On the divergence of rearranged Fourier series of square integrable functions

By SABURÔ NAKATA in Toyama (Japan)

Introduction

K. Tandori [3] gave an elementary proof to the statement of A. N. KolmoGOROFF [1] that there exists a square integrable function whose Fourier series can be rearranged so as to diverge almost everywhere. He [4] also proved the following theorem:

Theorem A. If $\{\varrho(n)\}$ is a sequence of positive numbers with

$$
\begin{equation*}
\varrho(n)=o(\sqrt{\log \log n}) \tag{1}
\end{equation*}
$$

then there exists a sequence $\left\{c_{n}\right\}$ with $\Sigma c_{n}^{2} g^{2}(n)<\infty$ such that the Walsh series $\Sigma c_{n} w_{n}(x)$ diverges almost everywhere in $(0,1)$ in a certain rearrangement of its terms.

Afterwards F. Móricz [2] showed a generalization of [3] which can be considered as a trigonometric series analogue of Theorem A. That is:

Theorem B. Suppose (1). Then there exists a square integrable function whose Fourier series $\Sigma\left(a_{n} \cos n x+b_{n} \sin n x\right)$ is such that

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(a_{n}^{2}+b_{n}^{2}\right) \varrho^{2}(n)<\infty \tag{2}
\end{equation*}
$$

and which can be rearranged into an everywhere divergent series.
In the present paper we will sharpen Theorem B by refining the method of ist proof.

Theorem. If $\{\varrho(n)\}$ is a sequence of positive numbers with

$$
\begin{equation*}
\varrho(n)=o(\sqrt[4]{\log n}) \tag{3}
\end{equation*}
$$

then there exists a square integrable function whose Fourier series fulfils (2) and which can be rearranged into an everywhere divergent series.

Corollary. Suppose (3), then there exists a square integrable function whose Fourier series can be rearranged in such a way that the partial sums $\sigma_{N}(x)$ of the rearranged series satisfy

$$
\limsup _{N \rightarrow \infty} \frac{\left|\sigma_{N}(x)\right|}{\varrho(N)}>0 \text { everywhere. }
$$

The author should like to express his hearty thanks to Prof. G. Sunouchi for his valuable advice and encouragement in the preparation of this paper.
:

§ 1. Lemmas

Consider a set $E=\bigcup_{i=1}^{m} J_{i}$ satisfying $\left.\bar{J}_{i} \cap \bar{J}_{j}=\emptyset(i \not \approx j)^{1}\right)$ and $\left.\max _{i}\left|J_{i}\right| \geqslant 0 .{ }^{2}\right)$ If each J_{i} is an interval; then E is said to be simple, and we write $E \in \mathscr{S}$. More generally, if each J_{i} is either an interval or a point, then E is said to be generalized simple, and we write $E \in \mathscr{P}^{*}$. Suppose $E \in \mathscr{S}^{*}$, then for $0<\varepsilon<\max _{i}\left|J_{i}\right| / 2$, we set

$$
E^{(\varepsilon)}=\bigcup_{\beta_{i}-\alpha_{i}>2 \varepsilon}\left[\alpha_{i}+\varepsilon, \beta_{i}-\varepsilon\right]
$$

where α_{i} and β_{i} denote the left and right end points of J_{i} respectively. It is obvious that $E^{(\varepsilon)} \in \mathscr{P}$.

For a function $a_{v} \cos v x+b_{v} \sin v x(\not \equiv 0)$ we call v its frequency. Two trigonometric polynomials are called disjoint if they have no terms of the same frequency.
C_{1}, C_{2}, \ldots denote positive absolute constants which will be common in several lemmas.

Lemma 1. Let $E=\bigcup_{i} J_{i} \in \mathscr{S}^{*}$ be a subset of $[-\pi / 12, \pi / 12], 0<\varepsilon<\max _{i}\left|J_{i}\right| / 2$ and $0<\eta \leqq 1$ real numbers, and n a natural number such that $n>C_{1} / \varepsilon \eta-1\left(C_{1}=\pi\right)$. Then there exists a non-negative trigonometric polynomial $P(x)$ with frequences $6 v$ ($v=0,1, \ldots, n$) such that

$$
\begin{gather*}
P(x) \geqq 1 \quad \text { for } x \in E^{(c)} \tag{7}\\
P(x) \leqq \eta \quad \text { for } \quad x \in\left[-\frac{\pi}{12}, \frac{\pi}{12}\right]-E \tag{8}
\end{gather*}
$$

and
(9)

$$
\int_{-\pi}^{\pi} P^{2}(x) d x \leqq C_{2}|E| \quad\left(C_{2}=\frac{27}{4} \pi^{4}\right)
$$

[^0]We can verify Lemma 1 with the aid of the proof of the similar lemma in [2]; so we omit its proof.

Lemma 2. Take the same assumptions and notations as in Lemma l, an let $N(\geqq 12 n+6)$ be a natural number divisible by 6. Furthermore set

$$
\begin{align*}
& Q_{1}(x)=(\cos N x) P(x) \\
& Q_{2}(x)=-C_{3}(\cos 3 x)(\cos N x) P(x) \quad\left(C_{3}=2 \sqrt{2}\right) \tag{10}\\
& Q_{3}(x)=-C_{4}(\cos 2 N x) P(x) \quad\left(C_{4}=3+4 \sqrt{2}\right)
\end{align*}
$$

