
On operator representations of function algebras 
By D U M I T R U GA§PAR in Timijoara (S. R. Roumania) 

In this note we are going to study contractive representations of function 
algebras. We shall determine the structure of the representations of a special class 
of function algebras. The final result is a generalization of those given by D . SARASON 

in [8]. 

§ 1. Introduction 

1. Let X be a compact Hausdorff space, C(X) the algebra of all continuous 
complex functions on X, and A a function algebra on X (i.e. a closed subalgebra 
of C(X) which contains the constants and separates the points of X). Denote by 
MA = M the maximal ideal space, by A the image of the Gelfand representation 
of A. Suppose that each complex homomorphism of A has a unique representing 
measure. Fix 6 in the Gleason part 0> of M, and denote by m its representing measure. 

We write A0 for the kernel of 9. H°°(pi), Hq(WI) are defined (as usual) as the 
vv*-closure of A, A0, respectively, in L°°(m). For l S p < ™ , Hp(m), Hp(m) are 
also defined as the closures of A, A0 in Lp(m), respectively. 

Let Fbe the space of the maximal ideals of L°°(m), and identify L°°(m) with C(Y) 
via the Gelfand representation. Under this representation, i?°°(m) is mapped onto 
a subalgebra of C(Y). H°°(m) is logmodular on Y, and consequentely its 
Shilov boundary is exactly Y. It is known*) that each can be uniquely 
extended to a continuous linear functional # on H2{m), multiplicative on H°°{m). 
Also & = {%, is the Gleason part of H°°(m) containing 0. Denote by m the 
representing measure (which is supported on Y) for 9. 

The following result will play an important role in the sequel: 
If & is a non-trivial Gleason part of M, i.e. it consists of more than one point, 

then there exists an inner function Z £ H°°{m) such that //¿¡°(m) = ZH°°{m). (See [2], 
chap. VI th. 7. 1. and 7. 2.) 

We shall need the following: 

*) For references of this section see for instance [2]. 
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P r o p o s i t i o n 1. The following are equivalent for a non-trivial Gleason part 0>\ 

(a) The map x : g —• where an= gZ"dm, is an isometric isomorphism 
o 

of IIe"(ni) onto the Hardy algebra i f " . 
(b) If J is the ideal of all g£H~(m) with g(x) = 0 for X£&, then J=0. 
(c) The linear span of {Z"}~ is w*-dense in H°°(m). 

Proof . This follows easily from [2], exc. 6. p. 141 and from discussion on 
p. 163 of MERRILL'S paper [4]. 

We note that there exist algebras. for which the conditions of proposition 1 
hold true. (See [4], §§ 2, 3.) 

Finally we note that for the function Z the following theorem holds: 
If there is a uniformly closed algebra B in L"(m)' strictly containing H°°(m), 

then Z~l Ç.B. 
The proof is similar to that of the theorem of section "Maximality" in [3], 

•chap. 10, and makes use of the relation: 

L\m) = H2(m)®H#m). 

2. We start this section with giving definitions concerning representations 
•of function algebras. (See [1], [5].) 

Let A be a function algebra on X, and H a complex Hilbert space. By definition 
a contractive representation of A on H is an. algebra homomorphism /-—7/ of 
A into the algebra 38(H) of all bounded linear operators on H such that Tx is the 
identity operator and 
<*) l|7>||S||/|| (fdA). 

The representation /->- Tf of A on H is called X-reducing if it is the restriction 
to A of a representation of C(X) on H. A subspace of H is called X-reducing if 
it reduces the representation / - * Tf to an X-reducing one. The représentation f -+Tf 

of A on H is called X-pure if {0} is the only Z-reducing subspace for it. The represent-
ation f—Tf is called X-dilatable if there exists a representation (p U^ of C(X) 
on K such that K contains H as a subspace, and 

Tjx — Pufx {fÇ.A\xÇ.H), 

where P is the orthogonal projection of K onto H\ the representation (p -» U^ is then 
called the X-dilation of the representation f—Ts. A contractive representation of 
A on H is X-maximal, if there is no algebra B distinct from A and C(X), satisfying 
AczBczC(X) and having a representation on H which coincides on A with the 
initial one. 
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. Now by the theorems of Hahn—Banach and Riesz—Kakutani, we observe 
that there exists a family {px<y} of measures on X such that 

(TjX, y) = Jf dpx,y ( f Z A ; . x , y Z H ) . 

