before, equivalent to the condition that h for all ((, h) £ i(^) fl S. 

P roof of Thm. 13. 1. We know from §8 that the equivalent conditions 
on(A) Q D and a(A)QD are necessary for A £ CQ. If A £ Ce, then s(A) lies in the 
cone Ke and so has no curve approaching an equatorial point tangentially from 
above. This proves (i)=*(ii). 

Assume (ii); I will prove that for sufficiently large Q, S(A)QEQ. Since s(A) 

is compact, it is enough to prove that, for every P£s(A), there exists a Q such that 
Ee contains some neighborhood of p in s(A). This is surely so for points with h< 0, 
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for they are even in KL. Also any p£B\S gives no trouble, because it is in int Ee 

for some Q. The only problem is p = (C0, °)> [Co 1 = 1- By (")> w e c a n choose a 
so large that for all (£, h) £ s(A), we have (q - 1 ) Re (C/Co) <Q-l-h. By continuity, 
(q - 1 ) Re (CewICo) < 8 ~ 1 - h for Q in some neighborhood of 0 and for all ((, h) £ s(A). 
But (see § 8) this means that in some neighborhood of p, all points of s(A) lie in Ea. 
Therefore (ii)=>(i). 

The reason (ii) and (iii) are equivalent is that the corresponding statements 
about a single equatorial point are equivalent. By symmetry, it does not matter 
which equatorial point we consider, so let us treat (1, 0) and take the 6 in (iii) to 
be 0. 

Now for r > l , 

m ^ - 2 i n f f 2 + 1 + V - i R e C : « . a h * « } . 
using (1.-3). Thus (iii) will fail (for 0 = 0) if and only if, for r arbitrarily close to 1, 
we can find (C,h)£s(A) such that 

l + A - 2 r R e C < _ 2 r + l ; 

1 — h 

21 
setting r — l+ / ( i= -0 ) , this inequality reduces to 1—Re£< h. To find 

1 t 
1 - R e C 

(£, h) satisfying this for arbitrarily small t > 0 is exactly to find (£, h) with 
h 

arbitrarily close to 0, because all our points have 1 — Re£ >0. If this can be done 
at all, it must be done for h->-0, because all our points are in B; and the points 
can be joined by a curve because s(A) is convex (or an ellipsoid). This completes 
the proof of the Theorem. 

Corol la ry . For A£Cm, if Ax — Xx (|A| = 1), then A*x = Ix. 

Proof . Otherwise, A*x = Ix+y, with y _Lx, y^ 0. Then one easily computes 
that for suitable e->-0, cp(A(x + ey), x + sy) gives a curve violating the restriction 
in. (ii) of the Theorem. 

14. Similarity 

As the property A£Ce is equivalent to s(A) lying in a certain subset of B, we 
may ask for a condition on s(A) which is equivalent to A having the important 
related property of being similar to a contraction. The best answer available is 
Thm. 14. 1, which expresses in terms of s(A) a condition known to be weaker. 
Thm. 14. 2, which follows, is in some sense complementary. 
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D e f i n i t i o n 14. 1. For let Lx denote the set of (£, h)£B such that 

• l+x 

D e f i n i t i o n 14.2. For | a | < l , let ßx denote the Möbius transformation 

Theorem 14. 1. Consider the following conditions upon an everywhere-defined 
operator A: 

(i) . There exists an operator L, with ||Z.|| | |L _ 1 | | s x, such that \\LAL~i\\^\-, 
(ii) For every rationalf such that | z | s 1 implies | / (z ) | S1 , we have \\f(A)\\ ^ x ; 
(iii) For every a with | a | < l , ^x; 
(iv) s(A)QLx. 

Then (i)=>(ii)=>(iii)o(iv). 

Let us assume (i), writing A =L-lCL, ||C|| S 1, ||L|| H L - 1 ^ x. Then for 
every rational/without poles in the closed unit disk D, and in particular if / ( D ) Q D, 
we have / ( A ) = L_1f (C)L an everywhere-defined operator. If C is a contraction 
and / (D) Q D, von Neumann's theorem says || / (C) | | S 1 ; then it is obvious that 
||/(/4)|| g x. In particular,/could be any of the fix. It has been proved that (i) =»(ii) =>• 
=>(iii); note that the direct proof of (i) =>-(iii) is elementary. It remains to prove 
that (iii)<=>-(iv). 

— 1 + x 2 

If s(A)^Lx then every (£,h)£s(A) satisfies / zs that is, \\A\\s x. 
, 1+x 

Now the , together with the multiplications by scalars of modulus 1 (trans-
formations which do not affect norms of operators), generate under composition 
the group of all Möbius transformations of the unit disk onto itself, as is well known 
[11, V§3], Consider the transformations Q(JX), in the notation of § 5, as ß ranges 
over this group. They form a group of transformations of B onto itself, under which 
the equator is taken onto itself. If ¡J. is multiplication by a scalar then it is obvious 
that Q(H)LX = LX, with the axis {(0, h)} as fixpoints. We will see that g(ßX)LX = LX 

and that this set of transformations acts transitively on the upper boundary 

( 1 4 - 1 ) h = | C | c l . 

By Thm. 5. 1, s{n(A)) = Q(P)S{A). It follows easily that s(A)^Lx if a^d only if, 
for all a with | a | < l , \\nx(A)\\Sx. The only thing still required to establish the 
theorem is to verify the assertion about the action of Q(pa) on the set (14. 1). 

