# Unitary dilations and coisometric extensions 

By JAMES A. DEDDENS in Ann Arbor (Michigan, U.S.A.) *)

Let $\mathfrak{G}$ be a complex Hilbert space, and let $\mathfrak{B}(\mathfrak{5})$ denote the algebra of bounded linear operators on $\mathfrak{5}$. For a subspace $\mathfrak{M} \subset \mathfrak{G}$, let $P_{\mathfrak{M}}$ denote the projection of $\mathfrak{G}$ onto $\mathfrak{M}$. If $S$ is a commutative semigroup with identity 0 , then we say that $\mathscr{T}=\{T(g): g \in S\}$ is a semigroup of operators on $\mathfrak{J}$ if $T(g) \in \mathfrak{B}(\mathfrak{F}), T(0)=I$, and $T\left(g_{1}+g_{2}\right)=T\left(g_{1}\right) T\left(g_{2}\right)$ for all $g_{1}, g_{2} \in S$. We write $\mathscr{T}^{*}=\left\{T(g)^{*}: g \in S\right\}$. A semigroup $\mathscr{D}$ of operators on $\mathfrak{G} \supset \mathfrak{Y}$ is called a dilation of $\mathscr{T}$ if $T(g)=P_{5} D(g) \mid \mathfrak{W}$ for all $g \in S$, while $\mathscr{D}$ is called an extension of $\mathscr{T}$ if $T(g)=D(g) \mid \mathfrak{G}$ for all $g \in S$; here 5 must be invariant for $D(g)$.

We first prove a theorem relating unitary dilations and coisometric extensions. The proof is an extension of a proof by Sz.-NaGY-FoIAS [3, p. 12] for the semigroup $S=Z^{+}$(the additive semigroup of non-negative integers), and uses the following theorem of ITO [2]: Every isometric semigroup has a unitary extension.

Theorem 1. A semigroup $\mathscr{T}=\{T(g): g \in S\}$ of operators on $\mathfrak{G}$ has a unitary dilation if and only if it has a coisometric extension.

Proof. Let $\mathscr{V}^{*}$ on $\Omega_{1} \supset \mathfrak{S}$ be a coisometric extension of $\mathscr{T}$. By ITo's theorem $\mathscr{V}$ has a unitary extension $\mathscr{U}^{*}$ on $\Omega_{2} \supset \Omega_{1}$. But $V(g)=U(g)^{*} \mid \Omega_{1}$ implies $V(g)^{*}=$ $=P_{\Omega_{1}} U(g)^{*} \mid \Omega_{1}$. Hence

$$
T(g)=V(g)^{*}\left|\mathfrak{G}=P_{\mathfrak{5}}\left(P_{\Omega_{1}} U(g) \mid \Omega_{1}\right)\right| \mathfrak{G}=P_{\mathfrak{5}} U(g) \mid \mathfrak{S} .
$$

So $\mathscr{U}$ is a unitary dilation of $\mathscr{T}$.
Conversely, let $\mathscr{U}$ on $\mathfrak{K}_{2} \supset \mathfrak{5}$ be a unitary dilation of $\mathscr{T}$. Define $\mathscr{V}$ on

$$
\begin{gathered}
\Omega_{1}=\bigvee_{g \in S} U(g)^{*} \mathfrak{G} \\
V(g)=U(g)^{*} \mid \Omega_{1} ;
\end{gathered}
$$

by
$\Omega_{1}$ is invariant for $\mathscr{U}^{*}$ and includes 5 . Hence

$$
T(g)=\left.P_{\mathfrak{5}} U(g)\right|_{\mathfrak{5}}=P_{\mathfrak{5}}\left(P_{\mathfrak{\Omega}_{1}} U(g) \mid \Omega_{1}\right)\left|\mathfrak{S}=P_{\mathfrak{5}} V(g)^{*}\right| \mathfrak{G} .
$$

