The value distribution of composite entire functions

By I. N. BAKER in London (England)

1. If the entire function F(z) is expressible in the form $f \circ g(z)$, where f and g are transcendental entire functions, it is called composite; otherwise F(z) is said to be pseudo-prime. OZAWA [3] proved various results about the value distribution of composite entire functions, including the following:

If F(z) is entire and of finite order and if there exists a constant A such that F(z) = A has only real roots, then F(z) is not composite.

Thus a composite entire function F(z) of finite order has none of its A-values distributed entirely on a line and, a fortiori none is distributed on a ray. One can strengthen this last statement and assert that there is no direction which is the sole limiting direction of the A-points:

Theorem 1. If F(z) is an entire function of finite order and there exist complex A and real α such that for any $\delta > 0$ all but a finite number of roots of F(z) = A lie in the angle $|\arg z - \alpha| < \delta$, then F(z) is pseudo-prime.

In Section 3 similar arguments to those used in the proof of Theorem 1 are applied to a question of iteration theory.

2. Proof of Theorem 1. (i) Without loss of generality, we may suppose $\alpha = \pi$. Suppose F(z) satisfies the conditions of the theorem and that, nevertheless, F=f(g), f and g are transcendental. Then by a result of PÓLYA [4], f has zero order and g has finite order (less than that of F).

Now f(w) = A has an infinity of solutions $w = w_1, w_2, ..., w_n, ...$ and $|w_n| \to \infty$. For any $\delta > 0$, the roots of $g(z) = w_n (n > n_0)$ all lie in the angle $A(\delta)$: $|\arg z - \pi| < \delta$ and so g(z) omits the values w_n in $B(\pi - \delta)$: $|\arg z| \le \pi - \delta$.

BIEBERBACH [2] has shown that if the entire function h(z) takes two different finite values at most finitely often in an angle of aperture $\alpha \pi$, then in every smaller angle

 $|f(z)| = O \{ \exp(K|z|^{1/\alpha}) \}$

for a suitable constant K.

I. N. Baker

We deduce that g(z) is of order $\leq \frac{1}{2}\pi/(\pi-\delta)$ in $B(\pi-2\delta)$. Since g(z) is of some finite order, say ϱ , in the whole plane, in particular in $A(2\delta)$ of aperture 4δ , δ arbitrary, it follows from the Phragmén—Lindelöf principle that $\varrho \leq \frac{1}{2}$.

(ii) Choose $w_k \neq g(0)$ and $0 < \delta < \pi/16$. Then g(z) may be expressed

$$g(z) - w_k = \lambda \prod_{n=1}^{\infty} \left(1 - \frac{z}{z_n} \right) = P(z) \prod_{n=n_0}^{\infty} \left(1 - \frac{z}{z_n} \right),$$

 $0 \neq \lambda$ constant, P(z) polynomial. Since $f(g(z_n)) = A$ we may assume that for given $\delta > 0$, $z_n \in A(\delta)$ when $n \ge n_0$.

For $z \in B\left(\frac{\pi}{2} - \delta\right)$: $|\arg z| < \frac{\pi}{2} - \delta$ and for $n \ge n_0$ we then have $|\arg(-z/z_n)| < \frac{\pi}{2}$, and so $\left|1 - \frac{z}{z_n}\right| > 1$. Thus as $z \to \infty$ in $B\left(\frac{\pi}{2} - \delta\right)$, $|g(z)| \to \infty$ faster than any power of |z|.

(iii) Next we show that for all large enough z, (|z| > K), i.e. in $|\arg z| < \delta$, we have for

(1)
$$D = zg'(z)/\{g(z) - w_k\} = \sum_{n=1}^{\infty} z/(z - z_n)$$

that (2)

 $|D| > 4\pi\delta^{-1}, \quad |\arg D| < 2\delta.$

First note that the bilinear function $t = z/(z-\beta)$ maps the line joining β to $-\beta$ onto the real axis and the angle $|\arg z - \arg(-\beta)| < 2\delta$ into the region E bounded by the two circular arcs joining 0 to 1 and making angles $\pm 2\delta$ with the positive real axis at 0. Hence for $n \ge n_0$, when $z_n \in A(\delta)$, $t = z/(z-z_n)$ maps $B(\delta)$, which belongs to $|\arg z - \arg(-z_n)| < 2\delta$, into E, and so for each $n \ge n_0$.

(3)
$$|\operatorname{Im} z/(z-z_n)| \leq \tan (2\delta) \cdot \operatorname{Re} z/(z-z_k)$$
 in $B(\delta)$.

Since, for each fixed $n, z/(z-z_n) \to 1$ as $z \to \infty$, one has for all $z \in B(\delta)$ with sufficiently large |z|, that (3) holds for all n. Hence, from (1),

$$|D| \ge \operatorname{Re} D > 4\pi \delta^{-1}$$
,

and

$$|\operatorname{Im} D| < (\tan 2\delta) \cdot \operatorname{Re} D, |\arg D| < 2\delta$$

for $z \in B(\delta)$, |z| > K, say.

