Elementary estimates for certain types of integers

By ECKFORD COHEN and K. JOSEPH DAVIS in Greenville (North Carolina, U.S.A.)

1. Introduction. For each integer $k \geqq 2$, let L_{k} represent the set of positive integers n such that each prime factor of n occurs with multiplicity at least k. Let $l_{k}(n)$ denote the characteristic function of the set L_{k}, and for real $x \geqq 1$, let $L_{k}(x)$ be the number of integers contained in L_{k} and not exceeding x. Let Q be the set of squarefree integers and $q(n)$ the characteristic function of Q. The Riemann zetafunction will be denoted $\zeta(s)$ for real s.

The starred references of this paper refer to the bibliography of the paper [2] by the first author. All O-constants which occur are understood to depend upon k.

In 1934 Erdős and Szekeres [5*] obtained the following estimate for $L_{k}(x)$:

$$
\begin{equation*}
L_{k}(x)=c_{k} x^{1 / k}+O\left(x^{1 /(k+1)}\right) \tag{1.1}
\end{equation*}
$$

where c_{k} is a constant. This was proved by elementary means without any essential use of Dirichlet series. Later Bateman and Grosswald obtained (1.1) in the stronger form

$$
\begin{equation*}
L_{k}(x)=c_{k} x^{1 / k}+c_{k}^{\prime} x^{1 /(k+1)}+O\left(x^{1 /(2 k+1)}\right) \tag{1.2}
\end{equation*}
$$

where c_{k}^{\prime}, like c_{k}, is independent of x. While the Bateman-Grosswald proof is elementary, it makes use of the uniqueness theorem for Dirichlet series (see Remark 1 below).

It is the purpose of the present paper to establish certain weaker estimates for $L_{k}(x)$ by strictly elementary methods. In particular, we show in $\S 6$, without appealing to the uniqueness theorem, that

$$
\begin{equation*}
L_{k}(x)=c_{k} x^{1 / k}+c_{k}^{\prime} x^{1 /(k+1)}+O\left(x^{1 /(k+2)}\right) \tag{1.3}
\end{equation*}
$$

The argument used in the paper is an elaboration of the method of Erdős and Szekeres [5*]. We require, in addition, estimates for some special sums (§ 4) and an asymptotic formula for the average of a certain divisor function (§5). In § 7 we give a simple, independent proof of the slightly weaker form of (1.3) with the O-term $O\left(x^{1 /(k+2)} \log x\right)$.

Remark 1. The case $k=2$ is exceptional with respect to the above discussion of (1.2). In fact, an elementary proof of (1.2) in this case has been given by Bateman [1*]; also see [2] and [3, §3].
2. Density of L_{k}. Our first estimate for $L_{k}(x)$ is given in the following theorem. Let $L_{2}=L$.

Theorem 1. The set L has density 0 ; that is,

$$
\lim _{x \rightarrow \infty} \frac{L(x)}{x}=0
$$

Proofs of this result have been given by Feller and Tournier [6*, § 9] and Schoenberg [10*, §12]. The corresponding result for $L_{k}, k \geqq 2$ follows immediately.
3. O-estimate for $L_{k}(x)$. We first prove a characterization of the set L_{k}.

Lemma 1. A necessary and sufficient condition that an integer n be in L_{k} is that it admit a representation of the form

$$
\begin{equation*}
n=d_{1} d_{2}^{2} \ldots d_{k-1}^{k-1} d^{k}, \quad d_{1} d_{2} \ldots d_{k-1} \mid d \tag{3.1}
\end{equation*}
$$

Proof. Suppose n can be written in the form (3.1), and let $p \mid n, p$ prime. Then $p \mid d$ and hence $p^{k} \mid n$. This proves the sufficiency.

Now suppose $n \in L_{k}, n=p_{1}^{e_{1}} \ldots p_{s}^{e^{s}}, e_{i} \geqq k(i=1, \ldots, s)$ where p_{1}, \ldots, p_{s} are the distinct prime divisors. of n. Now. $e_{i}=q_{i} k+r_{i}, q_{i}>0,0 \leqq r_{i}<k(i=1, \ldots, s)$. Therefore $p_{i_{i}}^{e}=\left(p_{i}^{q_{i}}\right)^{k} p_{i}^{r_{t}}$ for each i, from which it follows that n is expressible in the form (3.1) in such a way that $d=p_{1}^{q_{1}} \ldots p_{s}^{q_{s}}$ and $d_{1} \ldots d_{k-1}$ is the product of those p_{i} for which the corresponding $r_{i}>0$.