[^0]In order to prove that $\mathscr{V}^{*}$ is an extension of $\mathscr{T}$ we need only show that $\mathfrak{W}$ is invariant for $\mathscr{V}^{*}$. Let $Q$ be the projection onto $\Omega_{1} \ominus \mathfrak{G}$. If $x \in \mathfrak{S}$, then

$$
V(g) x=T(g)^{*} x+\left(V(g)-T(g)^{*}\right) x
$$

Hence

$$
Q V(g) x=\left(V(g)-T(g)^{*}\right) x
$$

Since

$$
V\left(g_{1}\right)\left(V(g)-T(g)^{*}\right)=\left(V\left(g_{1}+g\right)-T\left(g_{1}+g\right)^{*}\right)-\left(V\left(g_{1}\right)-T\left(g_{1}\right)^{*}\right) T(g)^{*}
$$

and because

$$
\mathfrak{\Re}_{1} \ominus \mathfrak{H}=Q \mathfrak{\Omega}_{1}=\bigvee_{g \in S} Q V(g) \mathfrak{H}=\bigvee_{g \in S}\left(V(g)-T(g)^{*}\right) \mathfrak{H}
$$

$\Omega_{1} \Theta \mathfrak{J}$ is invariant for $\mathscr{V}$, or equivalently, $\mathfrak{H}$ is invariant for $\mathscr{V}^{*}$.
For a set $A$, we now consider the special semigroup

$$
S=Z^{+(A)} \equiv\left\{\text { finitely non-zero functions from } A \text { to } Z^{+}\right\}
$$

For $g \in S$, $\operatorname{supp}(g) \equiv\{\omega \in A: g(\omega) \neq 0\}$ is a finite set. For $v$ a finite subset of $A$, let $\chi_{\nu} \in S$ be defined by:

$$
\chi_{v}(\omega)=1 \quad \text { if } \omega \in v, \quad \text { and }=0 \quad \text { otherwise }
$$

and let $|v|=$ the number of elements of $v$. If $\mathscr{T}=\{T(g): g \in S\}$ is a semigroup of operators, we write $T_{\omega}=T\left(\chi_{\{\omega\}}\right)$ for $\omega \in A$. We say that $\mathscr{T}$ is a ${ }^{*}$-commuting semigroup of operators, if $T_{\omega} T_{\lambda}^{*}=T_{\lambda}^{*} T_{\omega}$ for all $\omega, \lambda \in A, \omega \neq \lambda$.

Our next theorem relates a particular kind of únitary dilation to an extension to a particular kind of coisometric semigroup. The former is called a Sz.-NagyBrehmer dilation [1] or a regular dilation [3] in the literature. It is natural to call the latter a ${ }^{*}$-commuting coisometric extension.

Theorem 2. If $\mathscr{T}$ is a semigroup of operators on $H$ with $S=Z^{+(A)}$, then the following are equivalent:
(i) there exists $a{ }^{*}$-commuting coisometric extension of $\mathscr{T}$;
(ii) there exists a unitary dilation $\mathscr{U}$ of $\mathscr{T}$ satisfying

$$
T\left(g_{1}\right)^{*} T\left(g_{2}\right)=P_{H} U\left(g_{2}\right) U\left(g_{1}\right)^{*} \mid H
$$

for $g_{1}, g_{2} \in S$ with disjoint supports;
(iii) for all finite subsets $F$ of $A, \sum_{v \subset F}(-1)^{|v|} T\left(\chi_{v}\right)^{*} T\left(\chi_{v}\right) \geqq 0$.

Proof. That (ii) and (iii) are equivalent is Theorem 9.1 in Sz.-NAGy and FoIAş [3]. We will prove that (i) and (ii) are equivalent.

