Unitary dilations and coisometric extensions

By JAMES A. DEDDENS in Ann Arbor (Michigan, U.S.A.)*)

Let \mathfrak{H} be a complex Hilbert space, and let $\mathfrak{B}(\mathfrak{H})$ denote the algebra of bounded linear operators on \mathfrak{H} . For a subspace $\mathfrak{M} \subset \mathfrak{H}$, let $P_{\mathfrak{M}}$ denote the projection of \mathfrak{H} onto \mathfrak{M} . If S is a commutative semigroup with identity 0, then we say that $\mathscr{T} = \{T(g): g \in S\}$ is a semigroup of operators on \mathfrak{H} if $T(g) \in \mathfrak{B}(\mathfrak{H}), T(0) = I$, and $T(g_1 + g_2) = T(g_1)T(g_2)$ for all $g_1, g_2 \in S$. We write $\mathscr{T}^* = \{T(g)^*: g \in S\}$. A semigroup \mathfrak{D} of operators on $\mathfrak{H} \supset \mathfrak{H}$ is called a *dilation* of \mathscr{T} if $T(g) = P_{\mathfrak{H}}D(g)|\mathfrak{H}$ for all $g \in S$, while \mathfrak{D} is called an *extension* of \mathscr{T} if $T(g) = D(g)|\mathfrak{H}$ for all $g \in S$; here \mathfrak{H} must be invariant for D(g).

We first prove a theorem relating unitary dilations and coisometric extensions. The proof is an extension of a proof by Sz.-NAGY—FOIAS [3, p. 12] for the semigroup $S = Z^+$ (the additive semigroup of non-negative integers), and uses the following theorem of ITO [2]: Every isometric semigroup has a unitary extension.

Theorem 1. A semigroup $\mathcal{T} = \{T(g) : g \in S\}$ of operators on \mathfrak{H} has a unitary dilation if and only if it has a coisometric extension.

Proof. Let \mathscr{V}^* on $\mathfrak{R}_1 \supset \mathfrak{H}$ be a coisometric extension of \mathscr{T} . By Iro's theorem \mathscr{V} has a unitary extension \mathscr{U}^* on $\mathfrak{R}_2 \supset \mathfrak{R}_1$. But $V(g) = U(g)^* | \mathfrak{R}_1$ implies $V(g)^* = P_{\mathfrak{R}_1} U(g)^* | \mathfrak{R}_1$. Hence

$$T(g) = V(g)^* |\mathfrak{H} = P_{\mathfrak{H}}(P_{\mathfrak{H}} U(g)|\mathfrak{H}_1)|\mathfrak{H} = P_{\mathfrak{H}}U(g)|\mathfrak{H}.$$

So \mathcal{U} is a unitary dilation of \mathcal{T} .

Conversely, let \mathscr{U} on $\Re_2 \supset \mathfrak{H}$ be a unitary dilation of \mathscr{T} . Define \mathscr{V} on

$$\Re_1 = \bigvee_{g \in S} U(g)^* \mathfrak{H}$$
$$V(g) = U(g)^* | \mathfrak{H}_1;$$

by

$$\mathfrak{R}_1$$
 is invariant for \mathscr{U}^* and includes \mathfrak{H} . Hence

$$T(g) = P_{\mathfrak{H}}U(g)|_{\mathfrak{H}} = P_{\mathfrak{H}}(P_{\mathfrak{H}_{1}}U(g)|\mathfrak{H}_{1})|\mathfrak{H} = P_{\mathfrak{H}}V(g)^{*}|\mathfrak{H}.$$

*) This paper is part of the author's doctoral thesis, written under the direction of Dr. Peter Fillmore at Indiana University.

In order to prove that \mathscr{V}^* is an extension of \mathscr{T} we need only show that \mathfrak{H} is invariant for \mathscr{V}^* . Let Q be the projection onto $\mathfrak{K}_1 \ominus \mathfrak{H}$. If $x \in \mathfrak{H}$, then

$$V(g)x = T(g)^*x + (V(g) - T(g)^*)x.$$

Hence

$$QV(g)x = (V(g) - T(g)^*)x.$$

Since

$$V(g_1)(V(g) - T(g)^*) = (V(g_1 + g) - T(g_1 + g)^*) - (V(g_1) - T(g_1)^*)T(g)^*$$

and because

$$\mathfrak{K}_1 \ominus \mathfrak{H} = \mathcal{Q} \mathfrak{K}_1 = \bigvee_{g \in S} \mathcal{Q} V(g) \mathfrak{H} = \bigvee_{g \in S} (V(g) - T(g)^*) \mathfrak{H},$$

 $\mathfrak{R}_1 \ominus \mathfrak{H}$ is invariant for \mathscr{V} , or equivalently, \mathfrak{H} is invariant for \mathscr{V}^* .