Then $Q_{1}(x), Q_{2}(x)$ and $Q_{3}(x)$ are mutually disjoint trigonometric polynomials with frequences $3 v$ having the following properties:

$$
\begin{equation*}
N-6 n-3 \leqq 3 v \leqq N+6 n+3 \text { or } 2 N-6 n \leqq 3 v \leqq 2 N+6 n ; \tag{11}
\end{equation*}
$$

$$
\begin{equation*}
\left|Q_{1}(x)+Q_{2}(x)+Q_{3}(x)\right| \leqq C_{5} \eta \quad \text { for } \quad x \in\left[-\frac{\pi}{12}, \frac{\pi}{12}\right]-E \tag{12}
\end{equation*}
$$

$$
\left(C_{5}=1+C_{3}+C_{4}\right)
$$

$$
\begin{equation*}
\int_{-\pi}^{\pi}\left|Q_{1}(x)+Q_{2}(x)+Q_{3}(x)\right|^{2} d x \leqq C_{6}|E| \quad\left(C_{6}=C_{2}\left(1+C_{3}^{2}+C_{4}^{2}\right)\right) \tag{13}
\end{equation*}
$$

there exists a decomposition $E^{(\sigma)}=E_{1}+E_{2}+E_{3}$ such that

$$
\begin{equation*}
\sum_{k=1}^{1} Q_{k}(x) \geqq \frac{1}{2} \quad \text { for } \quad x \in E_{l} \quad(l=1,2,3) \tag{14}
\end{equation*}
$$

In addition if

$$
\begin{equation*}
\frac{2 \pi}{N} \leqq \max _{i}\left|J_{i}\right|-2 \varepsilon \tag{15}
\end{equation*}
$$

is satisfied, then each E_{l} contains an interval whose leng th is not smaller than $\pi / 3 N$ and $E_{l} \in \mathscr{S}^{*}(l=1,2,3)$.

Proof. It is easy to see that the frequencies of the terms of $Q_{1}(x)$ and $Q_{3}(x)$ are divisible by 6 , and those of $Q_{2}(x)$ divisible by 3 but not by 6 . Moreover the frequencies $3 v$ of the terms of $Q_{1}(x)$ and $Q_{2}(x)$ satisfy the former inequalities of (11), and those of $Q_{3}(x)$ only the latter ones. (12) and (13) are shown by simple calculations using (8) and (9), respectively. And in virtue of (7), the following estimates hold:

$$
Q_{1}(x)=(\cos N x) P(x) \geqq \frac{1}{2} \cdot 1=\frac{1}{2}
$$

for

$$
\begin{gathered}
x \in E_{1}=E^{(\varepsilon)} \cap \bigcup_{k=-\infty}^{\infty}\left[\frac{1}{N}\left(2 k \pi-\frac{\pi}{3}\right), \frac{1}{N}\left(2 k \pi+\frac{\pi}{3}\right)\right] ; \\
Q_{1}(x)+Q_{2}(x)=\left(C_{3} \cos 3 x-1\right)(-\cos N x) P(x) \geqq\left(\frac{C_{3}}{\sqrt{2}}-1\right) \cdot \frac{1}{2} \cdot 1=\frac{1}{2}
\end{gathered}
$$

for

$$
\begin{gathered}
x \in E_{2}=E^{(\varepsilon)} \cap \bigcup_{k=-\infty}^{\infty}\left[\frac{1}{N}\left(2 k \pi+\frac{2}{3} \pi\right), \frac{1}{N}\left(2 k \pi+\frac{4}{3} \pi\right)\right] ; \\
Q_{1}(x)+Q_{2}(x)+Q_{3}(x) \geqq Q_{3}(x)-\left|Q_{2}(x)\right|-\left|Q_{1}(x)\right|>\frac{C_{4}}{2}-C_{3}-1=\frac{1}{2}
\end{gathered}
$$

for

$$
x \in E_{3}=E^{(\varepsilon)} \cap \bigcup_{k=-\infty}^{\infty}\left(\frac{1}{N}\left(k \pi+\frac{\pi}{3}\right), \frac{1}{N}\left(k \pi+\frac{2 \pi}{3}\right)\right) .
$$

Now let us set $\left|J_{i_{0}}\right|=\max _{i}\left|J_{i}\right|$, and assume (15). Then in virtue of the definition of $E_{l}(l=1,2,3)$, each $E_{l} \cap J_{i_{0}}^{(c)}$ contains an interval whose length is not smaller than $\pi / 3 N$. This completes the proof of Lemma 2.

Lemma 2^{\prime}. Let $P(x)$ be a trigonometric polynomial with frequencies $3 v(v \leqq n)$, and $N(\geqq 6 n+3)$ a natural number divisible by 3 . Furthermore set

$$
\begin{align*}
& Q_{1}(x)=(\cos N x) P(x), \\
& Q_{2}(x)=-C_{3}(\cos x)(\cos N x) P(x), \\
& Q_{3}(x)=-C_{4}(\cos 2 N x) P(x) .
\end{align*}
$$

Then $Q_{1}(x), Q_{2}(x)$ and $Q_{3}(x)$ are mutually disjoint trigonometric polynomials with frequencies v having the following properties:

$$
\begin{equation*}
N-3 n-1 \leqq v \leqq 2 N+3 n ; \tag{11'}
\end{equation*}
$$

$$
\begin{equation*}
\int_{-\pi}^{\pi}\left|Q_{1}(x)+Q_{2}(x)+Q_{3}(x)\right|^{2} d x \leqq C_{6} \int_{-\pi}^{\pi} P^{2}(x) d x \tag{13'}
\end{equation*}
$$

for every set $E(\subset[-\pi / 4, \pi / 4])$ on which $P(x)$ is positive, there exists a decomposition $E=E_{1}+E_{2}+E_{3}$ such that

$$
\begin{equation*}
\sum_{k=1}^{1} Q_{k}(x) \geqq \frac{P(x)}{2} \quad \text { for } \quad x \in E_{l} \quad(l=1,2,3) \tag{14'}
\end{equation*}
$$

and

$$
Q_{l}(x) \geqq \frac{P(x)}{2} \quad \text { for } \quad x \in E_{l} \quad(l=1,2,3)
$$

The proof of Lemma 2^{\prime} is quite in an analogy to that of Lemma 2.