Let $\mathscr{V}^{*}$ be a ${ }^{*}$-commuting coisometric extension on $\boldsymbol{\Omega}_{1} \supset \mathfrak{S}$ of $\mathscr{T}$. Then by Iro's theorem there exists a unitary extension $\mathscr{U}^{*}$. on $\Omega_{2} \supset \Omega_{1}$ of $\mathscr{V}$. If $g_{1}, g_{2} \in S$ have disjoint supports, then

$$
\begin{aligned}
& T\left(g_{1}\right)^{*} T\left(g_{2}\right)=P_{5} V\left(g_{1}\right)\left|\mathfrak{G} \cdot V\left(g_{2}\right)^{*}\right| \mathfrak{H}=P_{\mathfrak{5}} V\left(g_{1}\right) V\left(g_{2}\right)^{*} \mid \mathfrak{G} \\
& \quad=P_{\mathfrak{5}} V\left(g_{2}\right)^{*} V\left(g_{1}\right) \mid \mathfrak{S} \quad \text { by }{ }^{*} \text {-commutativity } \\
& \quad=P_{5}\left[P_{\mathfrak{\Omega}_{1}} U\left(g_{2}\right)\left|\Omega_{1} \cdot U\left(g_{1}\right)^{*}\right| \Omega_{1}\right]\left|\mathfrak{G}=P_{\mathfrak{5}} U\left(g_{2}\right) U\left(g_{1}\right)^{*}\right| \mathfrak{H}
\end{aligned}
$$

so that $\mathscr{U}$ is a unitary dilation of $\mathscr{T}$ satisfying (ii).
On the other hand, let $\mathscr{U}$ on $\mathfrak{S}_{2} \supset \mathfrak{S}$ be a unitary dilation of $\mathscr{T}$, which satisfies (ii). As in the proof of Theorem 1, if

$$
\begin{equation*}
\Omega_{1}=\bigvee_{g \in S} U(g)^{*} \mathfrak{G} \quad \text { and } \quad V(g)=U(g)^{*} \mid \Omega_{1} \tag{1}
\end{equation*}
$$

then

$$
\begin{equation*}
T(g)=V(g)^{*} \mid \mathfrak{S} \tag{2}
\end{equation*}
$$

Thus $\mathscr{V}^{*}$ on $\Omega_{1} \supset \mathfrak{5}$ is a coisometric extension of $\mathscr{T}$. We need only show that $\mathscr{V}^{*}$ is a ${ }^{*}$-commuting semigroup.

If $g_{1}, g_{2} \in S$ have disjoint supports, then, by (ii) and (1),

$$
\begin{equation*}
T\left(g_{1}\right)^{*} T\left(g_{2}\right)=P_{\mathfrak{5}} U\left(g_{2}\right) U\left(g_{1}\right)^{*}\left|\mathfrak{H}=P_{\mathfrak{5}} V\left(g_{2}\right)^{*} V\left(g_{1}\right)\right| \mathfrak{G} \tag{3}
\end{equation*}
$$

Also, by (2)

$$
\begin{equation*}
T\left(g_{1}\right)^{*} T\left(g_{2}\right)=P_{\mathfrak{5}} V\left(g_{1}\right)\left|\mathfrak{S} \cdot V\left(g_{2}\right)^{*}\right| \mathfrak{S}=P_{\mathfrak{5}} V\left(g_{1}\right) V\left(g_{2}\right)^{*} \mid \mathfrak{S} \tag{4}
\end{equation*}
$$

Subtracting (3) from (4) we obtain

$$
\begin{equation*}
P_{5}\left(V\left(g_{1}\right) V\left(g_{2}\right)^{*}-V\left(g_{2}\right)^{*} V\left(g_{1}\right)\right) \mid \mathfrak{S}=0 \tag{5}
\end{equation*}
$$

for $g_{1}, g_{2} \in S$ with disjoint supports.
We claim that for all $g \in S$

$$
\begin{equation*}
P_{5} V(g)^{*}\left(V\left(g_{1}\right) V\left(g_{2}\right)^{*}-V\left(g_{2}\right)^{*} V\left(g_{1}\right)\right) \mid \mathfrak{Y}=0 \tag{6}
\end{equation*}
$$

