
On the stability of the zero solution of certain second order 
non-linear differential equations 

By L. HATVANI in Szeged 

Introduction 

In this paper we shall study the equation 

(E) x" + a(t)g(x,x')x' + b(t)f(x) = 0 

under the following assumptions: 

( A ^ a ( 0 6 C [ 0 , ~ ) , f l ( / ) «E0 ; ¿ ( / ) € C ' [ 0 , ¿ , ( ^ > 0 ; 
(A2) /(H) eC(- co, co), uf(u) > 0 (u^0), and lim F(u) = =», where 

| „ | _ c o . 

II 
f(ii) = f f ( x ) d x ; 

o 
(A3) g(u,v) is continuous and non-negative on the (u,v) plane; 
(A4) for arbitrary t0 sO,x0,x'0, (E) has a unique solution x(t)=x(t; t0, x0, x'0) 

in an appropriate interval (70— to + £)(£>0) with x(t0)=x0 and 
x (i0) = *o • 

The zero solution of (E) is said to be stable in the sense of Liapunov if for every 
£=»0 there is a <5 = <5(e)>0 such that every solution x(t) = x(t; t0, x0, x'0) of (E) for 
which Oo)2 + (*ó)2 — ^ satisfies the inequality [x{t)]2 + [>'(0]2 S £ for í s í 0 also. 
We say that the zero solution of (E) is globally asymptotically stable if every solu-
tion x(t) =x(t; t0, x 0 , x'o) of (E) satisfies the relations 

(R) l i m x ( 0 = l i m x ' ( 0 = 0. 
( — CO f OO 

In these definitions it is understood that solutions starting near the origin exist 
on the whole interval 

J. S. W. W O N G [1] obtained a condition sufficient for the stability of the zero 
solution of (E). He also raised the question of finding conditions guaranteeing the 
global asymptotical stability of the zero solution of (E). We shall give an answer to 
this question. 
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In Sec. 1 we prove two lemmas concerning continuation, boundedness and 
oscillation of the solutions. In Sec. 2 we establish a necessary condition for the 
global asymptotical stability of the zero solution of (E) and a sufficient condition 
for the same property in case b(t) is bounded on [0, °o). In Sec. 3 we investigate the 
case lim b(t) = <=°. 

CO 

I a m deeply indebted to L . P I N T E R for the help he has offered to me in the prep-
aration of this paper. 

1. 

Let x(t) be a solution of (E) and set 

[x'(0]2 
(1 . 1) 

It is easy to see that 

(1.2) i / ( 0 

0(0 

[x{t)f 

b(t) 
+ 2F{x(t)). 

b(t) 
2a(t)g(x(t),x'(t)] + ^ 

The non-negative function v(t) will be called the Liapunov function belonging to the 
solution x(t). 

For the sake of brevity, we shall use the notation 

g,(t) = 2la(t) + 
b'{t) 
b{t) ' 

where I is an arbitrary real number. 

L e m m a 1. 1. Suppose that 

(1.3) f [qÁt^-dt 

where k denotes the infimum of g(u, v) on the plane (w, v). Then 
a) every solution x(t; t0, x0, x'0) of (E) exists in [0, 
b) v(t) is a function of bounded variation on [0, and consequently tends to 

a finite limit as t — 

P r o o f , a) Suppose that x(t; t0,x0, Xq) is a solution of (E) and [ t 0 , T) is the 
maximum interval to the right in which the solution x(t) can be continued (t0 < I S 

. By (1.2) we have on [<0, T) 

(1.4) v'{t) s v.(t) — 2ka(t) — 
b'{t) 
b(t) J 

v(t)[qk(t)]_, 
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therefore 

i.e. 

(1.5) 

thus v(t) is bounded, consequently the functions x(t), x'(t) also are bounded on 
every'finite subinterval of [t0, T). 