We are now in a position to prove the following result. Throughout this paper the symbol Σ^{\prime} will indicate that the sum is taken over integers in L_{k}. Let $[x]$ denote the largest integer $\leqq x$.

Theorem 2. For $x \geqq 1$,

$$
\begin{equation*}
L_{k}(x)=O\left(x^{1 / k}\right) \text { as } \quad x \rightarrow \infty \tag{3.2}
\end{equation*}
$$

Proof. Let $\delta=d_{1} d_{2}^{2} \ldots d_{k-1}^{k-1}$. By Lemma 1,

$$
L_{k}(x)=\sum_{n \leqq x} 1 \leqq \sum_{\delta d^{k} \geqq x} 1
$$

where the last summation is over all k-tuples of natural numbers $d_{1}, d_{2}, \ldots, d_{k-1}$, d such that $D=d_{1} d_{2} d_{3} \ldots d_{k-1}$ divides $d, D N=d$.

Thus

$$
L_{k}(x)=\sum_{\delta \leq x} \sum_{d^{k} \leq x / \delta} 1
$$

Summing over N, we see that the interior sum has the value,

Hence

$$
\left[x^{1 / k} / d_{1}^{1+1 / k} d_{2}^{1+2 / k} \ldots d_{k-1}^{1+(k-1) / k}\right]
$$

$$
L_{k}(x) \leqq x^{1 / k} \sum_{\delta \leqq x}\left(d_{1}^{1+1 / k} d_{2}^{1+2 / k} \ldots d_{k-1}^{1+(k-1) / k}\right)^{-1}=0\left(x^{1 / k}\right)
$$

and the theorem is proved.
A different proof of (3.2) is indicated by Hornfeck in [8*, Lemma 2].
4. Lemmas. This section contains two lemmas which will be needed in the last two sections.

Lemma 2. (a) For $0<s<1 / k$,

$$
\begin{equation*}
\sum_{n \leqq x}^{\prime} \frac{1}{n^{s}}=O\left(x^{\frac{1}{k}-s}\right), \quad x \geqq 1 \tag{4.1}
\end{equation*}
$$

(b) For $s=1 / k$,

$$
\begin{equation*}
\sum_{n \leqq x}^{\prime} \frac{1}{n^{s}}=O(\log x), \quad x \geqq 2 \tag{4.2}
\end{equation*}
$$

(c) For $s>1 / k$,

$$
\begin{equation*}
\sum_{n>x}^{\prime} \frac{1}{n^{s}}=O\left(x^{\frac{1}{k}-s}\right), \quad x \geqq 1 \tag{4.3}
\end{equation*}
$$

Proof. By partial summation and the definition of $l_{k}(n)$,

$$
\sum_{n \leqq x}^{\prime} n^{-s}=\sum_{n \leqq x} \frac{l_{k}(n)}{n^{s}}=\sum_{n \leqq x} L_{k}(n)\left(\frac{1}{n^{s}}-\frac{1}{(n+1)^{s}}\right)+\frac{L_{k}(x)}{([x]+1)^{s}}
$$

hence, by Theorem 2, since $(1+1 / n)^{s}=1+O(1 / n)$,

$$
\sum_{n \leqq x}^{\prime} n^{-s}=O\left(\sum_{n \leqq x} n^{-s-(k-1) / k}\right)+O\left(x^{1 / k-s}\right)
$$

If $s \leqq 1 / k$, the first O-term in the last expression is $O\left(x^{1 / k-s}\right)$ or $O(\log x)$ according as $s<1 / k$ or $s=1 / k$. This proves (a) and (b).

Similarly, for $k s>1$, we have with $y>x$,

$$
\begin{gathered}
\sum_{y \geqq n>x}^{\prime} n^{-s}=\sum_{y \geqq n>x} L_{k}(n)\left(\frac{1}{n^{s}}-\frac{1}{(n+1)^{s}}\right)-\frac{L_{k}(x)}{([x]+1)^{s}}+\frac{L_{k}(y)}{([y]+1)^{s}}= \\
=O\left(\sum_{n>x} n^{-s-(k-1) / k}\right)+O\left(\frac{1}{x^{s-1 / k}}\right)
\end{gathered}
$$

and since both O-terms are $O\left(x^{1 / k-s}\right)$ the lemma results as $y \rightarrow \infty$.
We define $\sigma^{*}(s, n)$ to be the sum of the s-th powers of the square free divisors of n, and $\sigma(s, n)$ to be the sum of the s-th powers of all divisors of n. Place $\theta(n)=\sigma^{*}(0, n)$.