Lemma 3. If $0<\varepsilon<\pi / 6$, then there exist mutually disjoint trigonometricpolynomials $R_{k}^{(i)}(x)$ and generalized simple sets

$$
E_{k}^{(i)} \subset[-\pi / 12, \pi / 12] \quad\left(k=1,2, \ldots, 3^{i} ; \quad i=0,1, \ldots\right)
$$

with the following properties:
(i) the frequencies occurring in $R_{k}^{(i)}(x)\left(k=1,2, \ldots, 3^{i}\right)$ are divisible by 3 and smaller than $6 f_{i}(\varepsilon)$ where

$$
\left.f_{i}(\varepsilon)=\left(\frac{C_{7}}{\varepsilon}\right)^{i} 18^{\frac{i(i-1)}{2}} \quad\left(C_{7}=\left[128 C_{1} C_{5}\right]+1\right){ }^{3}\right)
$$

(ii)

$$
\int_{-\pi}^{\pi}\left(\sum_{k=1}^{3^{i}} R_{k}^{(i)}(x)\right)^{2} d x \leqq C_{8} \quad\left(C_{8}=C_{6} \cdot \frac{\pi}{6}\right)
$$

(iii) the sets $E_{k}^{(i)}\left(k=1,2, \ldots, 3^{i}\right)$ corresponding to the same value of i are dis-joint;
(iv) set

$$
E_{k}^{(i)}=\bigcup_{j=1}^{g_{k}^{(i)}} J_{j} \quad \text { and } \quad v_{i}(\varepsilon)=\sum_{k=1}^{3^{i}} g_{k}^{(i)}
$$

then $v_{i}(\varepsilon) \leqq f_{i}(\varepsilon)$;
(v) set

$$
F_{i}=\left[-\frac{\pi}{12}, \frac{\pi}{12}\right]-\bigcup_{k=1}^{3 i} E_{k}^{(i)},
$$

then $\left|F_{i}\right| \leqq \varepsilon\left(1-1 / 2^{i}\right)$;
(vi) the trigonometric polynomials $R_{k}^{(j)}(x)\left(k=1, \ldots, 3^{j} ; j=0, \ldots, i\right)$ can be arranged into a sequence

$$
\begin{equation*}
U_{1}^{(i)}(x), U_{2}^{(i)}(x), \ldots, U_{h(i)}^{(i)}(x) \quad\left(h(i)=\left(3^{i+1}-1\right) / 2\right) \tag{16}
\end{equation*}
$$

such that

$$
\begin{equation*}
\sum_{j=1}^{m_{k}^{(i)}} U_{j}^{(i)}(x) \geqq \frac{i+1}{4} \quad \text { for } \quad x \in E_{k}^{(i)} \tag{17}
\end{equation*}
$$

with $m_{k}^{(i)}$ not depending on the particular point $x \in E_{k}^{(i)}\left(k=1,2, \ldots, 3^{i}\right)$.
Proof. Define $R_{1}^{(0)}(x)=1$ and $E_{1}^{(0)}=[-\pi / 12, \pi / 12]$, then these satisfy (i)-(vi) trivially. Setting $\varkappa_{i}=1 / 2^{i+2} f_{i}(\varepsilon)(i \geqq 0), \eta_{0}=1$ and $\eta_{i}=1 / C_{5} 4\left(3^{i}-1\right)(i \geqq 1)$, we: take natural numbers

$$
n_{i}=\left[\frac{C_{1}}{\varkappa_{i} \varepsilon n_{i}}\right] \quad(i=0,1, \ldots)
$$

and

$$
N_{k}^{(i)}=(2 k-1)\left(12 n_{i}+6\right) \quad\left(k=1,2, \ldots, 3^{i} ; \quad i=0,1, \ldots\right)
$$

[^1]We have the following estimates:

$$
\begin{equation*}
N_{1}^{(i)}-6 n_{i}-3=6 n_{i}+3>6\left(\frac{C_{1}}{x_{i} \cdot \frac{\pi}{6} \cdot 1}-1\right)+3=36 \cdot 2^{i+2} f_{i}(\varepsilon)-3>72 f_{i}(\varepsilon) \tag{18}
\end{equation*}
$$

$$
\begin{align*}
& 2 N_{3}^{(i)}+6 n_{i}=\left\{24\left(2 \cdot 3^{i}-1\right)+6\right\} n_{i}+12\left(2 \cdot 3^{i}-1\right) \leqq \tag{19}\\
& \leqq\left(48 \cdot 3^{i}-18\right) \frac{C_{1}}{\varepsilon} 2^{i+2} f_{i}(\varepsilon) C_{5} 4 \cdot 3^{i}+24 \cdot 3^{i}-12= \\
&= 6 \cdot 18^{i} \frac{128 C_{1} C_{5}}{\varepsilon} f_{i}(\varepsilon)-6^{i} \frac{288 C_{1} C_{5}}{\varepsilon} f_{i}(\varepsilon)+24 \cdot 3^{i}-12< \\
&<6 \cdot 18^{i}\left(\frac{C_{7}}{\varepsilon}\right) f_{i}(\varepsilon)=6 \cdot f_{i+1}(\varepsilon) \quad(i \geqq 0) ; \\
& 2 \varkappa_{i} \varepsilon=\frac{2 \varepsilon}{2^{i+2} f_{i}(\varepsilon)}< \begin{cases}\frac{\pi}{12} & (i=0), \\
\frac{\pi}{24 f_{i}(\varepsilon)}<\frac{\pi}{8 N_{3 i-1}^{(i)}} \quad & (i \geqq 1) .\end{cases} \tag{20}
\end{align*}
$$