Suppose now that 7 ,<«>. Then x(t) and x'(t) are bounded on [i0 , T) and by 
virtue of (E) x"{t) is bounded too on the same interval. But x(t) cannot be extended 
to the right of T, therefore lim x(t) and lim x'(t) cannot both exist, and thus 

° t~T-0 V ' t - T - 0 y ' ' 

either x'{t) or x"(t) is unbounded on [t0, T). The assumption T < o o has led to a 
contradiction, i.e. jc(r) exists in (70, 

Likewise, x(t) can be continued to the left of t0. 
b) (1.4) and (1.5) imply [ « ' ( 0 1 + = C i fa»(')]-• Since b ( ( ) S 0, we have 

CO CO 

/ [v'(t)]_ dt s v(0) + f [</(0]+ dt g v{0) + C2, 
0 0 

where C2 = CYJ [%(?)]- dt\ hence 
o 

OO OO 

f\v'(t)\dt = f([v'(t)}++[v'(t)]_)dt<~, 
0 0 

i.e. v(t) is a function of bounded variation on [0, ®=). 

C o r o l l a r y 1. 1. //"(1. 3) holds, then every solution x(t) o / (E) , and x'(t)[b(t)]~i 

also, are bounded. 

P r o o f . In view of b), assumption (A2) and (1. 1), the statement is obvious. 

L e m m a 1. 2. Every solution x(t) of (E) is either oscillatory or monotonic on 
an appropriate interval [T0, °=). 

P r o o f . The zero solution of (E) obviously satisfies the statement of the lemma. 
Suppose now that x ( t ) ^ 0. Then, as a consequence of the uniqueness of the zero 
solution of (E), x(t) and x'(t) have only zeros of multiplicity one and these zeros 
form a discrete set in every finite interval. Now to prove the lemma it is sufficient 
to show that between any two consecutive zeros of x'(t) there is one and only one 
zero of x(t). 

t 

f ^ j d s s j[qk(s)]_ds, 

to to 

T 

v(t) s= ¡ ; ( / 0 )exp( / to*(*) ]_<&) = cx, 
to 
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Let t', t" be two consecutive zeros of x'(t). By virtue of (E) we have x(t')x"(t')<0, 
x(t")x"(t") < 0 , and therefore x(t) has successive extremal values in t', t", thus 
one of them is a maximum point, the other is a minimum point of *(/)• Consequently, 
x"(t') and x"(t") are of opposite signs. Hence x(t') and x(t") are also of opposite 
signs, and therefore x(t) vanishes at some point of (i ' , t"). If x(t) vanishes at least 
twice on ( t t " ) , then x'(t) also has a zero in the same interval. This contradicts the 
fact that t" are two consecutive zeros of x'(t). 

T h e o r e m 2. 1 . I f 

(2.1) lim inf 6( i ) > 0 
1 — <X> 

and the zero solution of (E) is. globally asymptotically stable, then 

/ [ ? « ( ' ) ] + A 
o 

where K is an arbitrary real number greater than g(0, 0). 

P r o o f . Let x(t) be an arbitrary solution of (E). The zero solution being globally 
asymptotically stable, it follows f rom (R) and (2. 1) that v(t) tends to 0 as t-*-^. 
Since K>g{0, 0) and g(u, v) is continuous, there exists a S > 0 such that if u2 + v2 •< <5 
then g(u, v)<K. Furthermore, because of (R) there exists a T> 0 such that if t^T 
then [ * ( 0 ] 2 + [ * ' ( 0 ] 2 a n d hence g(x(t), x'(t))<K, provided ( g l Thus, by 
(1.1), (1.2) and assumption (A2), we have 

v(o v(o m i w v ' m 

on [T, and therefore 

t r 

on the same interval. Since v(t) tends to 0 as t — 

/ [<lK(i)]+ d s ^ J frK(s)]+ ds = ~ 
0 T 

holds, which was to be proved. 

2 + ^ 
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T h e o r e m 2. 2. Suppose that a(t) and b(t) are bounded on [0, furthermore 
(1. 3) and (2. 1) are satisfied. If 

(2.2) y [<7fc(0]+ dt — 
s 

holds on every set S = U ia
n > b„) such ' 

n= 1 

O S f l i , att<bn<an+l, 6 n - a n S 5 > 0 (« = 1 , 2 , 3 , . . . ) , 

¡hen the zero solution of (E) ¿y globally asymptotically stable. 

