On operator representations of function algebras

By DUMITRU GASPAR in Timisoara (S. R. Roumania)

In this note we are going to study contractive representations of function
algebras. We shall determine the structure of the representations of a special class
of function algebras. The final result is a generalization of those given by D. SARASON
in [8].

§ 1 Introduction

1. Let X be.a compact Hausdorfl space, C(X) the algebra of all continuous
complex functions on X, and A a function algebra on X (i.e. a closed subalgebra
of C(X) which contains the constants and separates the points of X). Denote by
M ,=M the maximal ideal space, by 4 the image of the Gelfand representation
of A. Suppose that each complex homomorphism of 4 has a unique representing
measure. Fix 8 in the Gleason part 2 of M, and denote by m its representing measure.

We write 4, for the kernel of 6. H=(m), HZ(m) are defined (as usual) as the -
. w*closure of A, 4y, respectively, in L*(m). For 1=p-<oo, H(m), H”(m) are

also defined as the closures of A4, A, in LP(m), respectively.

Let Y be the space of the maximal ideals of L*(m), and identify L=(m) with C(Y)
via the Gelfand representation. Under this representation, H=(m) is mapped onto '
a subalgebra B=(m) of C(Y). H=(m) is logmodular on Y, and consequentely its

. Shilov boundary is exactly Y. It is known*) that each x€£ can be uniquely
extended to a continuous linear functional § on H?(m), multiplicative on H*(m).
Also 2 ={4, x€?} is the Gleason part of H*(m) containing 0. Denote by s the
representing measure (which is supported on Y) for 8.

The following result will play an important role in the sequel: ‘

If 2 is a non-trivial Gleason part of M, i.e. it consists of more than one point,
then there exists an inner function Z ¢ H=(m) such that Hy(m)=ZH>(m). (See [2],
chap. VI th. 7. 1. and 7. 2.)

We shall need the following:

*) For references of this section see for instance [2].
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PropositiOn 1. The following are equivalent for a non-trivial Gleason part P
(a) The map t: g—»Z‘a A", wheré a,= f gZ"dm, is an isometric isomorphism
of H>(m) onto the Hardy algebra H=,

(b) If J is the ideal of all g€ H*(m) with §(x)=0 for x 69 then J=0.
() The lmear span of {Z"}y is w*-dense in H™(m).

Proof. ThlS follows easily from [2], exc. 6 p. 141 and from dlscusswn on
p. 163 of MERRILL’s paper [4].
~* We note that there exist algebras for which the conditions of proposition 1
hold true. (See [4], §§ 2, 3.)

Finally we note that for the function Z the followmg theorem holds

If there is a umformly closed algebra B .in L°°(m) strictly containing H™(m),
then Z~ 1€ B.

-The proof is similar to that of the theorem of section “Maxxmahty in {3],

* . chap. 10, and makes use of the relation:

Lm) = Hm) @ TG,

2. We start this section with giving definitions concerning representations
of function algebras. (See [1], [5].)

Let A be a function algebra on X, and H a complex Hilbert space. By definition
a contractive representation of A on H is an. algebra homomorphism f — Tf of
A into the algebra Z(H) of all bounded linear operators on H such that T is the |
identity operator and

(%) _ Ilell§IIf|I (fe4).

. The representation f—T, of 4 on H is called X-reducing if it is the restriction
" to A of a representation of C(X) on H. A subspace of H is called X-reducing if
it reduces the representation f—T, to an X-reducing one. The représentation f—~ T
of 4 on His called X-pure if {0} is the only X-reducing subspace for it. The represent-
ation f—-T, is called X- dilatable if there exists a representatlon ¢ ~U, of C(X)
on K such that K contains H as a subspace, and .

fo=Pfo (fGA;xEH),

where P is the orthogonal prOJectlon of K onto H; the representatlon @ —>U is then
called the X-dilation -of the representation f—T A contractive representation of
A on H is X-maximal, if there is no algebra B distinct from 4 and C(X), satisfying

ACBcC C(X) and having a representatlon on H which coincides on A4 w1th the’
" initial one.
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- Now by the theorems of Hahn——Banach and Rlesz—KaLutanl we - observe
'that there exists a family {p, } of measures on X such that-

(%) = [fdbn,  (fed; % yeH).

Such a family {p,,} is called ‘a family of elementary measures. By definition the
tepresentation f—T is called P-continuous if there exists a family {p,,} of ele-
_ mentary measures such that p, , is, for all x, y€H, absolutely continuous with
‘respect to m. If there exists a family {p,,} of elementary measures such that Dy
is, for ail x, ye H, smgular with respect to all representmg measures for 4, then
the  representation is called completely singular.

" A P-continuous representation f—~T, of 4 on H has the followmg propertles
(see [S]: A
(i) f~ T, has a unique extensron toa representatton g—»T of H °°(m) on H,;
here (%) is to be replaced by

NCO I B A = |igll. = Il - (gEH"’(m))

(i) T here is a unique semi-spectral ‘measure Fon X, absolutely continuous
with respecl to m, such that - '

T_ —-fng _(gEH"“(m))..

