On the divergence of rearranged Fourier series
of square integrable functions

By SABURO NAKATA in Toyama (Japan)

Introduction

K. Tanporr [3] gave an elementary proof to the statement of A. N. KoLmo-
GOROFF [1] that there exists a square integrable function whose Fourier series can
be rearranged so as to diverge almost everywhere. He {4] also proved the following -
theorem:

Theorem A. If {o(n)} is a sequence of positive numbers with

(1 . “o(n) = oYloglogn),

then there exists a sequence {c,} with £c2g*(n) < oo such that the Walsh series X, w,(x)
diverges almost everywhere in (0, 1) in a certain rearrangement of its terms.

Afterwards F. MoORricz [2] showed a generalization of [3] which can be considered
as a trigonometric series analogue of Theorem A. That is:

Theorem B. Suppose (1). Then there exists a square mtegrable Junction w/1ose
Fourier series X(a, cos nx + b, sin nx) is such that

) ‘ 2 (@ +b)e ) < =
.and wﬁich can be rearranged into an euerywhere divergent series

In the present paper we will sharpen Theorem B by refining the method of
ist proof.

Theorem. If {o(n)} is a sequence of positive numbers with
. A .
3) e(n) = o(Ylogn),

then there exists a square integrable function whose Fourier series fulfils (2) and wh:ch
can be rearranged into an everywhere dwergent series.



60 . - S. Nakata

Corollary. Suppose (3), then there exists a square integrable function whose
Fourier series can be rearranged in such a way that the partial sums oy (x) of the re-
arranged series satisfy

s Jow(o)
iim sup ————
Nom' (V)

The author should like to express his hearty thanks to Prof. G. SuNoucHI
for his valuable advice and encouragement in the preparation of this paper.

> 0 everywhere.

§ 1. Lemmas

Consider a set £ = G J; satisfying J,NJ;=0 (i = j)') and max |/;|>0.%)
i=1 i

If each J; is an interval; then E is said to be simple, and we write E€ ¥ More generally,
if each J; is either an interval or a point, then E is said to be generalized simple,
and we write £€%*. Suppose E€ &*, then for 0 <g<max |J|/2, we set

E®@ = U [o+e pi—el
Bi—a;>2¢
where «; and f; denote the left and right end points of J; respectively. It is obvious
that E@¢ . ’

For a function a, cos vx+b,sin vx (# 0) we call v its frequency. Two tri-
gonometric polynomials are called disjoint if they have no terms of the same fre-
quency.

C,, C,, ... denote positive absolute constants which will be common in several
lemmas. ' ' ’

Lemma 1. Let E = U J,€ F* be a subset of [—n/12, n/12], 0 <e<max |J,|/2
and 0 <n =1 real numbers, and n a natural number such that n > C,len —1 (C, =n).
Then there exists a non-negative trigonometric polynomial P(x) with frequences 6v
(v=0,1, ..., n) such that

(7 _ P(x)=1 for x€E®,

(®) ~ ' P(x)=n for xe¢ [—7"2— %]—E
and A

) | | _[.PZ('x)dx = GE| [c2 =-241n4].

1y J; denotes the closure of J,
%) |J;| denotes the Lebesgue measure of J,.
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We can verify Lemma 1 with the aid of the proof of the similar lemma in [2]; .
s0 we omit its proof.

Lemma 2. Take the same. assumptions and notations as in Lemma 1, an let
N (= 12n+6) be a natural number divisible by 6. Furthermore set

0,(x) = (cos Nx) P(x),
(10) 0,(x) = —C;(cos 3x) (cos Nx) P(x)  (C, =2V2),
' 0;(x) = —Ca(cos 2N P(x)  (Cy = 3+412).