R e m a r k 2 .1 . If , .say qk{t) satisfies on [0,°°), or it is non-
negative, periodic and does not vanish identically on any subinterval of [0, then 
(2. 2) is obviously satisfied. 

It is easy to prove that (2. 2) and thé following statement are equivalent: for 
every <5 > 0 

1 + 5 

l iminf f [qk(s)]+ds>0 oo J 
t 

is valid. 

P r o o f . Let x(t) be a solution of (E). By Lemma 1. 1 x(t) exists in [0, 
x(t) and « ( 0 = [ * ' ( 0 ] 2 № ( 0 ] _ 1 a r e bounded and v(t) is a function of bounded varia-
tion on [0, » ) . 

First, we shall prove that 

(2.3) l i m w ( 0 ^ 0 . 
t-+ CO 

Suppose (2. 3) is false, i.e. 

(2.4) l imsupw(i ) = X > 0, 
r —CO 

and consider the open unbounded set 

(2.5) H = M(0>jJ-. . ' 

As v(t) is a function of bounded variation, we have 

X 
d t ^ - f [qk(t)]+ dt, 

ô H 
(2.6) \v'(t)\dt^ f u(t) 2a(t)g(x(t), x'(t)) + b'(t) 

b{t) 
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and therefore, as a consequence of (2. 2), H does not contain an interval of the type 
(T, and hence 

(2. 7) l iminf u(t) s 
I — ~ 3 

Inequalities (2. 4) and (2. 7) imply that there exists a sequence of intervals com — 
= ( C O c z H (>n = l , 2, 3, ...) such that 

(2 .8) u(Q = u ( Q = j {m= 1 , 2 , 3 , . . . ) , 

lim t'm = °° and for every m there exists a Tm£a)m with 

(2 .9) " ( O = J A. 

From (2. 6) and (2. 8), by assumption (2. 2), we obtain 

(2.10) lim inf mes ( c o j = 0. 
m — <x> 

Since u' = v'-2[F(x)]', (2. 8) and (2. 9) imply 

X 
(2.11) Ju{t) dt + 

+ 2 J\x\t)\\f{x(t))\dt (m= 1, 2, 3 , , . . ) ; . 
<°m 

moreover, in view of (2. 6) and (2. 8) we have 

(2.12) lim f u(t) 2 a ( i ) s ( * ( 0 , * ' ( ' ) ) + ¿ ( 0 
dt = 0. 

By virtue of assumption (2. 1), and the boundedness of x(t) and x'{t)[b(t)]~*t, 
we get 

(2.13) [ / ( x i O ^ Q , | x ' ( 0 l < C 2 ( 0 s i i < ~ ) . 

From (2. 11) we obtain, in view of (2. 10), (2. 12) and (2. 13), the inequality 

• A 
O ( L ) + 2 C 1 C 2 J d s 

which, as a consequence of (2. 10), contradicts the fact that A > 0 ; consequently 
(2. 3) is true. Then, in view of assumption (2. 1), it follows 

(2.14) lim x'(t) = 0. 



S t a b i l i t y o f t h e z e r o s o l u t i o n 7' 

It remains to verify that x{t) tends to 0 as t — 
By Lemma 1. 1 v(t) tends to a finite limit as / — therefore it follows f rom 

(2. 3) that lim F{x(t)) also exists; thus taking assumption (A2) into consideration 
it is easy to see that lim x(t) = v exists too. By Lemma 1. 2 x ( i ) is either oscil-

t—oo 

latory or monotonic for t large enough. In the first case we have obviously v = 0; 
thus it is sufficient to study the second case. 

Suppose that x(t) is monotonic for t large enough and v ^ O . Then, by virtue 
of (2. 1) and (A2), we get 

(2.15) lim inf b{t) | / (x ( f ) ) | > 0. 

Since a(t) is bounded and g{u, v) is continuous, in view of (2. 14) we have 

(2.16) lim«(<)|f(x(0> x'(t))x'(t) — 0. 

Using (2. 15) and (2. 16) we deduce f rom (E) that lim inf |x"(0l > 0 which con-
tradicts the fact that x{t) is bounded. Thus v = 0 , and this concludes the proof of 
the theorem. 

