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1. Introduction and results 

It is an elementary fact that the exponential function may be defined by the 
equivalent formulae 

not only when x is a real or complex number but also when it is a matrix with real 
or complex entries or a bounded operator acting on a Hilbert space or a Banach 
space or, even when it is an element of an abstract Banach algebra 93 with identity I 
(for a definition of a Banach algebra see for instance [1]). If 93 is not commutative 
then in general exp(x) exp(y) ^ e x p ( x + j ) . There is, however, a formula which 
replaces the addition law of the exponential function, namely 

and this holds regardless whether x and y commute or not. Formula (I) is capable 
of further generalization; see TROTTER [2]. Specifically, x and y may be un-
bounded operators of a certain type, namely generators of continuous one-parameter 
operator semi-groups. In the present paper we are not concerned with Trotter 's 
generalization, but we shall still refer to (1) as the Trotter product formula. The 
symbols x, y, ..., a, b, ... shall generally denote elements of the Banach algebra SB. 
The norm of x£93 is written ||x||. 

Let X = (x , , x2, ..., xm be any finite sequence of elements of 93. With any such 
sequence we associate the product 

exp (x) - 1 H— x 
n 
1 

(1) 

J ( X ) = exp 

which will be called its Trotter product. Note that it depends essentially on the 
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order of the factors, i.e. on X as a sequence, not merely as a set. We also write, for 
1 

the mean of the elements of X, M(X) = — ( x , + x 2 H — + xm). Using this notation 
m 

we can express the Trotter product formula as follows: If \ k (for k = 1,2, ...) is 
the sequence of length 2k whose elements are alternatingly x and y, then 

(2) : l i m r ( X t ) = exp( l imM(X, ) ) . 
fc^oo fc-*oo 

We now raise the following question. Under what natural conditions on a sequence 
X | , X 2 , ... (subject to the requirement that their lengths tend to infinity) will (2) 
hold? 

We shall prove two theorems relevant to this question. The first theorem gives 
a rather general sufficient condition for an infinite sequence X , , X 2 , ... to satisfy 
(2). The original Trotter formula is an obvious consequence of this condition. But 
our theorem also shows that to a certain extent the order of the factors in the Trotter 
product may be made subject to considerable rearrangement without destroying.the 
validity of (2). 

For any X = ( x , , x2, •••, xm) let us write q = £>(X)= Max, S J S m llxjll. Let n 
denote a partition of the sequence (1, 2, ..., m) into successive subsequences 
( 1 , 2 , . . . , /77,) , ( f f l | + 1, /77, +2, . . . , 777 , +m2), . . . , (/77 — / 7 7 s + I , /77 — / 7 7 s . + 2 , . . . , /77), a n d 

let Y , , Y 2 , ..., Ys be the corresponding subsequences of X. For any element g € © 
we introduce a quantity 8 = 8(X, n, g) which measures the closeness to which g 
uniformly approximates the "partial means" of X induced by the partition n 

(3) <5(X, n,g) = Max1 S j-3 s | |M(Yy)—g|| . 

We also define a quantity 
X 

(4) r) = 'ri(n) = 2 

- - I S ) . - — -
(5) 

so that i] is a kind of a measure for the relative fineness of n. 

T h e o r e m I. Let X , , X 2 , . . . be an infinite sequence of finite sequences of 
elements of SB. Suppose that g(Xk) is bounded. Suppose that exists and a sequence 
of partitions nk of Xk into successive subsequences exists such that rj(nk)-~0 and 
d(Xk, 7tt, g) — 0 as Then M(Xk)-g and T(Xk)-exp (g) as 

Note that the quantity 8(X, n,g) is independent of the order of the elements 
Xj within each of the subsequences (j= 1, 2, ..., s). Thus our theorem formulates 
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mathematically the intuitive notion that the order of the factors in the Trot ter ' 
product T(X) is irrelevant "locally" and only essential "in the large". 