Therefore by Neumark’s theorem f—T, is an X-dilatable representation.
* (iii)- The extension g—»T is - -continuous, hence there exists a semi- spectral
' measure F on Y, absolutely continuous with re.s'pect to m, such ‘hat -

T,= [¢df (gEH”(m));

We also mention the following supplementary -properties: _
(iv) If the representation f—T, is X-pure, then the extended repr esentation
g—»T is Y-pure. .
(v) This extension is Y-maxlmal if and only if Ty, is a non-unitary contraction.

Proof. Ad (iv). We suppose that H" is a Y—reducmg sibspace for g-»T
Then g—»T v=T g 18 aN Y-reducmg representation, and for the. contmuous func-'
tlons on X we have

175 = llol. = Nl

" so H* is an X-reducmg subspace for. the 1mt1al representatlon as well, and thlS .
is a contradiction.

Ad (v). If the representation g 17, of H""(m) is not Ymaxlmal then there is
an extension of the initial representation to a subalgebra of L*(m) containing
H=(m). Then by the final remark of section. 1, T, _, makes sense and the relation
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1,7, =T, T7=1I contradicts the non-unitarity of T,,. Conversely, if the repre-
sentation g -7, is Y-maximal, then T is non-unitary, since otherwise there would
be an obvious extension of the representation g—»T (gE H°°(m)) to the algebra
‘ generated by H>(m) and Z7L 1mply1ng T,..=T%.

§2. The struc'ture of the repi'esentatidns for some function algeb'ras

1. Let D be the open umt disc, and &/ the algebra conSIStmg of those functions
continuous in the closure D of D which are analytic on D. It is known-that D is
the Gleason part containing the 0- homomorphism, and the (unique) representing
measure for 0 is the normalized Lebesgue measure y on the unit circle D (which
is the Shilov boundary of 7). The algebra H>(u) coincides with the Hardy algebra
. H*= if we identify each function of H® with its boundary values. (See {2}, chap
II, sec. 4). Denote by I' the maximal ideal space of .L>(u).

In this section we prove :

Theorem 1. Let g—»T be a contractwe D-continuous representation of HT.
on a Hilbert space H. Then:
(@) If T=T,., then Hy =H* and

T,=¢(T) (g€H"),

where the right-hand term is defined by the functional calculus of [1] chap. III.
“(b) If the representation g—~T, is I'-pure, then T is a completely non-unitary
contraction on H. : .

" Proof. (a) It is easy to prove that the restriction.: of the initial representation
to of is a contractive representation of of which is D-continuous. Then, by (ii),
there exists ‘a semi- spectral measure E on 9D, absolutely continuous with respect
to ,u, such that '

(T,x, ) = fgd(Ex ») (geH~; x,yem
Now by an easy computatlon we deduce

) R T, —»T strongly as r—1,

" where g.(e"=g(re"), g€H°° Since the Founer series Z'a e™ of g.(e") is absolutely

and umformly convergent, 1t is immediate that

© T, = .g? a,T" = g,(T).
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Then from the definition of H7 *) it follows that g€ Hy, and by (1) and (2) we obtain
T, =g(T) (geH").

Point (b) results "easily from (a) - and by the remark that the I'-purity of
the representation g—7, implies the dD-purity of its restriction to /. Now, the
‘0D-purity of the representation f—f(T) (f€ &) is equivalent to the factthat T is a
completely non-unitary contractlon (See [8]).

2. Now we return to an arbitrary function -algebra 4. The notations and the
hypothesis given in sec. 1, § 1 are the same. In the following we assume that the
conditions of proposition 1 hold true for the non-trivial Gleason part 2. If t*
is the adjoint of the isometry 7 of proposition 1, then it is immediate that t*(My.)=
= Mpyeimy, and ()= Y. Consequently t can be extended to an isometric iso-
morphism of L=(m) onto L=(u). It is also clear that t*(D)=2.

Now let f ~T; be a (contractive) representation of H®(m) on H. Then it is
obvious that-the map: g—+S,=T;, tf=gisa representatxon of H* on H. The
following lemma is almost 1mmed1ate

Lemma 1. (a) If the representatzon [>T, is Y-pure, then the r.epresentatian
g—~S, is I'-pure.

(b) If the representation f—~T, is P-continuous, then g8, is ﬁ continuous.
Moreover if F is the semi-spectral measure of the representation f—T,, then T*F
is the semi-spectral measure for the representation g—S,.

We are now able to prove our main result,

Theorem 2. Let f—T, be a P-continuous representation of A on the Hilbert
~ space H, and g ~T, the extended representation given in (i). If T=_’f" 2, then for each
gEH>(m) we have 1g€ HY and

, =@ T)  (g€H™(m)).