Then Q,(x), Q,(x) and Q5(x) are .murua[/y disjoint trigonomérric polynomials with
Sfrequences 3v having the following properties:

(1) N—6n—3=3v=N+6n+3 or 2N—6n=3v=2N+6n;

(12) 10,()+ 0, (x)+05(x0)| = Csn for "E[‘Tnz"%]—E

(Cs = 1+C3+Cy);

13 [10/0+0:()+ Qs dx = GlEl  (Cq = C2(1+C} +CD):;

—n

there exists a decomposition E® = E, + E, + E, such that

!
I
(14) > 0u(x) = 5 Jor x€E (=1,2,3)
k=1 .
In addition if
15 2n 2
(15) W=mgx|J,~l—e

is satisfied, then each E, contains an interval whose leng th is not smaller than n/3N
and E,¢* (I1=1,2,3). :

Proof. Itis easy to see that the frequencies of the terms of Q,(x) and Q;(x)
are divisible by 6, and those of Q,(x) divisible by 3 but not by 6. Moreover the fre-
quencies 3v of the terms of Q,(x) and Q,(x) satisfy the former inequalities of (11),
and those of Q,(x) only the latter ones. (12) and (13) are shown by simple calcula-
tions using (8) and (9), respectively. And in virtue of (7), the following estimates
hold:

1 i

1= =

Q,(x) = (cos Nx)P(x) = 3 5
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for ‘
- (c h 1 n 1 .
XEE] = E()ﬂk=q°° N‘[Zkﬂ——j], ﬁ[2kn+?]],
0, (x)+Q,(x) = (Cs cos 3x — 1) (—~cos Nx) P(x) = {%_1]%., = %
.for
x€E, = EON _D %[2/6714-%”]’ —1]\7[2k7r+%”]];
0\ () +0:(0+ 03(0) = (W)=~ 1@ ()| > F~Cy—1 = +
for ' .
| YL | 1(, 2=
xeEy=E®N U .[N[k“‘?]’ N[kn+T]]'

Now let us set |J; | = max |/;], and assume (15). Then in virtue of the definition

of E, (/=1,2,3), each E,ﬂJ,.(lf’ contains an interval whose length is not smaller
than n/3N. This completes the proof of Lemma 2.

Lemma 2°. Let P(x) be a trigonometric polynomial with frequencies 3v (v =n),
and N (= 6n+3) a natural number divisible by 3. Furthermore set

0,(x) = (cos Nx)P(x),
1oy - Q,(x) = — C5(cos x) (cos Nx)P(x),
0Q;(x) = — C,(cos 2Nx)P(x).

Then Q, (x), Q,(x) and Q;(x) are mutually disjoint trigonometric polynomials w:“rh
Jrequencies v having the following properties:

(1) N—=3n—1=v=2N+3n;
a3 [10,(0)+ 0, +0s@2dx = Cs [ P dx;

Jor every set E(C [—n/4, /4)) on which P(x) is positive, there exists a decomposition
E = E\+E,+ FE; such that

1l
(14%) kglgk(x)zig’i) for x€E, (/=1,2,3)
and .
(14”) ' Q,(x)zf—;x—) for x¢E, (I=1,2,3).

The proof of Lemma 2’ is quite in an analogy to that of Lemma 2.
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Lemma 3. If 0 <.& < n/6, then there exist mutually disjoint trigonometric:
polynomials R (x) and generalized simple sets

EQ ¢ [—a/12,7/12]  (k=1,2,..,3; i=0,1,..)

with the following properties:
(i) the frequencies occurring in RV (x) (k=1, 2, ..., 3') are divisible by 3 and
smaller than 6f;(g) where

C 1(1 1) R
file) = [ 7] 18 2 (C;=[128C,Cs]+1); %)

. ; 3¢ 2
(ii) f [Z R,gn(x)] dx = Cg [c8 = Q%];

(i) the sets E® (k=1,2, ..., 3") corresponding to the same value of i are dis--
Jjoint;
(iv) set
(i)

. gk
EP ="U J; and v;(g) = Zg(‘)’

=1
then v,(e) </,(e); ’
(v) set
'—[ 12 12] U ED,
then |F;| = e(1—1/2);
(vi) the trigonometric polynomials RY(x) (k=1, ...,3%; j=0, ...,'i) can be ar-
ranged into a sequence - .

(16) UP), UL ), -, Uiy (h() = G371 =D)/2),
such that
(17) ZU"’( )>lf4—1 for x€E®

with m" not depending on the particular point x¢ E® (k=1,2, ..., 3.