For a set A, we now consider the special semigroup

 $S = Z^{+(A)} \equiv \{$ finitely non-zero functions from A to $Z^+ \}$.

For $g \in S$, supp $(g) \equiv \{\omega \in A : g(\omega) \neq 0\}$ is a finite set. For v a finite subset of A, let $\chi_v \in S$ be defined by:

$$\chi_{v}(\omega) = 1$$
 if $\omega \in v$, and $= 0$ otherwise,

and let |v| = the number of elements of v. If $\mathscr{T} = \{T(g): g \in S\}$ is a semigroup of operators, we write $T_{\omega} = T(\chi_{\{\omega\}})$ for $\omega \in A$. We say that \mathscr{T} is a *-commuting semigroup of operators, if $T_{\omega}T_{1}^{*} = T_{1}^{*}T_{\omega}$ for all ω , $\lambda \in A$, $\omega \neq \lambda$.

Our next theorem relates a particular kind of únitary dilation to an extension to a particular kind of coisometric semigroup. The former is called a Sz.-Nagy— Brehmer dilation [1] or a regular dilation [3] in the literature. It is natural to call the latter a *-commuting coisometric extension.

Theorem 2. If \mathcal{T} is a semigroup of operators on H with $S = Z^{+(A)}$, then the following are equivalent:

- (i) there exists a *-commuting coisometric extension of \mathcal{T} ;
- (ii) there exists a unitary dilation \mathcal{U} of \mathcal{T} satisfying

$$T(g_1)^* T(g_2) = P_H U(g_2) U(g_1)^* | H$$

for $g_1, g_2 \in S$ with disjoint supports;

(iii) for all finite subsets F of A, $\sum_{v \in F} (-1)^{|v|} T(\chi_v)^* T(\chi_v) \ge 0.$

Proof. That (ii) and (iii) are equivalent is Theorem 9.1 in Sz.-NAGY and FOIAS [3]. We will prove that (i) and (ii) are equivalent.

Unitary dilations and coisometric extensions

Let \mathscr{V}^* be a *-commuting coisometric extension on $\mathfrak{R}_1 \supset \mathfrak{H}$ of \mathscr{T} . Then by Ito's theorem there exists a unitary extension \mathscr{U}^* on $\mathfrak{R}_2 \supset \mathfrak{R}_1$ of \mathscr{V} . If $g_1, g_2 \in S$ have disjoint supports, then

$$T(g_{1})^{*}T(g_{2}) = P_{\mathfrak{H}}V(g_{1})|\mathfrak{H} \cdot V(g_{2})^{*}|\mathfrak{H} = P_{\mathfrak{H}}V(g_{1})V(g_{2})^{*}|\mathfrak{H}$$

= $P_{\mathfrak{H}}V(g_{2})^{*}V(g_{1})|\mathfrak{H}$ by *-commutativity
= $P_{\mathfrak{H}}[P_{\mathfrak{H}_{1}}U(g_{2})|\mathfrak{H}_{1} \cdot U(g_{1})^{*}|\mathfrak{H}_{1}]|\mathfrak{H} = P_{\mathfrak{H}}U(g_{2})U(g_{1})^{*}|\mathfrak{H},$

so that \mathscr{U} is a unitary dilation of \mathscr{T} satisfying (ii).

On the other hand, let \mathscr{U} on $\mathfrak{R}_2 \supset \mathfrak{H}$ be a unitary dilation of \mathscr{T} , which satisfies (ii). As in the proof of Theorem 1, if

(1)
$$\Re_1 = \bigvee_{g \in S} U(g)^* \mathfrak{H}$$
 and $V(g) = U(g)^* | \mathfrak{K}_1$

then

(2)
$$T(g) = V(g)^*|\mathfrak{H}$$

Thus \mathscr{V}^* on $\mathfrak{R}_1 \supset \mathfrak{H}$ is a coisometric extension of \mathscr{T} . We need only show that \mathscr{V}^* is a *-commuting semigroup.