Lemma 3. If $0<\alpha<(k-1) /(k+2)$, then

$$
\begin{equation*}
\sum_{\substack{n \leq x \\ n \in L_{k+2}}} \frac{\sigma^{*}(-\alpha, n)}{n^{(1+\alpha) /(2 k+1)}}=O\left(x^{1 /(k+2)-(1+\alpha) /(2 k+1)}\right) \tag{4.4}
\end{equation*}
$$

Proof. Place

$$
\begin{aligned}
S^{*}(\alpha, x) & =\sum_{\substack{n \leq x \\
n \in L_{k+2}}} \frac{\sigma^{*}(-\alpha, n)}{n^{(1+\alpha) / t}} \\
S(\alpha, x) & =\sum_{n \leq x^{1 / e}} \frac{\sigma\left(-\alpha, n^{e}\right)}{n^{e(1+\alpha) / t}}
\end{aligned}
$$

where $e .=k+2, t=2 k+1$. We estimate $S(\alpha, x)$ first and then reduce the estimation of $S^{*}(\alpha, x)$ to that of $S(\alpha, x)$. It is convenient to use \ll in place of the O-symbol below.

Noting that $\sigma^{*}\left(-\alpha, n^{e}\right)=\sigma^{*}(-\alpha, n) \leqq \sigma(-\alpha, n)$, one obtains

$$
\begin{aligned}
S(\alpha, x) \leqq & \sum_{n \leqq x^{1 / \sigma}} \frac{\sigma(-\alpha, n)}{n^{e(\alpha+1) / t}}= \\
& =\sum_{n \leqq x^{1 / \sigma}} \sum_{d \delta=n} d^{-\alpha}(d \delta)^{-e(\alpha+1) / t}=\sum_{d \leqq x^{1 / \sigma}} d^{-\alpha-e(\alpha+1) / t} \sum_{\delta \leqq x^{1 / \sigma / d}} \delta^{-e(\alpha+1) / t}
\end{aligned}
$$

Since $(\dot{k}+2)(\alpha+1)<2 k+1$, it follows that

$$
\begin{aligned}
& S(\alpha, x) \ll \sum_{d \leq x^{1 / \alpha}} d^{-\alpha-e(\alpha+1) / t}\left(\frac{x^{1 / e}}{d}\right)^{1-e(\alpha+1) / t} \ll x^{(1 / e-(\alpha+1) / t)} \sum_{d \leqq x^{1 / e}} d^{-\alpha-1} \ll \\
& \ll x^{(1 / e-(\alpha+1) / t)},
\end{aligned}
$$

in view of the positivity of α.
We observe that every integer n of L_{k+2} has a unique representation of the form $n=p m^{k+2}$, where $p=p_{1}^{e_{1}} p_{2}^{e_{2}} \ldots p^{c^{r}}, p_{1}, p_{2}, \ldots, p_{r}$ being distinct primes, $p_{1}<p_{2}<\ldots<p_{r}$, and $e_{i}>k+2,(k+2)$ does not divide e_{i}, p_{i} does not divide m, for each i. Therefore,

$$
S^{*}(\alpha, x)=\sum_{r \geqq 0} \sum_{\substack{m^{o} p \leqq x \\ p_{t} \nmid m}} \sum_{p^{(\alpha+1) / t} m^{e(\alpha+1) / t}} \frac{\sigma^{*}\left(-\alpha, p m^{e}\right)}{}
$$

where the second summation is over all ordered r-tuples of natural numbers $e_{1}, e_{2}, \ldots, e_{r}$ such that e does not divide $e_{i}, e_{i}>e(i=1, \ldots, r)$ and all r-tuples of prime numbers $p_{1}, p_{2}, \ldots, p_{r}$ such that $p_{1}<p_{2}<\ldots<p_{r}$ (being vacuous in case $r=0$). By the multiplicative nature of $\sigma^{*}, \sigma^{*}\left(-\alpha, m^{c} p\right)=\sigma^{*}\left(-\alpha, m^{e}\right) \sigma^{*}(-\alpha, p)$. After applying this property we drop the condition that p_{i} does not divide m in the third summation, getting

