The value distribution of composite entire functions

By I. N. BAKER in London (England)

1. If the entire function $F(z)$ is expressible in the form $f \circ g(z)$, where f and g are transcendental entire functions, it is called composite; otherwise $F(z)$ is said to be pseudo-prime. Ozawa [3] proved various results about the value distribution of composite entire functions, including the following:

If $F(z)$ is entire and of finite order and if there exists a constant A such that $F(z)=A$ has only real roots, then $F(z)$ is not composite.

Thus a composite entire function $F(z)$ of finite order has none of its A-values distributed entirely on a line and, a fortiori none is distributed on a ray. One can strengthen this last statement and assert that there is no direction which is the sole limiting direction of the A-points:

Theorem 1. If $F(z)$ is an entire function of finite order and there exist complex A and real α such that for any $\delta>0$ all but a finite number of roots of $F(z)=A$ lie in the angle $|\arg z-\alpha|<\delta$, then $F(z)$ is pseudo-prime.

In Section 3 similar arguments to those used in the proof of Theorem 1 are applied to a question of iteration theory.
2. Proof of Theorem 1. (i) Without loss of generality, we may suppose $\alpha=\pi$. Suppose $F(z)$ satisfies the conditions of the theorem and that, nevertheless, $F=f(g)$, f and g are transcendental. Then by a result of Pólya [4], f has zero order and g has finite order (less than that of F).

Now $f(w)=A$ has an infinity of solutions $w=w_{1}, w_{2}, \ldots, w_{n}, \ldots$ and $\left|w_{n}\right| \rightarrow \infty$. For any $\delta>0$, the roots of $g(z)=w_{n}\left(n>n_{0}\right)$ all lie in the angle $A(\delta):|\arg z-\pi|<\delta$ and so $g(z)$ omits the values w_{n} in $B(\pi-\delta):|\arg z| \leqq \pi-\delta$.

Bieberbach [2] has shown that if the entire function $h(z)$ takes two different finite values at most finitely often in an angle of aperture $\alpha \pi$, then in every smaller angle

$$
|f(z)|=O\left\{\exp \left(K|z|^{1 / \alpha}\right)\right\}
$$

for a suitable constant K.

We deduce that $g(z)$ is of order $\leqq \frac{1}{2} \pi /(\pi-\delta)$ in $B(\pi-2 \delta)$. Since $g(z)$ is of some finite order, say ϱ, in the whole plane, in particular in $A(2 \delta)$ of aperture 4δ, δ arbitrary, it follows from the Phragmén-Lindelöf principle that $\varrho \leqq \frac{1}{2}$.
(ii) Choose $w_{k} \neq g(0)$ and $0<\delta<\pi / 16$. Then $g(z)$ may be expressed

$$
g(z)-w_{k}=\lambda \prod_{n=1}^{\infty}\left(1-\frac{z}{z_{n}}\right)=P(z) \prod_{n=n_{0}}^{\infty}\left(1-\frac{z}{z_{n}}\right)
$$

$0 \neq \lambda$ constant, $P(z)$ polynomial. Since $f\left(g\left(z_{n}\right)\right)=A$ we may assume that for given $\delta>0, z_{n} \in A(\delta)$ when $n \geqq n_{0}$.

For $z \in B\left(\frac{\pi}{2}-\delta\right):|\arg z|<\frac{\pi}{2}-\delta$ and for $n \geqq n_{0}$ we then have $\left|\arg \left(-z / z_{n}\right)\right|<\frac{\pi}{2}$, and so $\left|1-\frac{z}{z_{n}}\right|>1$. Thus as $z \rightarrow \infty$ in $B\left(\frac{\pi}{2}-\delta\right),|\dot{g}(z)| \rightarrow \infty$ faster than any power of $|z|$.
(iii) Next we show that for all large enough $z,(|z|>K)$, i.e. in $|\arg z|<\delta$, we have for

$$
\begin{equation*}
D=z g^{\prime}(z) /\left\{g(z)-w_{k}\right\}=\sum_{n=1}^{\infty} z /\left(z-z_{n}\right) \tag{1}
\end{equation*}
$$

that

$$
\begin{equation*}
|D|>4 \pi \delta^{-1}, \quad|\arg D|<2 \dot{\delta} \tag{2}
\end{equation*}
$$