Applying Lemma 2 to ($E_{1}^{(0)} ; \chi_{0} \varepsilon, \eta_{0}, n_{0}$ and $N_{1}^{(0)}$), we get the mutually disjoint trigonometric polynomials $Q_{l}(x)(l=1,2,3)$ and the decomposition $E_{1}^{(0)\left(x_{0} \varepsilon\right)}=$ $=E_{1}+E_{2}+E_{3}$. Define $R_{k}^{(1)}(x)=Q_{k}(x)$ and $E_{k}^{(1)}=E_{k}(k=1,2,3)$. Then we can easily check that (i)-(vi) hold for $i=1$. For example as to (iv),

$$
\begin{gathered}
v_{1}(\varepsilon) \leqq v_{0}(\varepsilon)+2\left(\left[\frac{\frac{\pi}{\frac{12}{2}-\frac{\varepsilon}{4}}}{\frac{\pi}{2 N_{1}^{(0)}}}\right]+1\right) \leqq \\
\leqq 3+N_{1}^{(0)}\left(\frac{1}{3}-\frac{\varepsilon}{\pi}\right)<3+3 f_{1}(\varepsilon)\left(\frac{1}{3}-\frac{\varepsilon}{\pi}\right) \leqq f_{1}(\varepsilon)+3-3 \cdot 128 C_{5}<f_{1}(\varepsilon)
\end{gathered}
$$

and as to (vi), we set $U_{1}^{(1)}(x)=R_{1}^{(0)}(x), U_{2}^{(1)}(x)=R_{1}^{(1)}(x), U_{3}^{(1)}(x)=R_{2}^{(1)}(x), U_{4}^{(1)}(x)=$ $=R_{3}^{(1)}(x)$ and $m_{k}^{(1)}=1+k(k=1,2,3)$. Furthermore, since $\left|E_{1}^{(0)}\right|-2 \chi_{0} \varepsilon>\pi / 6-$ $-\pi / 12>2 \pi / N_{1}^{(0)}$, we see that each $E_{k}^{(1)}(k=1,2,3)$ contains an interval whose length is not smaller than $\pi / 2 N_{1}^{(0)}$ and that $E_{k}^{(1)} \in \mathscr{S}^{*}$.

Now we suppose that $R_{k}^{(j)}(x)$ and $E_{k}^{(j)}\left(k=1, \ldots, 3^{j} ; j=0, \ldots, i\right)$ are already defined and satisfy (i)-(vi), and that

$$
\begin{equation*}
\max _{1 \leqq j \leqq g_{k}^{(i)}}\left|J_{j}\right| \geqq \frac{\pi}{3 N_{3^{i-1}}^{(i-1}} \tag{21}
\end{equation*}
$$

for each $E_{k}^{(i)}\left(k=1,2, \ldots, 3^{i}\right)$. Then by (20) and (21).

$$
2 \varkappa_{i} \varepsilon<\max _{1 \leqq j \leqq g_{k}^{(i)}}\left|J_{j}\right|
$$

holds for each $E_{k}^{(i)}\left(k=1,2, \ldots, 3^{i}\right)$. By the application of Lemma 2 to each ($E_{k}^{(i)}$, $x_{i} \varepsilon, \eta_{i}, n_{i}$ and $\left.N_{k}^{(i)}\right)\left(k=1,2, \ldots, 3^{i}\right)$, we define the mutually disjoint trigonometric polynomials

$$
\begin{align*}
& R_{3 k-2}^{(i+1)}(x)=\left(\cos N_{k}^{(i)} x\right) P_{k}^{(i)}(x), \\
& R_{3 k-1}^{(i+1)}(x)=-C_{3}(\cos 3 x)\left(\cos N_{k}^{(i)} x\right) P_{k}^{(i)}(x), \tag{22}\\
& R_{3 k}^{(i+1)}(x)=-C_{4}\left(\cos 2 N_{k}^{(i)} x\right) P_{k}^{(i)}(x)
\end{align*}
$$

and the decompositions

$$
E_{k}^{(i)\left(x_{i} \varepsilon\right)}=E_{3 k-2}^{(i+1)}+E_{3 k-1}^{(i+1)}+E_{3 k}^{(i+1)} \quad\left(k=1,2, \ldots, 3^{i}\right) .
$$

In virtue of (11), the frequencies of (22) belong to $A_{k} \cup B_{k}$ where

$$
\begin{gathered}
A_{k}=\left[(2 k+1) N_{1}^{(i)}-6 n_{i}-3,(2 k+1) N_{1}^{(i)}+6 n_{i}+3\right], \\
B_{k}=\left[2(2 k+1) N_{1}^{(i)}-6 n_{i}, 2(2 k+1) N_{1}^{(i)}+6 n_{i}\right] .
\end{gathered}
$$

It is obvious that $A_{k} \cap A_{k^{\prime}}=\emptyset$ and $B_{k} \cap B_{k^{\prime}}=\emptyset$ for $k \neq k^{\prime}$. Moreover we have $A_{k} \cap B_{k^{\prime}}=\emptyset \cdot\left(k \neq k^{\prime}\right)$ since, though $\left|A_{k}\right| / 2+|B|_{k^{\prime}} / 2=\left(6 n_{i}+3\right)+6 n_{i}<N_{1}^{(i)}$ holds, the distance of the middle points of A_{k} and $B_{k^{\prime}}$ is not smaller than $N_{1}^{(i)}$. Thus the trigonometric polynomials $R_{k}^{(i+1)}(x)\left(k=1,2, \ldots, 3^{i+1}\right)$ are mutually disjoint. And we are going to show (i)-(vi) and (21) replacing i with $i+1$.