If the representatton is . X- pureXthen
(a) T is a completely non-unitary contraction on H;
(b) the extended representation g—~T, is Y-maximal,
(c) the semi-spectral measure F, defined by (ii), is equivalent to m;
(d) for each x€H, x=0, the logarithm of the Radon-Nikodym derivative of
(E(-)x, x) with respect to m is in L'(m). '

*) For the definition of Hy see [7] chap. IIL.
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Proof. The first. statement follows by combining (iii) and Lemma 1 with
point (a) of Theorem 1. Since tZ=e¥, point (a) follows by using Lemma 1
and point (b) of Theorem 1. By (v), (a) implies (b). For (c), it remains only to .
prove that m is absolutely continuous with respect to F. If E is the semi-spectral
~ measure (on dD) of T, one can prove easily (by using the uniqueness of elementary
measures {(Fx, y)} and point (b) of Lemma 1) that

@ [ d(Fx,y) = [wWdExy)  YeL-(m); x yeH)
Now by (3) and by Szegd’s theorem we deduce ' '

d(Fx, x) dm d(Ex, x) du.

= exp f log 2

Therefore by Proposition 6.5, chap. II of [7] concerning u-summablllty of
d(Fx,x)

exp j log

log , (d) follows. Now (d) implies in partlcular that m is absolutely contmuous

with respect to F. This completés the proof.

3. Point (d) in the preceding theorem .is due to W. MLAK. *) Moreover
W. MLaAK indicated us the following direct proof of-(a), (c), (d). .

Let f—T, be a contractive Z-continuous. repiesentation of 4 on H. According
to Theorem 1 of [1], the representation f—~T, is a uniquely determined orthogonal .
sum of an X-reducing representation f—~17 and an X-pure representation f— Tf,
correspondmg to the decomposition H"@HO of H. On the other hand, by (ii), the
representation f—T, is X-dilatable.. Denote by ¢—~U, this d11at10n, and by K the
dilation space. We prove the following lemma.

Lemma 2. Iffor some x€ H: ,
O - mf/]1—f|2d(Fx x) = 0,
then W= V Urxc H. (Here U means U)).

fi—oo
Proqf. First we prove that (y) implies
) : IIT"xll x| = IT*x| (n=0,1,2,..).

If fedycHF(m), then f~Zg, where gE€H=(m). Let R= V U"x, and let Q be the
orthogonal projection of K on R. Then

-((I.— Q)_ng, y) = (ng—s, I-0)y) (SéR, yEK).—

. *) Private communication.,
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Let ¢>0. By (c) of Proposition 1 there is an s,= > akU"ﬁc (finite sum) such that:
. k=0

U=, (- Q)y)| = If(g—kézoakzk)hdm‘ <¢ [h = d_(lj)_@(({_n%Q)_y_)]

It follows that Ux€R. Consequentely x¢ V Ux, by (3). Now by Lemma 6. 4,
v |

p. 44 of [6] and by obvious symmetry (§) holds true. To obtain W H", it is sufficient
to prove (by (8)) that for z=U,x (f€A4) we have (I—P)z=0. (Here P is the ortho-
gonal projection of K onto H.) For s€ H we have, for any y€K,((I—P)z, y) =
= ((z—5), U—P)y). Let £>0. By (c) of Proposition 1, there is an s£=k;") aUkx

(finite sum), which by (8) is contained in H, such that

|z 5,, U= P)y)| = !f(f“ ZakZ")hdm’ <e [h = E‘I(—F’i’—(ln-;iy)].

It follows by the arbitrariness of y that z=Pz. By symmetry we have U ,xEH :

which completes the proof. :

Now, if the representation f—1T, is X-pure then Lemma 2 implies that T= TZ '

d(Fx,x)
dm

is c.n.u. and using Szegé’s theorem we get that log eLl(m) for any xEH

x#0. This last property shows that m is absolutely continuous with respect to F. -

4. Let {#,}.c; be the set of all Gleason parts of the function algebra 4,-and
{?,}ucr, the set of those non-trivial Gleason parts for which the conditions of Propo- _ -
sition 1 hold true. If a€l,, then we denote by 7, the isomorphism introduced in:
Proposition 1, corresponding to the Gleason part Z,.

Let f-T, be a contractive representation of 4 on H, and

T, = T}OT)  (fed)

its decomposmon given by Theorem 1 of [1]. To the X-pure representanon f - T°_
we apply the Mlak’s decomposition (see [5])

7O = DTr0 Tf (fed),
«€

where f~T7} is the &,-continuous paﬁ (@el), ahd f=T5 ¢ is the comletely singular
part of the representation f— Tf Now for the £, contmuous parts we apply the
Theorem 2 and finaly we obtain: : ,

Theorem 3. 4 contractive representation f—~ T of Aon Hisa umquely deter-
mined orthogonal sum of the form: 4

T, =T¢® < (@NT)® 919 I;eTy  (fed),
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where f—T7 is an X-reducing representation, T, are completely non-unitary
contractions (x€ly), f~T7 (x4 1) are P,-continuous and X-pure representations,
and f—~T} is'an X-pure and completely singular representation.
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