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A. and C. REny1 proved {4]

Theorem A. If f(z) is an entire Junction and p(z) is a polynomial of degree
n =3, then f[p(2)] can not be periodic. '
We prove now the following generalization to meromorphic function:

Theorem. Let f(z) be a non-constant meromorphic function and let p(z) be a
polynomial of degree n. The function

F(z2)=f[p(2)]

can not be periodic unless n has one of the values 1,2, 3,4, 6.

If n=1, then F(z) can be any periddic, meromorphic function. If n=2, then
F(z) is obtained by simple changes of variable froné an even periodic function. If n=3
then F is an elliptic function and F(z) = g[(z+ ®)"] for a suitable meromorphic g
and complex o.

Lemma. Let _
pz)=az"+bz"""+ .. (v=2)

be a polynomial of degree n. If |z| is suﬁicienrly large (|z|>r,), then the roots ¢ of

pQ)=p(2)  (lz|=ro)
are given by
1
¢ = ka+O[T;], k=12, ...,n),

where
0= eZm’/n.

*) This research was partially supported by the National Science Foundation under gi'ant
numbers GP-13 875, GP 11 767.
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Proof (Lemma): a simple application of the implicit function theorem to the
equation

T 1
(P) "= (p@@) "
1 1 '
regarding — and — as the basic variables.
z ¢

Praof (Theorem)..For n=1. there(ls npthmg to prove., For.n. =2 we have, com-
pleting the square :

f(p(2) = flaz> +bz+¢) = f[ [z+ ]-I—c—- b2/4a)]

and F(z) is an even function of z 4+b/2a. -
~ Suppose now that n=2 and that Fis perlodlc By a 51mple shift of ongm in the
z-plane we may assume

(z)—az +bz" T (v§2)

By replacmg z by yz we may also suppose F(z) = F(z +1). Choos,e, z quite arbitra rily
For a sufficiently large - integer m the equation

- pQ) =pz+m)
has a solution

(N ¢ = g(z+m)+‘o(1)~ (m — o).

Also, if m is sufficiently large Ig +m’| wxll be greater than ro (of the Lemma) for
every integer m’.
From. the properties of F

2 - F(c)=F(2).
Again, with ¢ as just defined

CpE) =plg+m)
has a root _ _ ) ] v ) .
¢ =o(+m)+o(l) = Q®z+0’m+om +o(l).  (m—eo)
Also , .
F('+m) = F(') = F(g) = F(2).
i.e. for given z the equation
3) F(w)=F(z)

has solutions

) w= gzz+g(gm‘+ m 4o 'tm)+o(l) (|m]=> My, .m’ arbitrary).’
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Now om-+o~ 'm4+m = (ZCOéZ%]M;M'.

' -2 ' o
If 2c0527 is 1rratlonal then [2 cos —HE] m-+m’ can be made arbitrarily close

to any real number ¢ for’ some arbitrarily large integer m and correspondmg suitable
m’. This means SRR o
F(922+0€)EF(Z) (~’°°<<§<°°)

and so F must be a constant, and the same is true of f.

2 . .
If « = cos — is rational, then the primitive n'h
n
0 —200+1 = 0. :
But the primitive »*" roots of unity obey an irreducible equation of degree
o(n), g(0)=0; g(¢) must divide o> —2ag+1, so that p(n)=1 or @n)=2.
We have ' '

root of unity g satisfies

th

«»(n)-n]][l——] [T -D.

pin
If @ (n) =2, the only possible prime factors of # are 2 and 3 and it is now immediate
that n=3, 4 or 6.
2 .
If 2 cos =z is rational, we can find arbitrarily large m and corresponding m’
n .

so that

2 cos 2—nvm+m’ =0.
n
Choosing m and m’ in this way and letting m - we find from (3) and (4)

F(0*2)=F(2).
In the same way, making :

> cosz—:—m+m' =1, F(@*z+0) = F(2) = F(2).

Therefore F has period ¢ and F is a meromorphic function with the perlods 1 and
o, i.e., an elliptic function. Also, by (1) and (2) :

_ F(oz+om+o(1)) = Floz+o(1)) = F(z).
In the limit m — o " :
'F(gz); F(z).

This shows that F is a function of z" orﬂy and the Theorem is proved.
This result proves a conjecture in [1] and resolves problems raised in [2] and [3].
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