$$
S^{*}(\alpha, x) \leqq \sum_{r \leqq 0} \sum \sigma^{*}(-\alpha, p) S(\alpha, x / p) / p^{(\alpha+1) / t}
$$

where the second summation is over the same natural numbers as before. By the above estimate for $S(\alpha, x)$, we get, dropping the condition that e does not divide e_{i} but retaining the other conditions, and placing

$$
\begin{gathered}
\beta=\frac{1}{e}-(\alpha+1) / t \\
S^{*}(\alpha, x) \ll x^{\beta} \cdot \sum_{r=0}^{\infty} \sum \frac{\sigma^{*}(-\alpha, p)}{p^{1 / e}}=x^{\beta} \sum_{\substack{n=0 \\
n \in L_{e+1}}}^{\infty} \frac{\sigma^{*}(-\alpha, n)}{n^{1 / e}} \leqq x^{\beta} \sum_{\substack{n=0 \\
n \in L_{e+1}}}^{\infty} \frac{\theta(n)}{n^{1 / e}}
\end{gathered}
$$

It follows that it suffices to show the convergence of the series on the right. A formal computation gives

$$
\sum_{\substack{n=0 \\ n \in L_{e+1}}}^{\infty} \frac{\theta(n)}{n^{1 / e}}=\prod_{p}\left\{1+\left(\frac{2}{p^{1+1 / e}}\right)\left(\frac{1}{1-p^{-1 / e}}\right)\right\}
$$

Observing that $\left(1-p^{-1 / e}\right)^{-1} \leqq\left(1-2^{-1 / e}\right)^{-1}$ for all p, it follows that the product, and hence the series, converges.
5. A divisor function. We first recall a known estimate for the Legendre totient function $\varphi(x, n)$, which denotes the number of positive integers $\leqq x$ prime to n.

Lemma 4 (cf. [1]). If $0 \leqq \alpha<1$, then

$$
\begin{equation*}
\varphi(x, n)=\varphi(n) x / n+0\left(x^{\alpha} \sigma^{*}(-\alpha, n)\right) \tag{5.1}
\end{equation*}
$$

where $\varphi(n)=\varphi(n, n)$, uniformly in both x and n.
The case $\alpha=0$ of the following lemma is Lemma 3.1 of [4]. The general case is proved similarly except that the 0-term of formule (3.5) of that paper is replaced by $O\left(x^{\alpha-s}\right)$ in the proof.

Lemma 5. If $s>0, s \neq 1, x \geqq 1$, then for $1>\alpha \geqq 0$,

$$
\begin{equation*}
N_{s}(x, r)=\sum_{\substack{n \leq x x \\(n, r)=1}} 1 / n^{s}=\zeta(s) \varphi_{s}(r) / r^{s}-\varphi(r) / r(s-1) x^{s-1}+O\left(x^{x-s} \sigma^{*}(-\alpha, r)\right), \tag{5.2}
\end{equation*}
$$

uniformly in x and r, where $\varphi_{s}(r)=\sum_{d \mid r} \mu(d)(r / d)^{s}, \quad \varphi_{1}(r)=\varphi(r), \quad \mu$ denoting the Mobius function.

Now suppose a, b, h and m to be positive integers. For positive integers n, let $\tau_{a, b}^{m, k}(n)$ denote the number of decompositions of n in the form $n=d^{a} f^{b}$ where $(d, m)=(f, h)=1$. We now are ready to prove the main result of this section, an estimate for the summatory function $T_{a, b}^{m, h}(x)$ of $\tau_{a, b}^{m, h}(n)$.

Put $c=a+b, r:=a / b, s=b / a$.
Theorem 3. (cf. 4, Theorem 3.1 in case $m=h$) If $b>a \geqq 1, r>a \geqq 0$, then for $x \geqq 1$.

$$
T_{a, b}^{m, h}(x)=a_{m, h} x^{1 / a}+b_{m, h} x^{1 / b}+O\left(x^{(\alpha+1) / c} \varrho_{\chi}(h, m)\right)
$$

where $\varrho_{\alpha}(h, m)=\max \left(\sigma^{*}(-\alpha, h), \sigma^{*}(-\alpha, m)\right)$,

$$
a_{m, h}=\zeta(s) \varphi(m) \varphi_{s}(h) / m h^{s}, \quad b_{m, h}=\zeta(r) \varphi(h) \varphi_{r}(m) / h m^{r}
$$