Such a family {px,y} is called a family of elementary measures. By definition the 
representation f-»Tf is called continuous if there exists a family {px,y} of ele-
mentary measures such tha tp X i y is, for all x, y£H, absolutely continuous with 
respect to m. If there exists a family {px,y} of elementary measures such that pxy 

is, for all x, y£H, singular with respect to all representing measures for A, then 
the representation is called completely singular. 

A ^-continuous representation f~~Tf of A on H has the following properties 
(see [5]): 

(i)f-*Tf has a unique extension to a representation g ->- tg of H°°(m) on H; 
here ( * ) is to be replaced by 

(*.') Il^ll 35 M.= llsll (g£H-{m)): •;. 

(ii) There is a unique semi-spectral measure F on X, absolutely continuous 
with respect to m, such that 

. fg = JgdF (gdH~(m)). 

Therefore by Neumark's theorem f~*Ts is an X-dilatable representation. 
(iii) The extension g^-Tg is ^-continuous, hence there exists a semi-spectral 

measure F on Y, absolutely continuous with respect to m, such that 

Tg = fgdF (g 6(/;;))• 

We also mention the following supplementary properties: 
(iv) If the representation f— Tf is X-pure, then the extended representation 

g-*Tg is Y-pure. 
(v) This extension is Y-maximal if and'only if f z is a non-unitary contraction. 

Proof . Ad (iv). We suppose that Hu is a 7-reducing subspace for g—fg. 
Then g — f g = Tg\HU is an y-reducing representation, and for the continuous func-
tions on X we have: 

! / • - ! ?= \<PU^ M ; • 

so H" is an X-reducing subspace for the initial representation as well, and this 
is a contradiction. 

Ad (v). If the representation g~*Tg of H°°{m) is not 7-maximal, then there is 
an extension of the initial representation to a subalgebra of L°°(m) containing 
H°°(m). Then by the final remark of section 1, f Z - i makes sense and the relation 
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fztz.i = f z . i f z = I contradicts the non-unitarity of Tz. Conversely, if the repre-
sentation g-*fg is Y-maximal, then f z is non-unitary, since otherwise there would 
be an obvious extension of the representation g-+tg (g£H°°(m)) to the algebra 
generated by H°°(m) and Z - 1 , implying fz_i = t*. 

§ 2. The structure of the representations for some function algebras 

1. Let D be the open unit, disc, and si the algebra consisting of those functions 
continuous in the closure D of D which are analytic on D. It is known that D is 
the Gleason part containing the O-homomorphism, and the (unique) representing 
measure for 0 is the normalized Lebesgue measure p on the unit circle dD (which 
is the Shilov boundary of si). The algebra H°°(n) coincides with the Hardy algebra 

. II°° if we identify each function of H°° with its boundary values. (See [2], chap. 
II, sec. 4). Denote by F the maximal ideal space of L°°(ji). 

In this section'we prove: 

Theorem 1. Let g-*Tg be a contractive D-continuous representation of 
on a Hilbert space H. Then: 

(a) If T= Teit, then and 

Tg=g(T) (gtHn, 

where the right-hand term is defined by the functional calculus of [7] chap. III. 
(b) If the representation g Tg is T-pure, then T is a completely non-unitary 

contraction on H. 

Proof , (a) It is easy to prove that the restriction of the initial representation 
to si is a contractive representation of .s/ which is D-continuous. Then, by (ii), 
there exists a semi-spectral measure E on dD, absolutely continuous with respect 
to n, such that 

(Tgx, y) '= jgd(Ex,y) (geH"; x, y£H). 

Now by an easy computation we deduce: 

(1) T g r ^T g strongly as r - 1 , 
CO 

where gr{eu) = g{reu), g£H°°. Since the Fourier series 2a„emt of gr(e") is absolutely 
• o 

and uniformly convergent, it is immediate that 

(2) 

CO 

TBr = Z"„T" - gr(T). 
o 
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Then from the definition of H? *) it follows that g £ and by (1) and (2) we obtain 

Tg = g{T) (g£H~). 