Proof. Define R (x)=1and E9 = [—n/12, n/12], then these satisfy (i)—(vi):
trivially. Setting »; = 1/2*%f(e) (i=0), no=1 and n; = 1/C54(3' —1) (i=1), we

take natural numbers
C,
L= i=0,1, ...
" [mm] (=01

and
N,E") = 2k—=D(2m,+6) - (k=1,2,...,3; i=0,1,..).

3) The integer part of a real number « is denoted by [«].”
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We have the following estimates:

(18) N —6n,—3 = 6n,+3 > 6 C;——l +3 = 36-21*2£,(e) =3 > 72£i(e)
. 5, =1 :

6 S (iz0);

(19) 2N§) 61, = {24(2-3 — 1)+ 6}m+12(2-3 1) =

= (48-3"—18)%2"+2f,.(e)c54-3"+24-3f—12 -

=6- 18"——~—1285‘Csﬁ(s)—6"‘»——28851(’151’,.(8)4(24.3"— 12 <
i [C :
<6-18 [?]f,-(e) =6-fii(e)  (1=0);
T .
(20) 2 2 12 =
‘ “E= S ry o
) u i (i=1).

24f,() ~ 8NGZD

Applying Lemma 2 to (E, x,¢, n,, 1, and N{), we get the mutually disjoint
trigonometric polynomials Q,(x) (/=1,2,3) and the decomposition E{?¢? =
= E, +E,+E;. Define R{V(x)=0Q,(x) and E{"=E, (k=1,2,3). Then we can
-easily check that (i)—(vi) hold for i=1. For example as to (iv), :

T _E
12 4

v,(e) = vy(e)+2 I = ’
2NO

= 34N [-;—-g] =343, [g-f{]éfl(em—s- 128C5 < £,);

and as to (vi), we set U{V(x) = RO (x), ULV (x) = RV (x), UV (x) =R (x), U (x) =
‘=R (x) and m{"” = 1+k (k=1, 2, 3). Furthermore, since |E®|—2x,e > n/6—
—n/12 > 2n/N{®, we see that each E{" (k=1,2,3) contains an interval whose
length is not smaller than 7/2N{? and that E{V € &*.
Now we suppose-that RY(x) and EP (k=1, ..., 3/; j=0, ..., i) are already
-defined and satisfy (i)—(vi), and that
Yo} _ max |J;| = ﬁ‘:F

1 =gt
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for each EY (k=1,2,...,3). Then by (20) and (21). '

2x;6 < max |/}
1=j=gl")

holds for each EQ (k=1,2, ..., 3)). By the application of Lemma 2 to each (E{,

%6 N, n; and N9P) (k=1, 2, ..., 3), we define the mutually disjoint trigonometric

polynomials ' .
R§GEB(x) = (cos NP x) PP (x),

2) . REED(x) = — C3(cos 3x) (cos N x) P (x),
REFD(x) = — Cy(cos 2N x) P (x)
and the decompositions
E’El)(x 18 E('k+—1) +E(z+l) +E§i"+l) (k____ 1’ 2, . 3,) .
In virtue of (11), the frequencies of (22) belong to 4, U B, where '
A, = [Qk+1DN® —6n,—3, (2k + DN +6n,+ 3],
B, = 2Qk+1)NP —6n,, 22k + )N + 6n,.
It is obvious that A4,NA4, =0 and B,NB, =@ for ksk’. Moreover we have
A,NB, = 0 (k#=k’) since, though |4,|/2+|B|./2 = (6n,4+3)+6n, < NP holds,
the distance of the middle points of A, and B, is not smaller than N®. Thus the
trigonometric polynomials RV*V(x) (k=1, 2, ..., 3'*!) are mutually disjoint.- And
we are going to show (i)—(vi) and (21) replacing i with i+ 1.
By (18) the frequencies occurring in R{* D (x)- are larger than those of R{’(x)
(k=1,2,...,39), gmd by (19) the property (i) is verified. As to (ii), we have

f [ > R(’“)(x)] dx = 2 (Rg'k+12’(x)+Rg;+13(x)+R<'+1>(x.3)2dx'=

= Sc i =c,E =y
, k=1 6
and as to (jii), it is obvious. As to (iv), setting
E{E® = =IO (k=1,2,...,3),

we have 160
@ = 0@+ 3 32 [ 1
k=1 1 W

2N3- Z ,E(:)(xla)i +20,(e) = 31'(8)+M[6 —-;—] < fi+ 1:(8),;

= v,(e) +
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and as to (v),

3.
v = [RU{ 0 e o)

1 1
:8[1 ] 2'+2f()f(8) { FT]
As to (vi), we define the sequence

U D(x), USH (), -, USED ()

by inserting RSF1(x), Rg‘}f’f(x), R{FD(x) after R "(x) (k=1,2,...,3) in (16),
and define m{*¥ (k=1,2,...,3"*") by

Updh(d) = RV (k=1,2,...,3*Y).

