Generalization of a theorem of A. and C. Rényi on periodic functions

By W. H. J. FUCHS in Ithaca (N. Y.) and FRED GROSS in Washington (D.C.)*)
In memory of Alfred and Catherina Rényi
A. and C. Rényı proved [4]

Theorem A. If $f(z)$ is an entire function and $p(z)$ is a polynomial of degree $n \geqq 3$, then $f[p(z)]$ can not be periodic.

We prove now the following generalization to meromorphic function:
Theorem. Let $f(z)$ be a non-constant meromorphic function and let $p(z)$ be a polynomial of degree n. The function

$$
F(z)=f[p(z)]
$$

can not be periodic unless n has one of the values 1, 2, 3, 4, 6 .
If $n=1$, then $F(z)$ can be any periodic, meromorphic function. If $n=2$, then $F(z)$ is obtained by simple changes of variable from an even periodic function. If $n \geqq 3$ then F is an elliptic function and $F(z)=g\left[(z+\alpha)^{n}\right]$ for a suitable meromorphic g. and complex α.

Lemma. Let

$$
p(z)=a z^{n}+b z^{n-v}+\cdots \quad(v \geqq 2)
$$

be a polynomial of degree n. If $|z|$ is sufficiently large $\left(|z|>r_{0}\right)$, then the roots ς of

$$
p(\zeta)=p(z) \quad\left(|z|>r_{0}\right)
$$

are given by

$$
\varsigma=\varrho^{k} z+O\left(\frac{1}{|z|}\right), \quad(k=1,2, \ldots, n)
$$

where

$$
\varrho=e^{2 \pi i / n} .
$$

[^0]Proof (Lemma): a simple application of the implicit function theorem to the equation

$$
(p(\zeta))^{-\frac{1}{n}}=\varrho^{-k}(p(z))^{-\frac{1}{n}}
$$

regarding $\frac{1}{z}$ and $\frac{1}{\zeta}$ as the basic variables.
Proof (Theorem). For $n=1$, there is nothing to prove., For $n=2$ we have, completing the square

$$
f(p(z))=f\left(a z^{2}+b z+c\right)=f\left[a\left(z+\frac{b}{2 a}\right)^{2}+c-\left(b^{2} / 4 a\right)\right]
$$

and $F(z)$ is an even function of $z+b / 2 a$.
Suppose now that $n>2$ and that F is periodic. By a simple shift of origin in the z-plane we may assume

$$
p(z)=a z^{n}+b z^{n-v}+\cdots . \quad(v \geqq 2)
$$

By replacing \dot{z} by γz we may also suppose $F(z)=F(z+1)$. Choose z quite arbitrarily For a sufficiently large integer m the equation

$$
p(\varsigma)=p(z+m)
$$

has a solution

$$
\begin{equation*}
\varsigma=\varrho(z+m)+o(1) \quad(m \rightarrow \infty) . \tag{1}
\end{equation*}
$$

Also, if m is sufficiently large, $\left|\varsigma+m^{\prime}\right|$ will be greater than r_{0} (of the Lemma) for every integer m^{\prime}.

From the properties of F
(2)

$$
F(\varsigma)=F(z) .
$$

Again, with ς as just defined

$$
p\left(\zeta^{\prime}\right)=p\left(\zeta+m^{\prime}\right)
$$

has a root

$$
\zeta^{\prime}=\varrho\left(\zeta+m^{\prime}\right)+o(1)=\varrho^{2} z+\varrho^{2} \dot{m}+\varrho m^{\prime}+o(1) . \quad(m \rightarrow \infty)
$$

Also

$$
F\left(\varsigma^{\prime}+m\right)=F\left(\varsigma^{\prime}\right)=F(\varsigma)=F(z)
$$

i.e. for given z the equation

$$
\begin{equation*}
F(w)=F(z) \tag{3}
\end{equation*}
$$

has solutions

$$
\begin{equation*}
w=\varrho^{2} z+\varrho\left(\varrho m+m^{\prime}+\varrho^{-1} m\right)+o(1) \quad\left(|m|>M_{0}, m^{\prime} \text { arbitrary }\right) \tag{4}
\end{equation*}
$$

Now $\varrho m+\varrho^{-1} m+m^{\prime}=\left(2 \cos \frac{2 \pi}{n}\right) m+m^{\prime}$.
If $2 \cos \frac{2 \pi}{n}$ is irrational then $\left(2 \cos \frac{2 \pi}{n}\right) m+m^{\prime}$ can be made arbitrarily close to any real number ξ for some arbitrarily large integer m and corresponding suitable m^{\prime}. This means

$$
F\left(\varrho^{2} z+\varrho \varsigma\right) \equiv F(z) \quad(-\infty<\zeta<\infty)
$$

and so F must be a constant, and the same is true of f.
If $\alpha=\cos \frac{2 \pi}{n}$ is rational, then the primitive $n^{\text {th }}$ root of unity ϱ satisfies $\varrho^{2}-2 \alpha \varrho+1=0$.

But the primitive $n^{\text {th }}$ roots of unity obey an irreducible equation of degree $\varphi(n), g(\varrho)=0 ; g(\varrho)$ must divide $\varrho^{2}-2 \alpha \varrho+1$, so that $\varphi(n)=1$ or $\varphi(n)=2$.

We have

$$
\varphi(n)=\dot{n} \prod_{p / n}\left(1-\frac{1}{p}\right) \geqq \Pi(p-1)
$$

If $\varphi(n) \leqq 2$, the only possible prime factors of n are 2 and 3 and it is now immediate that $n=3,4$ or 6 .

If $2 \cos \frac{2 \pi}{n}$ is rational, we can find arbitrarily large m and corresponding m^{\prime} so that

$$
2 \cos \frac{2 \pi}{n} m+m^{\prime}=0
$$

Choosing m and m^{\prime} in this way and letting $m \rightarrow \infty$ we find from (3) and (4)

$$
F\left(\varrho^{2} z\right)=F(z) .
$$

In the same way, making

$$
2 \cos \frac{2 \pi}{n} m+m^{\prime}=1, \quad F\left(\varrho^{2} z+\varrho\right)=F(z)=F\left(\varrho^{2} z\right)
$$

Therefore F has period ϱ and F is a meromorphic function with the periods 1 and ϱ, i.e., an elliptic function. Also, by (1) and (2)

$$
F(\varrho z+\varrho m+o(1))=F(\varrho z+o(1))=F(z)
$$

In the limit $\dot{m} \rightarrow \infty$

$$
F(\varrho z)=F(z)
$$

This shows that F is a function of z^{n} only and the Theorem is proved.
This result proves a conjecture in [1] and resolves problems raised in [2] and [3].

Bibliography

[1] F. Gross, On factorization of elliptic functions, Canad. J. Math., 20 (1968), 486-494.
[2]
___ Proc. Symposia Pure Math., 11 (1968), 542, pr. 33.
[3] ————Some theorems on factorization of meromorphic functions, Bull. Amer. Math. Soc., 74 (1968), 649-650.
[4] A. and C. Rényi, Some remarks on periodic entire functions, J. Analyse Math., 14 (1965), 303310.

CORNELL UNIVERSITY, ITHACA, NEW YORK

UNIVERSITY OF MARYLAND
AND
MATHEMATICS RESEARCH CENTER
NAVAL RESEARCH LABORATORY
WASHINGTON, D.C.
(Received January 26, 1970)

[^0]: *) This research was partially supported by the National Science Foundation under grant numbers GP-13 875, GP 11767.