First note that the bilinear function $t=z /(z-\beta)$ maps the line joining β to $-\beta$ onto the real axis and the angle $|\arg z-\arg (-\beta)|<2 \delta$ into the region E bounded by the two circular arcs joining 0 to 1 and making angles $\pm 2 \delta$ with the positive real axis at 0 . Hence for $n \geqq n_{0}$, when $z_{n} \in A(\delta), t=z /\left(z-z_{n}\right)$ maps $B(\delta)$, which belongs to $\left|\arg z-\arg \left(-z_{n}\right)\right|<2 \delta$, into E, and so for each $n \geqq n_{0}$.

$$
\begin{equation*}
\left|\operatorname{Im} z /\left(z-z_{n}\right)\right| \leqq \tan (2 \delta) \cdot \operatorname{Re} z /\left(z-z_{k}\right) \text { in } B(\delta) . \tag{3}
\end{equation*}
$$

Since, for each fixed $n, z /\left(z-z_{n}\right) \rightarrow 1$ as $z \rightarrow \infty$, one has for all $z \in B(\delta)$ with sufficiently large $|z|$, that (3) holds for all n. Hence, from (1),

$$
|D| \geqq \operatorname{Re} D>4 \pi \delta^{-1}
$$

and

$$
|\operatorname{Im} D|<(\tan 2 \delta) \cdot \operatorname{Re} D, \quad|\arg D|<2 \delta
$$

for $z \in B(\delta),|z|>K$, say.
(iv) Choose $w_{n}, n>n_{0}$, such that $f\left(w_{n}\right)=A$ and so large that $\left|g(z)-w_{k}\right|^{*}<$ $<\left|w_{n}-w_{k}\right|$ for $|z| \leqq K$, where K is the constant which occurs in (iii). The component C of the set $\left\{z:\left|g(z)-w_{k}\right|<\left|w_{n}-w_{k}^{\prime}\right|\right\}$, which contains the origin, has a bounded intersection with $B(\delta)$ and this intersection contains $B(\delta) \cap\{|z| \leqq K\}$. Then the
boundary of $C \cap B(\delta)$ contains an arc of a level curve γ of $g(z)-w_{k}$ which joins a point of $\arg z=-\delta$ to a point of $\arg z=\delta$ and lies in' $|z|>K$. On γ one has (1) and (2) of (iii). Hence the arc γ contains no zeros of $g^{\prime}(z)$. If, moreover, an increment δz on γ corresponds to an increment δw on $\left|w-w_{k}\right|=\left|w_{n}-w_{k}\right|$ under $w=g(z)$, then

$$
\begin{equation*}
\frac{\delta w}{\left(w-w_{k}\right)}=\frac{\delta z}{z} \cdot \frac{z g^{\prime}(z)}{g(z)-w_{k}^{\prime}}\{1+o(\delta z)\}, \tag{4}
\end{equation*}
$$

so that

$$
\arg \left(\frac{\delta z}{z}\right)-\frac{\pi}{2}=\arg \left(\frac{\delta z}{z} \cdot \frac{w-w_{k}}{\delta w}\right)=-\arg \frac{z g^{\prime}(z)}{\left(g(z)-w_{k}\right)}\{1+o(\delta z)\}
$$

and by (2) $\left|\arg \left\{\frac{z g^{\prime}(z)}{g(z)-w_{k}}\right\}\right|<2 \delta<\frac{\pi}{8}$, so the arc γ can be expressed as $z=r(\theta) e^{i \theta}$,, $-\delta \leqq \theta \leqq \delta$.