Then if x€ E$tY,,, 1=k=3" and 1=/=3, we obtain

= [Fi{+ 28+ v,(e) =

mit Y., , m 3k—3+1
2 Ui = 2 UPx) + Z R+ (x) =
j=1 J=1 , J

(l)

= Z UPx)+ Z REFY, () Z’ iR§‘+‘z’(x)+R§',+ ‘3(x)+Rg',+”(x)1 =
J =1

_ it 1 ; 4+ D+1
Finally by T 7 :
2n 2n 378
NP < Tfe T NGED <, e Wil 2

we get (21) for each E¢+1 (k = 1,2, ...,i+1). Thus the statement of Lemma 3 is
proved. :

Lemma 4. There exist mutually disjoint trigonometric polynomials . SP(x)
(G=12..,310)+3; i = Cy, Co+1,...)*") with the following properties:
(vii) the frequencies v occurring in S¥(x) satisfy 5 =y=5°+H1;

h(i)+
w5 s eamelont)

-1

#$? (), | -
(ix) > S = o for O0=x= -,
. j=“ii)(x) 8 12

 where 1 = p{(x) = p(x) = 3h(i)+3.

%) C, will be defined later on, see (26).
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"Proof. Fix the natural number /, and apply Lemma 3 to ¢ = 1/(i-+1). Then
we get the mutually disjoint trigonometric polynomials UP(x) (j=1,2, ..., ()
and the simple sets £ (k=1, 2, ..., 3). It is obvious that the frequencies occurring
in U$(x) are smaller than 6f;(¢;), and that (17) and

h(i)
(23) Z’ (U9 (x))? dx = c8 (+1)

i-18)

hold. Tn view of (iv), E(‘ U consists of g1 disjoint intervals, therefore £~ D
consists of at most g¢~") disjoint intervals too. Hence
= | — n (i) _ __L _zr__ 7 G=1)0ei-18)
Fi= [ 12° 12 kUlE [ 12712 kLJlE

consists of at most v;_, (¢;) + 1 disjoint intervals.

Let H;c [0, n/6] be-the symmetric set defined by H,N[0, n/12] = F,N][0, n/12],
then H; consists of at most f;_,(¢) disjoint intervals. Setting H;=2ZX[x, ],
& = &/2fi_,(e) and H] = {o—¢}, B+¢l), we see that H; [0, n/6], H/ €% and

l_]_ +8 = L

2 i+1°
Applying Lemma 1 to (H/, &, 1-and [C,/¢;]), we get the tngonometrlc polynomial
PO(x) with frequencxes 6v (v = 0,1, ..., [C,/e}])) such that

(24) PY(x)z=1 for x€H,cH®
and ' .
(25) /(P(')(x))2 dx = CZIH | = 2521 .
Now we suppose i=Cy so that the mequallty
l(l 1)
(26) 37ﬁ(e)_37C7(z+1)‘18 2 =

- 1g(z+;).2 si2+i{logis(i+1)+logis Cr— }+log|s37 - 8(l~+/1)i2 L

may hold. Setting N, —-5‘2+6f(£)+(3+(—l))/2 and N, —2N1+6f(s,)+
+6[C,/e]]+3, we define

0]
S(x) = (cos Ny x), Uil+(IX) ’
- - Uy
Siy+;(x) = = C5(cos x) (cos Ny x) === (X) |

it . ' U(') x
] Sgl}(iﬂ-j(x) C4(COS 2N, v) (l)

5%
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i=1,2, ..., h(i)), and
J

e PO (x
ngz(i)-{-— 1(0) = (COS N, x) ( ) s
S PO (x)
3@ +2(x) = —C3(cos x) (cos N, x)
P(')(x)

Sy 13(x) = —=Cy(cos 2N, x)

Then using (117) we easily see that SP(x) (j = 1, 2, ..., 3(i) + 3) are mutually dis-
joint trigonometric polynomials with frequencies v satisfying

5P =N —6fie)-1=v = 2N2+6[§1~].
And by. (26), !