If $g_1, g_2 \in S$ have disjoint supports, then, by (ii) and (1),

(3)
$$T(g_1)^* T(g_2) = P_{\mathfrak{H}} U(g_2) U(g_1)^* | \mathfrak{H} = P_{\mathfrak{H}} V(g_2)^* V(g_1) | \mathfrak{H}.$$

Also, by (2)

(4)
$$T(g_1)^*T(g_2) = P_{\mathfrak{H}}V(g_1)|\mathfrak{H} \cdot V(g_2)^*|\mathfrak{H} = P_{\mathfrak{H}}V(g_1)V(g_2)^*|\mathfrak{H}.$$

Subtracting (3) from (4) we obtain

(5)
$$P_{\mathfrak{s}}(V(g_1)V(g_2)^* - V(g_2)^*V(g_1))|\mathfrak{H} = 0,$$

for $g_1, g_2 \in S$ with disjoint supports.

We claim that for all $g \in S$

(6)
$$P_{\mathfrak{H}}V(g)^{*}(V(g_{1})V(g_{2})^{*}-V(g_{2})^{*}V(g_{1}))|\mathfrak{H}=0.$$

We first remark that it is sufficient to prove (6) for g such that g and g_1 have disjoint supports. (Note that $V(g)^*V(g_1) = V(g')^*V(g'_1)$ where g' and g'_1 have disjoint supports. In fact take $g' = g - \min(g, g_1)$ and $g'_1 = g_1 - \min(g, g_1)$.) Let $g \in S$ be such that supp (g) is disjoint from supp (g_1) . Then supp $(g+g_2)$ is disjoint from supp (g_1) , so that (5) implies

(7)
$$P_{\mathfrak{H}}(V(g_1)V(g+g_2)^* - V(g+g_2)^*V(g_1))|\mathfrak{H} = 0,$$

and

(8)
$$P_{\mathfrak{H}}(V(g_1)V(g)^* - V(g)^*V(g_1))|\mathfrak{H} = 0.$$

Multiplying in (8) by $V(g_2)^*|\mathfrak{H}$ from the right, and subtracting from (7), we obtain (6).

Since **𝒴**[∗] acts on

$$\Re_1 = \bigvee_{g \in S} V(g) \mathfrak{H}$$

and since $P_{V(g)\mathfrak{H}} = V(g)P_{\mathfrak{H}}V(g)^*$, (6) implies

(9)
$$(V(g_1)V(g_2)^* - V(g_2)^*V(g_1))|\mathfrak{H} = 0$$

for $g_1, g_2 \in S$ with disjoint supports.

We now claim that for all $g \in S$

(10)
$$(V(g_1)V(g_2)^* - V(g_2)^*V(g_1))V(g)|\mathfrak{H} = 0.$$

As above we need only prove (10) for $g \in S$ such that g and g_2 have disjoint supports. We use (9) to obtain

(11)
$$(V(g_1+g)V(g_2)^* - V(g_2)^*V(g_1+g))|\mathfrak{H} = 0,$$

and

(12)
$$(V(g)V(g_2)^* - V(g_2)^*V(g))|\mathfrak{H} = 0.$$

Multiplying in (12) by $V(g_1)$ from the left and substracting from (11) we obtain (10). But (10) implies

$$V(g_1)V(g_2)^* - V(g_2)^*V(g_1) = 0,$$

for $g_1, g_2 \in S$ with disjoint supports. In particular for $g_1 = \chi_{\{\omega\}}, g_2 = \chi_{\{\lambda\}}$ with $\omega, \lambda \in A, \omega \neq \lambda$. Thus \mathscr{V}^* is a *-commuting coisometric semigroup.

Bibliography

- [1] I. HALPERIN, Sz.-Nagy-Brehmer dilations, Acta Sci. Math., 23 (1962), 279-289.
- [2] T. Iro, On the commutative family of subnormal operators, J. Fac. Sci. Hokkaido Univ., 14 (1958), 1-15.
- [3] B. SZ.-NAGY-C. FOIAȘ, Analyse harmonique des opérateurs de l'espace de Hilbert (Budapest, 1967).

(Received September 20, 1969)