Proof. We have

$$
T_{a, b}^{m, h}(x)=\sum_{n \leqq x} \tau_{a, b}^{m, h}(n)=\sum_{d^{a} f^{b} \leqq x} 1
$$

where in the last sum, $(d, m)=(f, h)=1$.
Thus

$$
\begin{equation*}
T_{a, b}^{m, h}(x)=\sum_{d \leqq x^{1 / c}} 1+\sum_{f \leqq x^{1 / c}} 1-\sum_{d, f \leqq x^{1 / c}} 1 \tag{5.3}
\end{equation*}
$$

Since d and f in the summation cannot both simultaneously be $>x^{1 / c}$. Each sum of course still has the conditions $d^{a} f^{b} \leqq x,(d, m)=(f, h)=1$. Let these three sums be denoted by $\Sigma_{1}, \Sigma_{2}, \Sigma_{3}$, respectively.

For the first summation one obtains by Lemma 6 , since $a \alpha / b<a^{2} / b^{2}<1$,

$$
\Sigma_{1}=\sum_{\substack{d \leq x^{1 / c} \\(d, m)=1}} \varphi\left(\frac{x^{1 / b}}{d^{r}}, h\right)=x^{1 / b} \varphi(h) N_{r}\left(x^{1 / c}, m\right) / h+O x^{(\alpha+1) / c} \sigma^{*}(-\alpha, h)
$$

Application of Lemma 7, gives

$$
\begin{equation*}
\Sigma_{1}=x^{1 / b} \zeta(r) \varphi(h) \varphi_{r}(m) / h m^{r}-\frac{b}{a-b} \frac{\varphi(h)}{h} \frac{\varphi(m)}{m} x^{2 / c}+O\left(\varrho_{\alpha}(h, m) x^{(\alpha+1) / c}\right) \tag{5.4}
\end{equation*}
$$

and on applying a similar argument to Σ_{2} and Σ_{3},

$$
\begin{align*}
& \Sigma_{2}=\zeta(s) \frac{\varphi(m)}{m} \frac{\varphi_{s}(h)}{h^{s}} x^{1 / a}+\frac{a}{a-b} \frac{\varphi(m)}{m} \frac{\varphi(h)}{h} x^{2 / c}+O\left(\varrho_{\alpha}(h, m) x^{(\alpha+1) / c}\right) \tag{5.5}\\
& \Sigma_{3}=\frac{\varphi(h)}{h} \frac{\varphi(m)}{m} x^{2 / c}+O\left(x^{(\alpha+1) / c} \varrho_{\alpha}(h, m)\right) \tag{5.6}
\end{align*}
$$

The theorem results on the basis of (5.3), (5.4), (5.5), and (5.6).
6. Asymptotic estimation of $L_{k}(x)$. We first introduce some notation and point out a few elementary facts that will be useful for the later discussion. We denote by A_{k}, B_{k} the sets of those positive integers all of whose prime divisors have multiplicity on the ranges $k+1 \leqq t<2 k$, and $k+2 \leqq t<2 k$, respectively, with $B_{2}=\{1\}$. Note that $B_{k} \subseteq L_{k+2}$.

Remark 2. If $a \in L_{k}$, then a has a unique factorization $a=d^{k} e$ where $e \in A_{k}$.
Remark 3. If $e \in A_{k}$, then e has a unique factorization $e=g^{k+1} h$, where $g \in Q, h \in B_{k}$ and $(g, h)=1$.

The following result is well known.
Remark 4: For positive integers $n, \quad q(n)=\sum_{d^{2} e=n} \mu(e)$.
The proof of our main result depends upon the following representation of $l_{k}(n)$.
Lemma 8.

$$
l_{k}(n)=\sum_{d^{k} e^{2 k+2 f^{k}+1} h=n} \mu(e)
$$

where the summation is over integers d, e, f and h such that $h \in B_{k}$ and $(e, h)=(f, h)=1$.
Proof. By Remarks 2 and 3

$$
l_{k}(n)=\sum_{\substack{d^{k} k=n \\ e \in A_{k}}} 1=\sum_{\substack{d^{k} g^{k} k+1 \\ g \in Q}} 1=\sum_{\substack{d^{k} g^{k}+l_{h=n}}} q(g)
$$

the last two sums with the conditions $h \in B_{k},(g, h)=1$. The lemma results by Remark 4.