2N2+6[§,—‘] = 45" 4 36/,(c) + 18 [%]+18 = 4-57 4 37(e) = 57 L.

By (13%), (23) and (25), we obtain

T

3h(l)+3 .
f [ _Z sw(x)] dx =

-
@ x

{ 3
= 21’ j IS,('i)(x)+Si(|'():)+1(x)+Szlii)i)_ntj(x)lzdx‘if f &~ dx =
J= =

h(i) . ; .l(,') 2 ~ 0 2
U2 (x) P (x) -
§,§ Co f[ il ] dx’“«cﬁ.f[ 7 &=

—_— . —z

C6 2C2 _ C10‘ .
i+1 i1

Ce .
= Grpr U DT
- ‘ / 3¢ R ) .
To prove (ix), suppose 0=x=n/12. Then x€ U’ £ or x¢ H;. We set ui’(x)=1
k=1 . .
and pf(x)=m{ for
1 1 )]
(i) 1 . Ld
x€E; ﬂ,_L_J_w A [2}7! 3] w [2_]7t+3]‘
'ﬂ(')(x) = h(i)+1 and pP(x) = h(i)+m® for

1 2] 1 4
(i) .
xCEy O,_LL, N, [27:—{—3] N, [zjn+3ﬂ]’

.o
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and pP(x) = 2h(i)+ 1 and pP(x) = 2/1(t)+m,§" for

1 1 2
(i)
ek n,_!m{/v, [’”3] N, [’”*3 ]]

Hence in the case of x¢€ EX, we get

m ,(( )

cos N,
U (x
i ,:Zl )
ns2 ) - —C;(cos x) (cos N, x) e @
2 S =qor AU
J=n{ (0
_ 2N mk :
or C,(cos x) Z U(" ).
i+1
Now using (14”) and (17),
m)
u$? (x) ] Z U,('i)(x) 1
() = J=1 ==
2 570 = .2 -8

j=n{" () .
In the case of x€ H,, we set 19(x) = 3h@) +1 and pP(x) = 3h()+1 or 3h(i)+2
or 3/(i) -+ 3. Then using (14’) and (24) we get the assertion of (1x) So the proof of
Lemma 4 is complete.

§ 2. Proof of the theorem

Define the sequence of natural numbers (Cy =)m; <m, <--- such that

- , )
@7 . G Lot nast
o Vlog5 n
Then by (vii), setting
3h(m1<)+3 5
(28) T(x) = 4_, S""k) [ (ki%n] = )
o 5mi+l q'"i+1 ] . |
= 2 (@cosmxtbysinnx) = Z  (a,cosnx+b,sinnx)  (k=1,2,..),
i 2
n=5"k "=5mk

© %) (k)24 denotes the remainder of k modulo 24.
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we consider the series > (a, cos nx.+b, sin nx). And we define the rearrangement
1 . . .

m my T
S( )[\__—IE] S( )[x_“ﬁ']‘}' +S3h(nu)+3[ Tz_]’{'

my 2 ma 2 m (k) T
+S( )[\*—1—2‘]+ +S.%h(mz)+3[x ]2]+ +S( k)[ %]‘F

which diverges everywhere in virtue of (ix). By (27), (28) and (viii), we get

trlk+1
1 5
21 (eh+51)*(n) = ZV"’” 2, @ +03) =
- R .
_ L yymitl /Tkz(x)'dx<— Ziﬁ
T =1 k k=

. —n
Thus, in accordance with the Riesz—Fischer theorem, the assertion of our theorem

is proved. ,
Next define (A, cos nx + B, sin nx) by

nV’nk+1

. , Bn _ bn ank‘{' 1 (Smk = mk“ k> 1)’

k

A4, =

and the proof of Corollary runs similarly to that of Theorem 2 in [2].
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