R e m a r k 2. 2. By taking g(x, x') = 1 and f ( x ) = x2n~1, Theorem 2. 2 contains 
as a special case a sharpened form of a theorem of J . J O N E S (Theorem 4 of [3]). 

3. 

T h e o r e m 3.1. Suppose that 

(3.1) l i m i ( 0 = °°, inf g(u, v) = k > 0, 
i — CO —oo<u(i;<coo 

and for any positive number C 

sup g(u, v) — Kc < °o. 
• |M|<:C, — OOCYCOO 

V 

(3.2) lim inf ^ l ] , > 0 and lim inf ^ J * > 0, 
[6(0]* a(t) 

then for every solution x(l) of (E) we have 

lim-jc(0 = lim - 0 . v ' [¿(i)]* 

P r o o f . This is similar to that of Theorem 2. 2. 
Let x{t) be a solution of (E). By virtue of (3. 2) we have [ ^ ( 0 1 - = 0 on an 

appropriate interval [T"0, thus by Lemma 1. 1 * ( / ) exists in [0, furthermore 
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x(t) and u{t) — [x'(t)]2[b{t)] 1 are bounded and v(t) is non-negative and decreas-
ing on [7q , ° o ) . 

First we shall prove that 

(3.3) lim u(t) = 0. 
' (-.CO 

Suppose that (3. 3) is false, i.e. (2. 4) holds, and consider the set H defined by 
(2. 5). In view of (3. 2) there exists a positive number c such that if T (T^T0) is 
large enough, then 

CO CO 

(3. 4) v(T) > f |i/(/)! dt = J u{t) 
T T 

/ №)?dt-
J Hil[T,») 

hence by (3. 1) we get that mes (H) < Thus, the present assumptions also imply 
(2. 7) and there exists a sequence of intervals comcH (m = 1, 2, 3, ...) with (2. 8) 
and (2. 9). Combining (3. 2) and (3. 4) we obtain the estimate 

CO 

v ( T ) > j \ v ' ( t ) \ d t ^ ^ J J J \x'(t)\dt, 
T HfllT,») . Hn[r,») 

f rom which it follows that 

(3.5) lim f \x'(t)\dt = 0. m-~ oo J 
(OM 

From (2. 11) using (2. 12), (3. 5) and the boundedness of x{t) we get the inequality 

oiiy + lC, f\x'(t)\dt = o(l) 
"m 

which contradicts the fact, that A > 0 . Thus, (3. 3) is true. 
It remains to verify that x(t) tends to 0 as / — 
Similarly as in the proof of Theorem 2. 2, we may restrict ourselves to the case 

where x(t) is monotonic for t large enough. Denote by v the limit of x(t) as / — 
(as x(t) is bounded, v is finite), and suppose v ^ O . Then liminf |x'(OI = 0, f rom 
which it follows that for the function w ( z ) = x ' ( 0 [ * ( 0 ] - 1 

2a(t)g(x(t),x'(t))- b'{t) 
b(t). 

dt 

(3.6) lim inf [w(i)| = 0 
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holds too. On the other hand, (E) implies that w(t) satisfies the relation 

6 ( 0 + № P . g { ( ) , ( ) ) № P * . x « > J 
(3.7) *,'«) =-b(t) 

for t large enough. In consequence of (3. 3) and v ^ O , we have 

thus (3. 1), (3. 2), (3. 7), (A2) and assumption v ^ O imply that 

(3.8) lim |w ' (OI '= 
T — CO 

This contradicts (3 .6) . Therefore we have v = 0. 
This concludes the proof. 

C o r o l l a r y . Suppose b{t) is increasing on an interval[T, and lim b(t) = <*>-

If there exist positive constants k, K, c, C, T1 such that 

(3.9) k < g(u, v) -z. K ( ~ ° ° < w , c g - M i i g C (T^ 
a\t) 

then for every solution x(t) of (E) we have 

x'(t) 

P r o o f . If t£[Tt, then 

g*(0 =
 1 

[6(0]* [6(0]* 
2feK0+y(0 

6 ( 0 J 
*2k a ( t ) 

[6(0]* ' 

thus (3.9) implies (3. 2);. therefore the assumptions of the theorem are satisfied. 
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