The folowing expansion will be needed (Cf. [4]; (3.4)):

$$
\begin{equation*}
\sum_{\substack{n=1 \\(n, r)=1}} \mu(n) / n^{s}=r^{s} / \zeta(s) \varphi_{s}(r) \quad(s>1) \tag{6.1}
\end{equation*}
$$

Since $\varphi_{s}(n)=n^{s} \prod_{p \mid n}\left(1-1 / p^{s}\right)$ we have
Lemma 9. If $s \geqq 1$, then $\varphi_{s}(n) / n^{s}$ is bounded; for $s>1, \varphi_{s}(n) / n^{s}$ is bounded away from zero. In. particular, for each $s>1, \varphi_{s}(n)$ has the order of magnitude of n^{s} as $n \rightarrow \infty$.

Put $r=k+1, t=2 k+1$.
Theorem 4. If $x \geqq 2$, then

$$
\begin{equation*}
L_{k}(x)=c_{k} x^{1 / k}+c_{k}^{\prime} x^{1 / r}+O\left(x^{1 /(k+2)}\right) \tag{6.2}
\end{equation*}
$$

where c_{k} and c_{k}^{\prime} are defined by

$$
c_{k}=\zeta^{-1}(2 r / k) \sum_{h=1}^{\infty} a_{h}\left(\frac{h^{t / k}}{\varphi_{2 r / k}(h)}\right), \quad c_{k}^{\prime}=\zeta^{-1}(2) \sum_{h=1}^{\infty} b_{h}\left(\frac{h^{t / r}}{\varphi_{2}(h)}\right) \quad\left(h \in^{\prime} B_{k}\right),
$$

and $a_{h}=\dot{a}_{1, h}, b_{h}=b_{1, h}$ are defined as in Theorem 3.
Remark. 5. Note that a_{h} and b_{h} are bounded.

Proof. By Lemma 8.

$$
\begin{equation*}
L_{k}(x)=\sum_{h \leqq x} \sum_{e^{2 r_{d} d^{k} r} \leq \leq x / h} \mu(e) \tag{6.3}
\end{equation*}
$$

with $h \in B_{k}$ in the first sum and $(e, h)=(f, h)=1$ in the second sum. Let the inner sum of (6.3) be denoted by $\Sigma^{*}, h \leqq x$. Then

$$
\Sigma^{*}=\sum_{\substack{e \Xi(x / h)^{1 / 2 r} \\(e, h)=1}} \mu(e) \quad T_{k, r}^{1, h}\left(x / h e^{2 r}\right)
$$

from which, by (6.1) and by Theorem 3, ($m=1, a=k, b=k+1$) with $k / r>\alpha \geqq 0$,

$$
\begin{aligned}
\sum^{*}= & a_{h}(x / h)^{1 / k} \sum_{\substack{e \leqq(x / h) 1 / 2 r \\
(x, h)=1}} \frac{\mu(e)}{e^{2 r / k}}+ \\
& +b_{h}(x, h)^{1 / r} \sum_{e \leqq(x / h)^{1 / 2 r}} \mu(e) / e^{2}+O\left((x / h)^{(\alpha+1) / t} \sigma^{*}(-\alpha, h)\right)= \\
= & x^{1 / k} a_{h} \zeta^{-1}(2 r / k) \frac{h^{t / k}}{\hat{\varphi}_{2 r / k}(h)}+b_{h} x^{1 / r} \zeta^{-1}(2)\left(\frac{h^{t / r}}{\varphi_{2}(h)}\right)+O\left(\sigma^{*}(-\alpha, h)(x / h)^{(\alpha+1) / t}\right) .
\end{aligned}
$$

Substituting this into (6.3) one deduces by Lemma 9, Remark 5, and the fact that $\beta_{k} \subseteq L_{k+2}$,

$$
\begin{aligned}
& L_{k}(x)=c_{k} x^{1 / k}+O\left(x^{1 / k} \sum_{\substack{h>x \\
h \in L_{k+2}}} h^{-1 / k}\right)+c_{k}^{\prime} x^{1 / r}+ \\
&+O\left(x^{1 / r} \sum_{\substack{h>x \\
h \in L_{k+2}}} h^{-1 / r}\right)+O\left(x^{(1+\alpha) / t} \sum_{\substack{h \leq x \\
h \in L_{k}+2}} \frac{\sigma^{*}(-\alpha, h)}{h^{(1+\alpha) / t}}\right) .
\end{aligned}
$$