(iv) Choose w_n , $n > n_0$, such that $f(w_n) = A$ and so large that $|g(z) - w_k| < |w_n - w_k|$ for $|z| \leq K$, where K is the constant which occurs in (iii). The component C of the set $\{z: |g(z) - w_k| < |w_n - w_k|\}$, which contains the origin, has a bounded intersection with $B(\delta)$ and this intersection contains $B(\delta) \cap \{|z| \leq K\}$. Then the

Composite entire functions

boundary of $C \cap B(\delta)$ contains an arc of a level curve γ of $g(z) - w_k$ which joins a point of arg $z = -\delta$ to a point of arg $z = \delta$ and lies in |z| > K. On γ one has (1) and (2) of (iii). Hence the arc γ contains no zeros of g'(z). If, moreover, an increment δz on γ corresponds to an increment δw on $|w - w_k| = |w_n - w_k|$ under w = g(z), then

(4)
$$\frac{\delta w}{(w-w_k)} = \frac{\delta z}{z} \cdot \frac{zg'(z)}{g(z)-w_k} \{1+o(\delta z)\},$$

so that

$$\arg\left(\frac{\delta z}{z}\right) - \frac{\pi}{2} = \arg\left(\frac{\delta z}{z} \cdot \frac{w - w_k}{\delta w}\right) = -\arg\frac{zg'(z)}{(g(z) - w_k)} \{1 + o(\delta z)\},$$

and by (2) $\left| \arg \left\{ \frac{zg'(z)}{g(z) - w_k} \right\} \right| < 2\delta < \frac{\pi}{8}$, so the arc γ can be expressed as $z = r(\theta)e^{i\theta}$, $-\delta \le \theta \le \delta$.

Putting $w - w_k = |w_n - w_k|e^{i\varphi}$, we have in (4):

$$i\delta\varphi\{1+o(\delta\theta)\} = \left\{\frac{\delta r}{r}+i\cdot\delta\theta\right\}\left\{\frac{zg'(z)}{g(z)-w_k}\right\}\{1+o(\delta\theta)\},$$

whence

$$\left|\frac{\partial \varphi}{\partial \theta}\right| \geq \left|\frac{zg'(z)}{g(z)-w_k}\right| > 4\pi\delta^{-1}, \text{ by (2)}.$$

As z traverses γ in the direction of increasing θ , w traverses the circle $\Gamma: |w - w_k| = |w_n - w_k|$ in the positive direction and φ increases by at least $4\pi\delta^{-1}\cdot 2\delta = 8\pi$. Thus w traverses the whole of Γ and in particular $g(z) = w = w_n$ for some point $z \in \gamma \subset B(\delta)$. But this contradicts the fact, established in (i), that $g(z) = w_n, n > n_0$, has no roots outside $A(\delta)$. Thus the assumption that F(z) is composite must be false.

3. A related question in iteration theory. Let f(z) be an entire function and $f_1(z) = f(z), f_2(z) = f(f(z)), ..., f_n(z), ...$ be its sequence of iterates. Regarding the Fatou set $\mathfrak{F}(f)$ of those points of the complex plane where $\{f_n(z)\}$ does not form a normal family, it was shown in [1] that if f(z) is entire and transcendental, then $\mathfrak{F}(f)$ cannot be contained in any finite set of lines but on the other hand, for any constant A > 0 there exists an entire transcendental function for which $\mathfrak{F}(f)$ is contained in the region $\{|\operatorname{Im} z| < A, \operatorname{Re} z > 0\}$.

The function used to show this last result was of infinite order. In fact, using the arguments of Section 2 we can show:

Theorem 2. If f is entire transcendental and for every $\delta > 0$ the set $\mathfrak{F}(f) - \{z, (\arg z) < \delta\}$ is bounded, then f is of infinite order.

Proof. Suppose f satisfies the hypotheses of the theorem, but is of finite order. $\mathfrak{F}(f)$ has the properties (cf. [1]):

- (i) $\mathfrak{F}(f)$ is non-empty and perfect,
- (ii) If $f(z) = \alpha \in \mathfrak{F}$, then $z \in \mathfrak{F}$.

We take two different values α , β in $\mathfrak{F}(f)$ which are not Picard exceptional for f(z). The solutions of $f(z) = \alpha$, β lie in \mathfrak{F} and so, with finitely many exceptions in $|\arg z| < \delta$. Noting that $\delta > 0$ is arbitrary and proceeding as in § 2 (i), we see that f(z) has order at most $\frac{1}{2}$.

The method of Section 2 (ii)—(iv) then shows that in the angle $B: |(\arg z) - \pi| < \delta$ obtained from $|\arg z| < \delta$ by reflection in the origin, f(z) takes all arbitrarily large values, in particular large values z_n for which $f(z_n) = \alpha$, i.e. values for which $z_n \in \mathfrak{F}$. If $f(t_n) = z_n$, $t_n \in B$, we have $t_n \in \mathfrak{F}$, since $z_n \in \mathfrak{F}$. Taking a sequence $z_n \in \mathfrak{F}$ for which $|z_n| \to \infty$, we have $|t_n| \to \infty$ and hence $\mathfrak{F} \cap B$ is unbounded or $\mathfrak{F} - \{z, |\arg z| < \delta\}$ is unbounded, against the assumptions of the theorem. Hence f must be of finite order.

In Theorem 2 the transcendence of f is essential. Polynomials have bounded \mathfrak{F} .

References

- [1] I. N. BAKER, Sets of non-normality in iteration theory, J. London Math. Soc., 40 (1965), 499-502.
- [2] L. BIEBERBACH, Über eine Vertiefung des Picardschen Satzes bei ganzen Funktionen endlicher Ordnung, Math. Z., 3 (1919), 175–190.
- [3] M. OZAWA, On the solution of the functional equation $f \circ g(z) = F(z)$. III, Kōdai Math. Sem. Rep., 20 (1968), 257–263.
- [4] G. PÓLYA, On an integral function of an integral function, J. London Math. Soc., 1 (1926), 12-15.

(Received March 13, 1970)