Our second Theorem deals with the following problem. Suppose we consider 
infinite sequences Z = (xl,x2, • ••) whose elements are all taken f r o m a fixed finite 
subset {a1 ; a2, ..., aa} of 93. With any such infinite sequence we may consider the 
sequence of its finite sections X t =(xi), X2 = C*i, x2), • •• • Is it possible to charac-
terize the extent of the set of those infinite sequences Z for which the general-
ized Trotter product formula (2) holds? 

This question leads to measure-theoretic considerations, and can be naturally 
formulated in probabilistic terminology. 

T h e o r e m 2. Let al, a2, ..., aCT693, and let pl,p2,...,pt,S0, Ivpv = l. Sup-
pose an infinite (random) sequence Z = (xi, x2, •••) is formed by choosing, independ-
ently for each y=l, Xj=aa with probability p„. Let g = P\al+p2a2-\ YP„aa. 
Then the probability is unity that M(Xk)-<-g and T(Xk) •— exp (g) as k — 

Thus in the sense of the given probability measure defined on the set of se-
quences Z, for almost every sequence the generalized Trotter product formula 
holds. 

2. An auxiliary inequality 

Both theorems derive f rom an elementary estimate formulated as follows: 

L e m m a . Let X be a finite sequence of elements of 93, n any partition of it into 
successive subsequences, andg £ 93. Let q = £?(X), r] =t](n) and 8 =8(X,n, g) be defined 
as above. Then 

| !7"(X)-exp(g) | | =s en'n(e 2 -2e 2 + 1 ) . 

In the proof of the Lemma we shall make use of the following facts : 
(A) If P(xt, x2, ,..,xq) is a polynomial or a power series with non-negative 

real coefficients then 

\\P{xy,x2, ||x2||, ..., ||x,||) 

for all X j£ i3 such that the right hand side is finite. 

(B) For any t^O, e<- 1 S j t2e.' 

(C) For any /1=0, e'-*'2 S i + t ^ e'. 

Let Y j ( j = 1, 2, ..., i ) be the subsequences of X produced by the partition n, 
and let nij be their respective length, m=Ijm}. Let T{X)=yiy2...ys where yj 
is the product of those factors in the product, taken in their proper order, which 
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m. 
involve the elements x k £ Y.-. Write v.- = 1 H — - £ + /•,-, thus defining r ; . For nota-

m 
tional convenience we now consider y" = 1. We have 

r, = ^ - l - ^ M Q f , ) 
m m 

m, 
The norm of the second term is bounded by <5. To obtain a bound on the norm 

m 
of the first term we note that if 

YYi 
m m 

exp ^ . . . exp fe 
m I I m 

1 — — (^i +-V2H m 

is regarded as a power series in the Xj (j=1, 2, ..., mj) it has non-negative coef-
ficients (the negative terms cancel!). Thus by principle (A) above we may replace 
Xj by IIXjII, and then taking (B) and the definition of q into account we get 

">2 m, _ „ „„ , i | m, 
I J V • l - ^ - M C Y , ) 

m 

Thus we have for 7 = 1 , 2 , 

(6) 
2 \m\Q'et + 
1 \ m J \ \ 2 p e 4 _ ' a i ô 

lit: 
Next, let z- = H g, and consider the difference T(X) — z, z2 . . .z s = 

m 
= yiy2...ys — zlz2...zs. As a polynomial in g and the it has again non-negative 
coefficients, so we apply principle (A). The norms of r-j are majorized by (6), and so 
by the inequality (C) 

and 

1 m 1 

I ^ g m 2 \ m / m 

- I l f l l l - mr 

m. 
where in the last step we used — T h u s we see that 

m 

-e ). Ibij2 ...y,-ziz2...zs\\ ««»«(<? 

Arguing analogously, we have also 

llexP(<?) — z i z 2 ••• zsll — e" s "( l — e -^ ' '" 0" 2) . 