By (18) the frequencies occurring in $R_{1}^{(i+1)}(x)$ are larger than those of $R_{k}^{(i)}(x)$ ($k=1,2, \ldots, 3^{i}$), and by (19) the property (i) is verified. As to (ii), we have

$$
\begin{aligned}
\int_{-x}^{\pi}\left(\sum_{k=1}^{3 i+1} R_{k}^{(i+1)}(x)\right)^{2} d x & =\sum_{k=1}^{3^{i}} \int_{-\pi}^{\pi}\left(R_{3 k-2}^{(i+1)}(x)+R_{3 k-1}^{(i+1)}(x)+R_{3 k}^{(i+1)}(x)\right)^{2} d x= \\
& =\sum_{k=1}^{3^{i}} C_{6}\left|E_{k}^{(i)}\right| \leqq C_{6} \cdot \frac{\pi}{6}=C_{8}
\end{aligned}
$$

and as to (iii), it is obvious. As to (iv), setting
we have

$$
E_{k}^{(i)\left(x_{i} \varepsilon\right)}=\bigcup_{l} I_{l}^{(i, k)} \quad\left(k=1,2, \ldots, 3^{i}\right)
$$

$$
\begin{aligned}
& \text { have } \quad v_{i+1}(\varepsilon) \leqq v_{i}(\varepsilon)+\sum_{k=1}^{3^{i}} \sum_{i} 2\left(\left[\frac{\left|I_{i}^{(i, k)}\right|}{\frac{\pi}{N_{k}^{(i)}}}\right]+1\right) \\
& \leqq v_{i}(\varepsilon)+\frac{2 N_{3 i}^{(i)}}{\pi} \sum_{k=1}^{3^{i}}\left|E_{k}^{(i)\left(x_{i} \varepsilon\right)}\right|+2 v_{i}(\varepsilon) \leqq 3 f_{i}(\varepsilon)+\frac{6 f_{i+1}(\varepsilon)}{\pi}\left(\frac{\pi}{6}-\frac{\varepsilon}{2}\right)<f_{i+1}(\varepsilon) ;
\end{aligned}
$$

and as to (v),

$$
\begin{aligned}
\left|F_{i+1}\right|=\left|F_{i} \cup\left\{\bigcup_{k=1}^{3^{i}}\left(E_{k}^{(i)}-E_{k}^{(i)\left(x_{i} \varepsilon\right)}\right)\right\}\right| & \leqq\left|F_{i}\right|+2 x_{i} \varepsilon \cdot v_{i}(\varepsilon) \leqq \\
& \leqq \varepsilon\left(1-\frac{1}{2^{i}}\right)+\frac{2 \varepsilon}{2^{i+2} f_{i}(\varepsilon)} f_{i}(\varepsilon)=\varepsilon\left(1-\frac{1}{2^{i+1}}\right)
\end{aligned}
$$

As to (vi), we define the sequence

$$
U_{1}^{(i+1)}(x), U_{2}^{(i+1)}(x), \ldots, U_{h(i+1)}^{(i+1)}(x)
$$

by inserting $R_{3 k-2}^{(i+1)}(x), R_{3 k-1}^{(i+1)}(x), R_{3 k}^{(i+1)}(x)$ after $R_{k}^{(i)}(x)\left(k=1,2, \ldots, 3^{i}\right)$ in (16), and define $m_{k}^{(i+1)}\left(k=1,2, \ldots, 3^{i+1}\right)$ by

$$
U_{m_{k}^{(i+1)}}^{(i+1)}(x)=R_{k}^{(i+1)}(x) \quad\left(k=1,2, \ldots, 3^{i+1}\right)
$$

Then if $x \in E_{3 k-3+l}^{(i+1)}, 1 \leqq k \leqq 3^{i}$ and $l \leqq l \leqq 3$, we obtain

$$
\begin{aligned}
& \sum_{j=1}^{m_{3 k-1}^{(i+1)}} U_{j}^{(i+1)}(x)=\sum_{j=1}^{m_{k}^{(i)}} U_{j}^{(i)}(x)+\sum_{j=1}^{3 k-3+l} R_{j}^{(i+1)}(x) \geqq \\
& \begin{aligned}
\geqq & \sum_{j=1}^{m_{k}^{(i)}} U_{j}^{(i)}(x)+\sum_{j=1}^{l} R_{3 k-3+j}^{(i+1)}(x)-\sum_{j=1}^{3^{i}}\left|R_{3 j-2}^{(i+1)}(x)+R_{3 j-1}^{(i+1)}(x)+R_{3 j}^{(i+1)}(x)\right| \geqq \\
& \geqq \frac{i+1}{4}+\frac{1}{2}-\left(3^{i}-1\right) C_{5} \eta_{i}=\frac{(i+1)+1}{4} .
\end{aligned} \\
&
\end{aligned}
$$

Finally by

$$
\frac{2 \pi}{\bar{N}_{1}^{(i)}}<\frac{2 \pi}{72 f_{i}(\varepsilon)}<\frac{\frac{\pi}{3}-\frac{\pi}{8}}{N_{3^{(i-1}}^{(i+1)}}<\max _{1 \leqq j \leqq g_{k}^{(i)}}\left|J_{j}\right|-2 x_{i} \varepsilon
$$

we get (21) for each $E_{k}^{(i+1)}(k=1,2, \ldots, i+1)$. Thus the statement of Lemma 3 is proved.