Point (b) results easily from (a) and by the remark that the /"-purity of 
the representation g-*Tg implies the e)Z>-purity of its restriction to si. Now, the 
dD-purity of the representation / — f ( T ) ( / € ¿4) is equivalent to the fact that T is a 
completely non-unitary contraction (See [8]). 

2. Now we return to an arbitrary function algebra A. The notations and the 
hypothesis given in sec. 1, § 1 are the same. In the following we assume that the 
conditions of proposition 1 hold true for the non-trivial Gleason part 8P. If z* 
is the adjoint of the isometry z of proposition 1, then it is immediate that z*(MHJ) = 
= Afw~(m), and z*(r).= Y. Consequently z can be extended to an isometric iso-

morphism of LT(rri) onto L°°(ji). It is also clear that z*0) = 0>. 
Now let f-*Tj be a (contractive) representation of H°°(m) on H. Then it is 

obvious that the map: g-*Sg = T f , zf—g is a representation of H°° on H. The 
following lemma is almost immediate. 

Lemma 1. (a) If the representation f -*Tf is Y-pure, then the representation 
g — Sg is T-pure. 

(b) If the representation f—Tf is 2P-continuous, then g-+Sg is f)-continuous. 
Moreover if F is the Semi-spectral measure of the representation f — T f , then z*F 
is the semi-spectral measure for the representation g Sg. 

We are now able to prove our main result. 

Theorem 2. Let f—Tf be a 3P-continuous representation of A on the Hilbert 
space H, and g~*Tg the extended representation given in (i). If T—fz, then for each 
g d Hm(jn) we have zg£H^ and 

Tg = (zg)(T) (giH~(m)). 

If the representation is X-purejjhen: • 
(a) T is a completely non-unitary contraction on H; 
(b) the extended representation g—Tg is Y-maximal; 
(c) the semi-spectral measure F, defined by (ii), is equivalent to m; 
(d) for each x£H, x^O, the logarithm of the Radon-Nikodym derivative of 
(E(-)x, x) with respect to m is in L'(m). 

*) For the definition of H £ see [7] chap. III. 
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Proof . The first statement follows by combining (iii) and Lemma 1 with 
point (a) of Theorem 1. Since xZ=e u , point (a) follows by using Lemma 1 
and point (b) of Theorem 1. By (v), (a) implies (b). For (c), it remains only to 
prove that m is absolutely continuous with respect to F. If E is the semi-spectral 
measure (on dD) of T, one can prove easily (by using the uniqueness of elementary 
measures {(Fx, j>)} and point (b) of Lemma 1) that 

(3) J{¡j d(Fx, y) = Jit// d(Ex, y) (ip£L"(m); x,y£H). 

Now by (3) and by Szego's theorem, we deduce 

r d(Fx, x) (• d(Ex, x) , 
CXP Jlog dm = exp Jl0g dn 

Therefore by Proposition 6. 5, chap. II of [7] concerning ¿t-summability of 
d(Fx,x) 

log ——-— , (d) follows. Now(d) implies in particular that m is absolutely continuous 
dp 

with respect to F. This completes the proof. 

3. Point (d) in the preceding theorem is due to W. MLAK.*) Moreover 
W. MLAK indicated us the following direct proof of (a), (c), (d). 

Let / — 7 / be a contractive ^"-continuous, representation of A on H. According 
to Theorem 1 of [1], the representation /— Tf is a uniquely determined orthogonal 
sum of an X-reducing representation f—Tf and an Z-pure representation f-+Tf, 
corresponding to the decomposition H" © H° of H. On the other hand, by (ii), the 
representation f~*Tf is X-dilatable. Denote by (p — U^, this dilation, and by K the 
dilation space. We prove the following lemma. 

Lemma 2. If for some x£H: 

(?) i n f / | l - / | 2 r f ( F x , x ) = = 0 , , 

then W=\/ UnxaH". (Here U means Uz). 
ii — 

Proof . First we prove that (y) implies 

(5) ||r«*|| = ||*|| = ||r*"x|| (n — 0,1,2, ...). 
CO 

If f£A0cHo (m), then / = Zg, where g£H°°(m). Let R= V Unx, and let Q be the 
o . 

orthogonal projection of K on R. Then 

((I-Q)Ugx,y) = (Ugx-s,(I-Q)y) (sen, yeK). 