We first remark that it is sufficient to prove (6) for $g$ such that $g$ and $g_{1}$ have disjoint supports. (Note that $V(g)^{*} V\left(g_{1}\right)=V\left(g^{\prime}\right)^{*} V\left(g_{1}^{\prime}\right)$ where $g^{\prime}$ and $g_{1}^{\prime}$ have disjoint supports. In fact take $g^{\prime}=g-\min \left(g, g_{1}\right)$ and $g_{1}^{\prime}=g_{1}-\min \left(g, g_{1}\right)$.) Let. $g \in S$ be such that $\operatorname{supp}(g)$ is disjoint from $\operatorname{supp}\left(g_{1}\right)$. Then supp $\left(g+g_{2}\right)$ is disjoint from $\operatorname{supp}\left(g_{1}\right)$, so that (5) implies

$$
\begin{equation*}
P_{5}\left(V\left(g_{1}\right) V\left(g+g_{2}\right)^{*}-V\left(g+g_{2}\right)^{*} V\left(g_{1}\right)\right) \mid \mathfrak{G}=0 \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{\mathfrak{5}}\left(V\left(g_{1}\right) V(g)^{*}-V(g)^{*} V\left(g_{1}\right)\right) \mid \mathfrak{G}=0 \tag{8}
\end{equation*}
$$

. Multiplying in (8) by $V\left(g_{2}\right)^{*} \mid \mathfrak{G}$ from the right, and subtracting from (7), we obtain (6).

Since $\mathscr{V}^{*}$ acts on

$$
\mathfrak{R}_{1}=\bigvee_{g \in S} V(g) \mathfrak{W}
$$

and since $P_{V(g) \mathfrak{G}}=V(g) P_{55} V(g)^{*}$, (6) implies

$$
\begin{equation*}
\left(V\left(g_{1}\right) V\left(g_{2}\right)^{*}-V\left(g_{2}\right)^{*} V\left(g_{1}\right)\right) \mid \mathfrak{G}=0 \tag{9}
\end{equation*}
$$

for $g_{1}, g_{2} \in S$ with disjoint supports.
We now claim that for all $g \in S$

$$
\begin{equation*}
\left(V\left(g_{1}\right) V\left(g_{2}\right)^{*}-V\left(g_{2}\right)^{*} V\left(g_{1}\right)\right) V(g) \mid \mathfrak{G}=0 \tag{10}
\end{equation*}
$$

As above we need only prove (10) for $g \in S$ such that $g$ and $g_{2}$ have disjoint supports. We use (9) to obtain

$$
\begin{equation*}
\left(V\left(g_{1}+g\right) V\left(g_{2}\right)^{*}-V\left(g_{2}\right)^{*} V\left(g_{1}+g\right)\right) \mid \mathfrak{G}=0 \tag{11}
\end{equation*}
$$

and

Multiplying in (12) by $V\left(g_{1}\right)$ from the left and substracting from (11) we obtain (10). But (10) implies

$$
V\left(g_{1}\right) V\left(g_{2}\right)^{*}-V\left(g_{2}\right)^{*} V\left(g_{1}\right)=0
$$

for $g_{1}, g_{2} \in S$ with disjoint supports. In particular for $g_{1}=\chi_{\{\omega\}}, g_{2}=\chi_{\{\lambda\}}$ with $\omega, \lambda \in A, \omega \neq \lambda$. Thus $\mathscr{V}^{*}$ is a ${ }^{*}$-commuting coisometric semigroup.

## Bibliography

[1] I. Halperin, Sz-Nagy-Brehmer dilations, Acta Sci. Math., 23 (1962), 279-289.
[2] T. Ito, On the commutative family of subnormal operators, J. Fac. Sci. Hokkaido Univ., 14 (1958), 1-15.
[3] B. Sz.-Nagy-C. Foias, Analyse harmonique des opérateurs de l'espace de Hilbert (Budapest, 1967).


[^0]:    ${ }^{*}$ ) This paper is part of the author's doctoral thesis, written under the direction of Dr. Peter Filimore at Indiana University.