Lemma 4. There exist mutually disjoint trigonometric polynomials $S_{j}^{(i)}(x)$ $\left.\left(j=1,2, \ldots, 3 h(i)+3 ; i=C_{9}, C_{9}+1, \ldots\right)^{4}\right)$ with the following properties:
(vii) the frequencies v occurring in $S_{j}^{(i)}(x)$ satisfy $5^{i^{2}} \leqq v \leqq 5^{i^{2}+1}$;
(viii)

$$
\int_{-\pi}^{\pi}\left(\sum_{j=1}^{3 h(i)+3} S_{j}^{(i)}(x)\right)^{2} d x \leqq \frac{C_{10}}{i+1} \quad\left(C_{10}=C_{6}\left(C_{8}+\frac{C_{2}}{8}\right)\right) ;
$$

(ix)

$$
\sum_{j=\mu_{1}^{(i)}(x)}^{\mu_{2}^{(i)}(x)} S_{j}^{(i)}(x) \geqq \frac{1}{8} \quad \text { for } \quad 0 \leqq x \leqq \frac{\pi}{12},
$$

where $1 \leqq \mu_{1}^{(i)}(x) \leqq \mu_{2}^{(i)}(x) \leqq 3 h(i)+3$.

[^2]Proof. Fix the natural number i, and apply Lemma 3 to $\varepsilon_{i}=1 /(i+1)$. Then we get the mutually disjoint trigonometric polynomials $U_{j}^{(i)}(x)(j=1,2, \ldots, h(i))$ and the simple sets $E_{k}^{(i)}\left(k=1,2, \ldots, 3^{i}\right)$. It is obvious that the frequencies occurring in $U_{j}^{(i)}(x)$ are smaller than $6 f_{i}\left(\varepsilon_{i}\right)$, and that (17) and

$$
\begin{equation*}
\sum_{j=1}^{n(i)} \int_{-\pi}^{\pi}\left(U_{j}^{(i)}(x)\right)^{2} d x \leqq C_{8}(i+1) \tag{23}
\end{equation*}
$$

hold. In view of (iv), $E_{k}^{(i-1)}$ consists of $g_{k}^{(i-1)}$ disjoint intervals, therefore $E_{k}^{(i-1)^{\left(x_{i-1} \varepsilon_{i}\right)}}$ consists of at most $g_{k}^{(i-1)}$ disjoint intervals too. Hence

$$
F_{i}=\left[-\frac{\pi}{12}, \frac{\pi}{12}\right]-\bigcup_{k=1}^{3 i} E_{k}^{(i)}=\left[-\frac{\pi}{12}, \frac{\pi}{12}\right]-\bigcup_{k=1}^{3 i-1} E_{k}^{(i-1)\left(x_{i-1} \varepsilon_{i}\right)}
$$

consists of at most $v_{i-1}\left(\varepsilon_{i}\right)+1$ disjoint intervals.
Let $H_{i} \subset[0, \pi / 6]$ be the symmetric set defined by $H_{i} \cap[0, \pi / 12]=F_{i} \cap[0, \pi / 12]$, then H_{i} consists of at most $f_{i-1}\left(\varepsilon_{i}\right)$ disjoint intervals. Setting $H_{i}=\Sigma[\alpha, \beta]$, $\varepsilon_{i}^{\prime}=\varepsilon_{i} / 2 f_{i-1}\left(\varepsilon_{i}\right)$ and $H_{i}^{\prime}=\left[\alpha-\varepsilon_{i}^{\prime}, \beta+\varepsilon_{i}^{\prime}\right]$, we see that $H_{i}^{\prime} \subset[0, \pi / 6], H_{i}^{\prime} \in \mathscr{S}$ and

$$
\left|H_{i}^{\prime}\right| \leqq\left|H_{i}\right|+2 \varepsilon_{i}^{\prime} f_{i-1}\left(\varepsilon_{i}\right) \leqq \varepsilon_{i}\left(1-\frac{1}{2^{i}}\right)+\varepsilon_{i} \leqq \frac{2}{i+1} .
$$

Applying Lemma 1 to ($H_{i}^{\prime}, \varepsilon_{i}^{\prime}, 1$ and $\left[C_{1} / \varepsilon_{i}^{\prime}\right]$), we get the trigonometric polynomial $P^{(i)}(x)$ with frequencies $6 v\left(v=0,1, \ldots,\left[C_{1} / \varepsilon_{i}^{\prime}\right]\right)$ such that

$$
\begin{equation*}
P^{(i)}(x) \geqq 1 \quad \text { for } \quad x \in H_{i} \subset H_{i}^{\prime\left(\varepsilon_{i}^{\prime}\right)} \tag{24}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{-\pi}^{\pi}\left(P^{(i)}(x)\right)^{2} d x \leqq C_{2}\left|H_{i}^{\prime}\right| \leqq \frac{2 C_{2}}{i+1} \tag{25}
\end{equation*}
$$

Now we suppose $i \geqq C_{9}$ so that the inequality

$$
\begin{gather*}
37 f_{i}\left(\varepsilon_{i}\right)=37 C_{7}^{i}(i+1)^{i} 18^{\frac{i(i-1)}{2}}= \tag{26}\\
=18^{\left(\frac{1}{2}+\lambda\right) i^{2}-\lambda i^{2}+i\left\{\log _{18}(i+1)+\log _{18} C_{7}-\frac{1}{2}\right\}+\log _{18} 37} \leqq 18^{\left(\frac{1}{2}+\lambda\right) i^{2}}=5^{i^{2}} .
\end{gather*}
$$

may hold. Setting $N_{1}=5^{i^{2}}+6 f_{i}\left(\varepsilon_{i}\right)+\left(3+(-1)^{i}\right) / 2$ and $N_{2}=2 N_{1}+6 f_{i}\left(\varepsilon_{i}\right)+$ $+6\left[C_{1} / \varepsilon_{i}^{\prime}\right]+3$, we define

$$
\begin{gathered}
S_{j}^{(i)}(x)=\left(\cos N_{i} x\right) \frac{U_{j}^{(i)}(x)}{i+1} \\
S_{h(i)+j}^{(i)}(x)=-C_{3}(\cos x)\left(\cos N_{1} x\right) \frac{U_{j}^{(i)}(x)}{i+1}, \\
S_{2 h(i)+j}^{(i)}(x)=-C_{4}\left(\cos 2 N_{1} x\right) \frac{U_{j}^{(i)}(x)}{i+1}
\end{gathered}
$$