The last two inequalities together imply the conclusion of the lemma. 
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We note that Theorem 1 is an immediate consequence of the lemma, since the 
estimate for || T(Xk) — exp (g)|| supplied by the lemma tends to zero as k — °° if the 
hypotheses of the theorem are fulfilled. 

3. Proof of Theorem 2 

The idea of the proof of Theorem 2 is to find an appropriate sequence of parti-
tions nk (k= 1 , 2 , 3 , . . . ) such that if we let 5k = 5(Xk, nk, g) then 

(7) P{Iim SK = 0} = 1, 

and at the same time such that 

(8) l i m i / f a ) = 0. 
•ft-. OO t 

Indeed, if (7) and (8) are fulfilled then the conclusion of Theorem 2 follows from 
Theorem 1. 

Let C\ < C2 and /? < 1 be three positive constants. We define the partition nk of 
(1,2, 3, ..., k) into successive subsequences of lengths rrij = Wy(/r)(y' = 1 ,2 , . . . , s=s(k)) 
in such a manner that for all j and k 

(9) Ctk" < nij < C2kK 

Since I j i n j = k , it follows that 

(10) s = s(k)='0(k1~'1), 

and therefore 

(11) rlk = n ( n k ) = 

so that (8) holds. Note that in our probabilistic set-up the partitions nk are not 
random variables (i.e. nk is constant over the whole probability space). 

Next, we remark that, by virtue of the Borel—Cantelli lemma, in order to prove 
(7) it is sufficient to prove that 

(12) ¿ P R S i } < " 
k= 1 

for any positive e. 
Let Y l 5 Y 2 , . . . , Yv be the successive subsequences of Xfc produced by the parti-

tion nk. Let NJv (j=],2, ...,s; v = 1, 2 , . . . , a) be the number of occurrences of av 

among the elements of the subsequence Y;. The Njy are random variables subject 
to the multinomial distribution determined by the probabilities pv, and for different 
j they are independent. We have 

Sk = M a x 1 S j S s ^ AMk, 
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where 

A = M a x j a , 

Thus we need to show 

(13) 

NJV and MK = M a x 1 S i S s ^ i —~—PV »= i | r»j 

Since the following inclusion (implication) of events holds 

sW \ ° 
{ M k * * } = U \ 2 

7 = 1 lv=l 

NJV 
-Pv 

s(k) n 

Ç U U 
7=1v=1 

Hjjr 
m, -P, 

we obtain for the probabilities of the complementary events 

s(k) a 

(14) P l M ^ P f l n 
7=1v=1 

s(k) 

- 1 7 p n 7=1. v = .l m: 

m: 

-PA 

E 

a 
P 

1 1 a j=l 
i - . Z P m. ~PJ 

The equality in (14) is due to the fact that we are dealing with the intersection (con-
junction) of independent events. 

Suppose N is the number of "successes" in a sequence of m Bernoulli trials 
with probability p for success. We have then the following fact [3]: given any a > 1, 
for all sufficiently large m (depending only on a and p) 

\N—mp\ ' 
U m f i l ^ P ^ 

It follows that for any 

(15) p { 

iï: (2a log m) 
J rrr 

„ M W 
p — p m 

1 1 
= 4 < —; J m* 

for all sufficiently large m (depending only on E, a and p). If the inequality (15) is 
used for the probabilities on the right hand side of (14) we obtain 

s(k) 

P{Mk^E} ^ [I 
7=1 

1 
a 

ma: 

which is valid for all sufficiently large k, since (9) implies that then all the irij are 
large enough. But (9) and (10) show that for suitable constants C and C" 

(16) P{Mt<£} s (l-Ck—f'"1-' = 1 -0(k~y) 

where y = afi + P — l. Since o o l was arbitrary we may suppose y > l , so that 
P{Mk^e} = 0(k~y) and (13) follows. This concludes the proof of Theorem 2. 
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