. *) Private communication. 
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Let £>0. By (c) of Proposition 1 there is an gt = ^ akUkx (finite sum) such that: 
(caO 

\{Ugx-st, ( / - Q)y)I = \{{g-2 akZk)h dm 
*so 

h = d{Fx,{I-Q)y)\ 
dm )' 

It follows that Ugx € i?. Consequentely x£ V U"x, by (y). Now by Lemma 6. 4, 

p. 44 of [6] and by obvious symmetry (<5) holds true. To obtain W<zHu, it is sufficient 
to prove (by (è)) that for z = Ufx (f£A) we have (7—P)z = 0. (Here P i s the ortho-
gonal projection of K onto H.) For s£H we have, for any y£K, ((I—P)z , y) = 
= Uz—s), (I-P)y). Let £>0. By (c) of Proposition 1, there is an ss = ^akJJkx 

ksO 
(finite sum), which by (6) is contained in H, such that 

|(z-,£, (I-P)y)I = \f(f-k2akZk)hdm\ < £ [h = d { F X ' ( j - P ) y ) \ . 

It follows by the arbitrariness of y that z = Pz. By symmetry we have Ufx Ç H, . 
which completes the proof. 

Now, if the representation f~*Tf is X-pure, then Lemma 2 implies that T=tz 

d(Fx,x) 
is c.n.u. and using Szegô's theorem we get that log —£L l(m) for any x£H, 

dm 
x^O. This last property shows that m is absolutely continuous with respect to F. 

4. Let {3?o)aii be the set of all Gleason parts of. the function algebra A, and 
{^a}ae/0 the set of those non-trivial Gleason parts for which the conditions of Propo-
sition 1 hold true. If a £ / 0 , then we denote by ra the isomorphism introduced in 
Proposition 1, corresponding to the Gleason part S?A. 

Let f^»Tf be a contractive representation of A on H, and 

Tf = Tf®Tf (f£A) 

its decomposition given by Theorem 1 of [1]. To the Z-pure representation / — 7 ^ 
we apply the Mlak's decomposition (see [5]) : 

T° = ©T;®77 ( f t A), 
ail 

where /— T* is the ^-continuous part (a £ I), and f-*T°f is the comletely singular 
part of the representation f—T°. Now for the ^-continuous parts we apply the 
Theorem 2 and finaly we obtain : 

T h e o r e m 3. A contractive representation f-*Tf of A on H is a uniquely deter-
mined orthogonal Sum of the form: 

Tf = 7}"© © (TJ)(TX)® © 7 7 0 77 ( f £ A), 
a£/o «Î/o 
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where f is an X-reducing representation, Ta are completely non-unitary 
contractions (oc£/0), f-*T} ( a a r e .¡Pa-continuous and X-pure representations, 
and f — Tj- is an X-pure and completely singular representation. 

References 

[1] C. FOIA§—I. Suciu, Szego measures and spectral theory in Hilbert space, Rev. roum. math, pures 
et appl., 11 (1966), 147—159. 

[2] T. GAMELIN, Uniform algebras (Englewood ClifTs, N. J., 1969). 
{3] K . HOFFMAN, Banach spaces of analytic functions (Englewood Cliffs, N . J., 1962 ) . 

[4] S . MERRILL, Maximality of certain algebras H°°(dm), Math. Zeitschr., 106 ( 1 9 6 8 ) , 2 6 1 — 2 6 6 . 

• [5] W. MLAK, Decompositions and extensions of operator valued representations of function algebras, 
Acta Sci. Math., 30 ( 1 9 6 9 ) , 1 8 1 — 1 9 3 . 

[6] W. MLAK, Unitary dilations of contraction operators, Rozprawy Matematyczne, XLVI (1965). 
[7] B. S Z . - N A G Y — C . FOIA?, Analyse harmonique des operateurs de I'espace de Hilbert (Buda-

pest—Paris, 1967). 
[8] D . SARASON, On spectral sets having connected complement, Acta Sci. Math., 26 ( 1 9 6 5 ) . 

289—299. 

(Received October 8, 1968; revised February 5, 1970) 