$(j=1,2, \ldots, h(i))$, and

$$
\begin{gathered}
S_{3 h(i)+1}^{(i)}(x)=\left(\cos N_{2} x\right) \frac{P^{(i)}(x)}{4} \\
S_{3 h(i)+2}^{(i)}(x)=-C_{3}(\cos x)\left(\cos N_{2} x\right) \frac{P^{(i)}(x)}{4} \\
S_{3 h(i)+3}^{(i)}(x)=-C_{4}\left(\cos 2 N_{2} x\right) \frac{P^{(i)}(x)}{4}
\end{gathered}
$$

Then using (11 $)$ we easily see that $S_{j}^{(i)}(x)(j=1,2, \ldots, 3 h(i)+3)$ are mutually disjoint trigonometric polynomials with frequencies v satisfying

$$
5^{i 2} \leqq N_{1}-6 f_{i}\left(\varepsilon_{i}\right)-1 \leqq v \leqq 2 N_{2}+6\left[\frac{C_{1}}{\varepsilon_{i}^{\prime}}\right] .
$$

And by. (26),

$$
2 N_{2}+6\left[\frac{C_{1}}{\varepsilon_{i}^{\prime}}\right]=4 \cdot 5^{i 2}+36 f_{i}\left(\varepsilon_{i}\right)+18\left[\frac{C_{1}}{\varepsilon_{i}^{\prime}}\right]+18 \leqq 4 \cdot 5^{i 2}+37 f_{i}\left(\varepsilon_{i}\right) \leqq 5^{i 2 \dot{+1}}
$$

By (13'), (23) and (25), we obtain

$$
\begin{gathered}
\int_{-\pi}^{\pi}\left(\sum_{j=1}^{3 h(i)+3} S_{j}^{(i)}(x)\right)^{2} d x= \\
=\sum_{j=1}^{h(i)} \int_{-\pi}^{i t}\left|S_{j}^{(i)}(x)+S_{h(i)+j}^{(i)}(x)+S_{2 h(i)+j}^{(i)}(x)\right|^{2} d x+\int_{-\pi}^{\pi}\left|\sum_{i=1}^{3} S_{3 h(i)+l}^{(i)}(x)\right|^{2} d x \leqq \\
\leqq \sum_{j=1}^{h(i)} C_{6} \int_{-\pi}^{\pi}\left(\frac{U_{j}^{(i)}(x)}{i+1}\right)^{2} d x+C_{6} \int_{-\pi}^{\pi}\left(\frac{P^{(i)}(x)}{4}\right)^{2} d x \leqq \\
\leqq \frac{C_{6}}{(i+1)^{2}} \cdot C_{8}(i+1)+\frac{C_{6}}{16} \cdot \frac{2 C_{2}}{i+1}=\frac{C_{10}}{i+1} .
\end{gathered}
$$

To prove (ix), suppose $0 \leqq x \leqq \pi / 12$. Then $x \in \bigcup_{k=1}^{3 i} E_{k}^{(i)}$ or $x \in H_{i}$. We set $\mu_{1}^{(i)}(x)=1$ and $\mu_{2}^{(i)}(x)=m_{k}^{(i)}$ for

$$
x \in E_{k}^{(i)} \cap \bigcup_{j=-\infty}^{\infty}\left[\frac{1}{N_{1}}\left(2 j \pi-\frac{\pi}{3}\right), \frac{1}{N_{1}}\left(2 j \pi+\frac{\pi}{3}\right)\right]
$$

$\mu_{1}^{(i)}(x)=h(i)+1$ and $\mu_{2}^{(i)}(x)=h(i)+m_{k}^{(i)}$ for

$$
x \in E_{k}^{(i)} \cap \bigcup_{j=-\infty}^{\infty}\left[\frac{1}{N_{1}}\left(2 j \pi+\frac{2}{3}\right), \frac{1}{N_{1}}\left(2 j \pi+\frac{4}{3} \pi\right)\right] ;
$$

and $\mu_{1}^{(i)}(x):=2 h(i)+1$ and $\mu_{2}^{(i)}(x)=2 h(i)+m_{k}^{(i)}$ for

$$
x \in E_{k}^{(i)} \cap \bigcup_{j=-\infty}^{\infty}\left(\frac{1}{N_{1}}\left(j \pi+\frac{\pi}{3}\right), \frac{1}{N_{1}}\left(j \pi+\frac{2}{3} \pi\right)\right) .
$$

Hence in the case of $x \in E_{k}^{(i)}$, we get

$$
\sum_{j=\mu_{1}^{(i)}(x)}^{\mu_{2}^{(i)}(x)} S_{j}^{(i)}(x)=\left\{\begin{array}{c}
\frac{\cos N_{1} x}{i+1} \cdot \sum_{j=1}^{m_{k}^{(i)}} U_{j}^{(i)}(x) \\
\text { or } \frac{-C_{3}(\cos x)\left(\cos N_{1} x\right)}{i+1} \sum_{j=1}^{m_{k}^{(i)}} U_{j}^{(i)}(x) \\
\text { or } \frac{-C_{4}\left(\cos 2 N_{1} x\right)}{i+1} \sum_{j=1}^{m_{k}^{(i)}} U_{j}^{(i)}(x) .
\end{array}\right.
$$