By Lemma 4c (with k replaced by $k+2$) the first two O-terms are $O\left(x^{1 /(k+2)}\right)$ and by Lemma 5 (restricting α further to $0<\alpha<(k-1) /(k+2)$) the last is also $O\left(x^{1 /(k+2)}\right)$. This proves Theorem 4.
7. A weaker form of the main result. The argument used to prove Lemma 5 yields the following result for the case $\alpha=0$ of the sum in (4.4):

$$
\begin{equation*}
\sum_{\substack{n \leqq x \\ n \in \Sigma_{k+2}}} \frac{\theta(n)}{n^{1 /(2 k+1)}}=O\left(x^{1 /(k+2)-1 /(2 k+1)} \log x\right), \quad x \geqq 2 \tag{7.1}
\end{equation*}
$$

This result and case $\alpha=0$ in Theorem 3 yield, on the basis of the argument in the preceeding section, the following slightly weaker asymptotic evaluation of $L_{k}(x)$:

$$
\begin{equation*}
L_{k}(x)=c_{k} x^{1 / k}+c_{k}^{\prime} x^{1 /(k+1)}+O\left(x^{1 /(k+2)} \log x\right) \tag{7.2}
\end{equation*}
$$

This is of interest, in the first place because only the regular form ($\alpha=0$) of Lemmas 6 and 7 are needed for the proof, and in the second place because (7.1) can be proved independently in a much simpler way than the corresponding result in Lemma 5.

To prove (7.1) we recall that $\theta(n)$ denotes the number of square-free divisors of n. By the fundamental theorem of arithmetic, there is a one-to-one correspondence between the square-free divisors of n and the so-called unitary divisors of n (the divisors d of n such that $(d, n / d)=1)$; hence $\theta(n)$ is the number of unitary divisors of n. With $t=2 k+1$ and $e=k+2$, we have

$$
\sum_{\substack{n \leq x \\ n \in L_{e}}} \frac{\theta(n)}{n^{1 / t}}=\sum_{\substack{n \leq x \\ n \in L_{e}}} \frac{1}{n^{1 / t}} \sum_{\substack{d==n \\(d, \delta)=1}} 1=\sum_{\substack{d \delta \leq x \\ d \delta \leq L_{e} \\(d, \delta)=1}} \frac{1}{(d \delta)^{1 / t}}=\sum_{\substack{d \leq x \\ d \in L_{e}}} \frac{1}{d^{1 / t}} \sum_{\substack{\delta \leq x / d \\ d \in L_{a} \\(d, \delta)=1}} \frac{1}{\delta^{1 / t}},
$$

by the fundamental theorem of arithmetic. We may drop the condition $(d, \delta)=1$ provided the last equality is replaced by inequality (\leqq). Lemma 4(a) is then applicable (with k replaced by $k+2$) and its application gives

$$
\sum_{\substack{n \leq x \\ n \in L_{e}}} \frac{\theta(n)}{n^{1 / t}} \ll \sum_{\substack{d \leq x \\ d \in L_{e}}} \frac{1}{d^{1 / t}}\left(\frac{x}{d}\right)^{1 / e-1 / t} \ll x^{1 / e-1 / t} \sum_{\substack{d \leq x \\ d \in L_{e}}} \frac{1}{d^{1 / e}}
$$

and (7.1) results on applying Lemma 4(b).

Bibliography

[1] E. Cohen, Remark on a set of integers, Acta Sci. Math., 25 (1964), 179-180.
[2] - On the distribution of certain sequences of integers, Amer. Math. Monthly, 70 (1963), 516--521.
[3] - Some sets of integers, J. Tennessee Acad. Sci., 40 (1965), 48-49.
[4] - Unitary products of arithmetical functions, Acta Arithmetica, 7 (1961), 29-38.
[5] K. J. Davis, Some properties of infinite series and their application in the theory of numbers, M. A. thesis, University of Tennessee, 1962.
[6] G. H. Hardy and E. M. Wright, Introduction to the Theory of Numbers, 3rd edition (Oxford, 1954).
[7] K. Knopp, Theory and Application of Infinite Series (London and Glasgow, 1928).
(Received April 17, 1968)