Putting $w-w_{k}=\left|w_{n}-w_{k}\right| e^{i \varphi}$, we have in (4):

$$
i \delta \varphi\{1+o(\delta \theta)\}=\left\{\frac{\delta r}{r}+i \cdot \delta \theta\right\}\left\{\frac{z g^{\prime}(z)}{g(z)-w_{k}}\right\}\{1+o(\delta \theta)\}
$$

whence

$$
\left|\frac{\partial \varphi}{\partial \theta}\right| \geqq\left|\frac{z g^{\prime}(z)}{g(z)-w_{k}}\right|>4 \pi \delta^{-1}, \text { by }(2)
$$

As z traverses γ in the direction of increasing θ, w traverses the circle $\Gamma:\left|w-w_{k}\right|=\left|w_{n}-w_{k}\right|$ in the positive direction and φ increases by at least $4 \pi \delta^{-1} \cdot 2 \delta=8 \pi$. Thus w traverses the whole of Γ and in particular $g(z)=w=w_{n}$ for some point $z \in \gamma \subset B(\delta)$. But this contradicts the fact, established in (i), that $g(z)=w_{n}, n>n_{0}$, has no roots outside $A(\delta)$. Thus the assumption that $F(z)$ is composite must be false.
3. A related question in iteration theory. Let $f(z)$ be an entire function and $f_{1}(z)=f(z), f_{2}(z)=f(f(z)), \ldots, f_{n}(z), \ldots$ be its sequence of iterates. Regarding the Fatou set $\mathfrak{F}(f)$ of those points of the complex plane where $\left\{f_{n}(z)\right\}$ does not form a normal family, it was shown in [1] that if $f(z)$ is entire and transcendental, then $\mathfrak{F}(f)$ cannot be contained in any finite set of lines but on the other hand, for any constant $A>0$ there exists an entire transcendental function for which $\mathfrak{F}(f)$ is contained in the region $\{|\operatorname{Im} z|<A, \operatorname{Re} z>0\}$.

The function used to show this last result was of infinite order. In fact, using the arguments of Section 2 we can show:

Theorem 2. If f is entire transcendental and for every $\delta>0$ the set $\mathfrak{F}(f)-$ $-\{z,(\arg z)<\delta\}$ is bounded, then f is of infinite order.

Proof. Suppose f satisfies the hypotheses of the theorem, but is of finite order. $\mathfrak{F}(f)$ has the properties (cf. [1]):
(i) $\mathfrak{F}(f)$ is non-empty and perfect,
(ii) If $f(z)=\alpha \in \mathfrak{F}$, then $z \in \mathfrak{F}$.

We take two different values α, β in $\mathfrak{F}(f)$ which are not Picard exceptional for $f(z)$. The solutions of $f(\dot{z})=\alpha, \dot{\beta}$ lie in $\tilde{\mathscr{F}}$ and so, with finitely many exceptions in $|\arg z|<\delta$. Noting that $\delta>0$ is arbitrary and proceeding as in $\S 2$ (i), we see that $f(z)$ has order at most $\frac{1}{2}$.

The method of Section 2 (ii)—(iv) then shows that in the angle $B:|(\arg z)-\pi|<\delta$ obtained from $|\arg z|<\delta$ by reflection in the origin, $f(z)$ takes all arbitrarily large values, in particular large values z_{n} for which $f\left(z_{n}\right)=\alpha$, i.e. values for which $z_{n} \in \mathscr{F}$. If $f\left(t_{n}\right)=z_{n}, t_{n} \in B$, we have $t_{n} \in \mathscr{F}$, since $z_{n} \in \mathscr{F}$. Taking a sequence $z_{n} \in \mathscr{F}$ for which $\left|z_{n}\right| \rightarrow \infty$, we have $\left|t_{n}\right| \rightarrow \infty$ and hence $\mathfrak{F} \cap B$ is unbounded or $\mathfrak{F}-\{z,|\arg z|<\delta\}$ is unbounded, against the assumptions of the theorem. Hence f must be of finite order.

In Theorem 2 the transcendence of f is essential. Polynomials have bounded \mathfrak{F}.

References

[1] I. N. Baker, Sets of non-normality in iteration theory, J. London Math. Soc., 40 (1965), 499-502.
[2] L. Bieberbach, Über eine Vertiefung des Picardschen Satzes bei ganzen Funktionen endlicher Ordnung, Math. Z., 3 (1919), 175-190.
[3] M. Ozawa, On the solution of the functional equation $f \circ g(z)=F(z)$. III, Ködai Math. Sem. Rep., 20 (1968), 257-263.
[4] G. Pólya, On an integral function of an integral function, J. London Math. Soc., 1 (1926), 12-15.
(Received March 13, 1970)