Now using (14") and (17),

$$
\sum_{j=\mu_{1}^{(i)}(x)}^{\mu_{2}^{(i)}(x)} S_{j}^{(i)}(x) \geqq \frac{1}{i+1} \cdot \frac{\sum_{j=1}^{m_{k}^{(i)}} U_{j}^{(i)}(x)}{2} \geqq \frac{1}{8} .
$$

In the case of $x \in H_{i}$, we set $\mu_{1}^{(i)}(x)=3 h(i)+1$ and $\mu_{2}^{(i)}(x)=3 h(i)+1$ or $3 h(i)+2$ or $3 h(i)+3$. Then using (14') and (24), we get the assertion of (ix). So the proof of Lemma 4 is complete.

§ 2. Proof of the theorem

Define the sequence of natural numbers $\left(C_{9} \leqq\right) m_{1}<m_{2}<\cdots$ such that

$$
\begin{equation*}
\frac{\varrho(n)}{\sqrt[4]{\log _{5} n}} \leqq \frac{1}{k} \quad \text { if } \quad n \geqq 5^{m_{k}^{2}} \tag{27}
\end{equation*}
$$

Then by (vii), setting

$$
\begin{equation*}
\left.T_{k}(x)=\sum_{j=1}^{3 h\left(m_{k}\right)+3} S_{j}^{\left(m_{k}\right)}\left(x-\frac{(k)_{24} \pi}{12}\right)={ }^{5}\right) \tag{28}
\end{equation*}
$$

$$
=\sum_{n=5^{m_{k}^{2}}}^{5^{m_{k}^{2}+1}}\left(a_{n} \cos n x+b_{n} \sin n x\right)=\sum_{n=5^{m_{k}^{2}}}^{5^{m_{k+1}^{2}}}\left(a_{n} \cos n x+b_{n} \sin n x\right) \quad(k=1,2, \ldots),
$$

$\left.{ }^{5}\right)(k)_{24}$ denotes the remainder of k modulo 24.
we consider the series $\sum_{1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right)$. And we define the rearrangement $\left\{n_{j}\right\}$ by

$$
\begin{gathered}
S_{1}^{\left(m_{1}\right)}\left(x-\frac{\pi}{12}\right)+S_{2}^{\left(m_{1}\right)}\left(x-\frac{\pi}{12}\right)+\cdots+S_{3 h\left(m_{1}\right)+3}^{\left(m_{1}\right)}\left(x-\frac{\pi}{12}\right)+ \\
+S_{1}^{\left(m_{2}\right)}\left(x-\frac{2 \pi}{12}\right)+\cdots+S_{3 h\left(m_{2}\right)+3}^{\left(m_{2}\right)}\left(x-\frac{2 \pi}{12}\right)+\cdots+S_{j}^{\left(m_{k}\right)}\left(x-\frac{(k)_{24} \pi}{12}\right)+\cdots
\end{gathered}
$$

which diverges everywhere in virtue of (ix). By (27), (28) and (viii), we get

$$
\begin{aligned}
& \sum_{n=1}^{\infty}\left(a_{n}^{2}+b_{n}^{2}\right) \varrho^{2}(n) \leqq \sum_{k=1}^{\infty} \frac{\sqrt{m_{k}^{2}+1}}{k^{2}} \sum_{n=5^{m_{k}^{2}}}^{5^{m_{k}^{2}+1}}\left(a_{n}^{2}+b_{n}^{2}\right)= \\
& =\frac{1}{\pi} \sum_{k=1}^{\infty} \frac{\sqrt{m_{k}^{2}+1}}{k^{2}} \int_{-\pi}^{\pi} T_{k}^{2}(x) d x \leqq \frac{C_{10}}{\pi} \sum_{k=1}^{\infty} \frac{1}{k^{2}}<\infty .
\end{aligned}
$$

Thus, in accordance with the Riesz-Fischer theorem, the assertion of our theorem is proved.

Next define $\left(A_{n} \cos n x+B_{n} \sin n x\right)$ by

$$
A_{n}=\frac{a_{n} \sqrt{m_{k}+1}}{k}, \quad B_{n}=\frac{b_{n} \sqrt{m_{k}+1}}{k} \quad\left(5^{m_{k}^{2}} \leqq n<5^{m_{k+1}^{2}} ; k \geqq 1\right)
$$

and the proof of Corollary runs similarly to that of Theorem 2 in [2].

References

[I] A: N. Kolmogoroff et D. Menchoff, Sur la convergence des séries de fonctions orthogonales, Math. Z., 26 (1927), 432-441.
[2] F. Móricz, On the order of magnitude of the partial sums of rearranged Fourier series of square integrable functions, Acta Sci. Math., 28 (1967), 155-167.
[3] K. Tandori, Beispiel der Fourierreihe einer quadratisch-integrierbaren Funktion, die in gewisser Anordnung ihrer Glieder überall divergiert, Ȧcta Math. Hung., 15 (1964), 165-173.
[4] K. Tandori, Über die Divergenz der Walshschen Reihen, Acta Sci. Math., 27 (1966), 261-263.
toyama university
(Received June 18, 1969; revised February 12, 1970)

[^0]: ${ }^{1}$) J_{i} denotes the closure of \dot{J}_{i}.
 ${ }^{2}$) $\left|J_{i}\right|$ denotes the Lebesgue measure of J_{i}.

[^1]: ${ }^{3}$) The integer part of a real number α is denoted by $[\alpha]$.

[^2]: $\left.{ }^{4}\right)_{9}$ will be defined later on, see (26).