Refer again to § 5 for definition and properties of the ¿-co-ordinates for points 

9 A 
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of B. It is easy to verify that (¿1 ; d2, S3, <54) are ¿-co-ordinates of a point on the 
upper boundary (14. 1) if and only if they satisfy 

(14.2) = + 

in addition to the assumptions always made that S l = d ^ , <54 = <^, 62 = 6~3, ¿2^3 — 
S<5, <54. Also from § 5, Q(jia) transforms the ¿-co-ordinates by the matrix 

(14. 3) 

I leave to the reader the routine verification that (14. 2) is invariant under the 
change of co-ordinates (14.3). This makes it clear that Q(JIX)LX = LX. It is also 
easy to see from (14. 3) how to choose that a such that Q(/Ix) will take a given ((, /;) 

on the upper boundary to the top point 0, — I. One gets the equation 

1 — a —a 

— a 1 a 2 — a 

— a ä 2 1 — a 

. loci2 — ä — a 1 , 

a~%+a£ = 2, and for |C|<1 this does have a root with |a|-=l. This establishes, 
transitivity, and completes the proof of the theorem. 

Note that for x = l, (i) says that A itself is a contraction, so (i)-w-(iv) for this 
case. The equivalence fails for higher x. Indeed, consider the Foguel—Halmos 
example [7] of a power-bounded operator. As A. L . SHIELDS pointed out to me, 
it is easy to see that it satisfies (iii) with x = 6, and on the other hand it is known 
that it does not satisfy (ii) for any x. Also, as was pointed out to me by S Z . - N A G Y 

and FOIA§, the Cayley transform of the example of MARKUS [10, § 4] is relevant 
here. It satisfies (iii) but does not satisfy (i) for any x; it is not clear whether it 
can be adjusted so as to satisfy (ii). 

Nevertheless, Lx cannot be replaced by any proper subset in the statement (0 1/x) 
q . It does not belong 

to any of the classes Ce, because its shell is an ellipsoid which is tangent to the 
unit sphere S at equatorial points, and hence is not a subset of any Kg or Ee (see § 13). 
A does obviously satisfy (i), with the same value of x\ and the same applies to 
eiSA for any real <5. But U^ s(ei3A) gives all of Lx above the equatorial plane. 

To Thm. 14. 1, which concerns the union of shells of operators similar to 
contractions, we may contrast this theorem about the intersections of the shells 
of operators similar to a fixed operator: 

Theorem 14.2. Assume dim § S3. Then conv (z(<Tn(A))) = fl s(T~1AT), 
the intersection being over all invertible T. 
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Proof . Since an(T~lAT) = an(A), Thm. 2. 3 tells us that x(aK(A))<^s(T-iAT);. 
then Thm. 10. 2 tells us that the same holds for the convex hull. This yields inclusion 
in one direction. 

For the converse, let p be any point of B not in conv (T^CJJA))); and let 
7i be any plane strictly separating p from z(<R„(A)). We will be done if we prove 
that, for some T, s(T~IAT) lies entirely in one of the closed half-spaces determined 
by % (necessarily, that closed half-space containing i(cr„(yl))). 

Let q be any point of S which lies neither in x(P(A)) nor in n. Applying a 
Möbius transformation, we can bring n to the equatorial plane, and in such a way 
that q goes to the north pole; see § 5. Since we chose q not to be in %(A(A)), the 
Möbius transform of A is still an operator and not just a relation, and the same 
applies to each T~1AT. Thus there is no loss of generality in assuming that n was 
the equatorial plane to begin with. Now there are two cases, depending on whether 
p and q are on the same side of n. 

Case I. Under the hypothesis that an(A) lies entirely in the open unit disc,, 
we are to prove that, for some T, \\T~1AT\\-&\. The following key argument is 
taken from S. HILDEBRANDT'S proof of the corresponding theorem for numerical 
ranges [9, Lemma 1 and Satz 4]. Because the spectral radius of Ais <1, we know 

A*"A" converges in norm. Its limit is a self-adjoint operator H, which, because 
o 
it is S i , must be invertible. Clearly A*HA = H-lsH. Setting T=H~i, we 
verify that \\T~lAT\\^\ as follows: for any x £ § , write x=T~ly, then 

WT-iATxW2 = I IT - ^ j I I 2 = y*A*HAy S y*Hy = Hr"1^!2 = ||x||2. 

Case II. Under the hypothesis that lies entirely outside the closed unit 
disc, we are to prove that, for some T, \\T~{ATx\\ =||x| | for all x. The idea of 
Hildebrandt can be modified as follows. Let B be the pseudo-inverse of A; that is, 
B restricted to is A~\ while B restricted to ^( / l ) - is 0. Then B is an every-
where-defined bounded operator, and BA = 1 because = {0}. Here <jn(B) Q 

U{0}; one way to see this is from Prop. 6. 4 and Prop. 3. 1. Thus the 

spectral radius of B is <1, and this time we set H= 2! B*"B"^ 1. Clearly A*HA = 
o 

= A*A + As before, set T=H~and compute for any x = T~'y, 

WT-'ATxf = ||T-'AyW2 = y*A*HAy S y*Hy = Hr^Vll2 = IWI2-

This completes the proof. 
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