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If A is a bounded linear operator on a complex Banach space, then a closed 
linear subspace 901 is hyperinvariant for A if SOi is invariant under every, operator 
which commutes with A. It is not known whether or not every operator other than 
a multiple of the identity has a non-trivial hyperinvariant subspace (i.e. other than 
the zero subspace and the whole space). Several sufficient conditions for the existence 
of non-trivial hyperinvariant subspaces are known ([3], [13], [14]). 

Fuglede'.s theorem [6] states that every spectral subspace of a normal operator 
is hyperinvariant, and this was generalized to spectral operators by D U N F O R D [4].. 

H O O V E R [5] recently showed that every «-normal operator has a hyperinvariant 
subspace. In this note we present simple proofs of D U N F O R D ' S and H O O V E R ' S results, 
based upon Rosenblum's theorem on operator equations. 

1. Rosenblum's theorem 

We shall use a theorem about solutions of certain linear.operator equations.. 
The theorem was proved by ROSENBLUM [11] to the case where E and Fare 
elements of the same Banach algebra. The result which is given below has not, 
to our knowledge, appeared in print before, although many people must be aware 
of it. Our proof is essentially the same as the proof of Rosenblum's result conta-
ined in the paper of L U M E R and R O S E N B L U M [9]. We denote the set of bounded 
inear operators from SC to by 3S{SC, <&). 

Theorem (Rosenblum). If E and F are bounded operators on the complex 
Banach spaces aJJ andSE respectively, and if the operator ST on is defined by 
g-(X) = EX-XF, then 

o{2T)(Zo{E)-o{F) = {z-w: z£o(E), \v£o{F)}. 

Proof (similar to [9]). Define operators S and J^ on by 

6\X) = EX and £?(X) = XF. 
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If E-X has in inverse, then {E — X){E — X)~ lX = (E - X)~1 {E - X)X = X for every 
<&), and therefore o{S)co(E). Similarly a{^)cia{F). 

Since $ and !F are commuting operators, o{<S— ¿F)c.o($) — o{!<F)-, (simply 
let si be a maximal commutative algebra containing S and and use the fact that 
the spectra relative to si, which are the ranges of the Gelfand transforms, are the 
•same as the original spectra). Hence <J{2T)C:O(E) — O(F). 

The special case of this result that we shall need is the fact that a{E) fl a(F) = 0 
.and EX0 = X0F imply A"o = 0 (since X0 is in the nullspace of the operator i f { X ) = 
= EX-XF). 

2. The Fuglede—Dunford theorem 

Fuglede's theorem [6] states that whenever a bounded operator B on a 
"Hilbert space commutes with a normal operator A, then B commutes with the spectral 
measure of A (or, equivalently, then B commutes with A*). HALMOS [7, 8] and 
ROSENBLUM [12] gave simplified proofs of Fuglede's theorem. D U N F O R D [4] gener-
alized Fuglede's theorem to the case where A is a spectral operator on a Banach 
-space. 

In this note we give another proof of Dunford's version of the theorem. We feel 
that this proof, gives some further insight even in the Hilbert space case, although 
it is neither as short nor as elegant as Rosenblum's proof. 

Following D U N F O R D [4] we say that a bounded operator A on a Bainach space 
-SC is a spectral operator if there exists a spectral measure £(•) (i.e. a countably 
additive mapping from the Borel sets in the complex plane into a uniformly bounded 
family of projections on 3C such that E($) = 0, E(C) — 1, and E((Tl fl cr2) = £ ( aJEfr^) 
for all Borel sets 07 and a2), which commutes with A and which has the property 
that (T(A\E(o)S:)-c:a for all Borel sets a. 

Theorem (Fuglede—Dunford). . If A is a spectral operator, with spectral 
measure E(-), and if AB = BA, then BE(p)—E(p)Bfor all Borel sets a. 

Proof. It obviously suffices to show that the range of E{d) is invariant under 
B for each Borel set cr, and this is equivalent to showing that E(o')BE(o)= 0, where 

denotes the complement of a. By regularity it suffices to show that E{p')BE(o) = 0 
whenever a is closed. 

Fix a closed set A, and let <r0 be any closed subset of A'. From AB = BA it 
follows that E(CR0)AB E(A) = E((T0)B AE((J) and thus that 

[E(a0)A E(a0)] [£(<r0) B E{a)} = [E(a0) B E{a)] [E(cj) A E(o)}. 

Hence E(o0) B E{a) = 0 by Rosenblum's theorem, since E(a0)A E(a0) and 
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E(O)A E(CT) have disjoint spectra as operators on E(A0)Sr and E(TT)X res-
pectively. 

Since E(P0)B £(<r) = 0 whenever a0 is a closed subset of a', it follows that 
E(O')B E{A) = 0 and the proof is complete. 

3. Putnam's corollary 

Soon after Fuglede's theorem was published, P U T N A M [10] observed that 
Fuglede's proof could be generalized to show that whenever A and C are normal 
operators on a Hilbert space and B is a bounded operator such that AB = BC then 
A*B = BC*. BERBERIAN [1] found a simple trick for getting Putnam's result as a 
corollary of Fuglede's. To our knowledge it has not previously been observed 
that Berberian's trick can be applied to the case of spectral operators, yielding 
the following result. 

Corollary. If A and C are spectral operators with Spectral measures E(-) 
and F(-) on the Banach spaces 3C and W respectively, and if B is a bounded operator 
from a.'J to ?JC such that AB — BC, then E{o)B = BF{o) for every Borel set a. 

Proof. We consider %@<3J, with = M + | | j | | , and let P andl2 be 
the projections onto the first and. second co-ordinate spaces respectively. Then the 
operator T = PAP+QCQ is spectral, and its spectral measure is defined by 
G(a) = PE{a)P -f- QF(a)Q for each a. A trivial computation shows that T commutes 
with the operator S = PBQ. By the Fuglede—Dunford Theorem, G(a)S= SG(a) 
for each a. Another simple computation gives B E(o) = F{a)B. 

4. Hyperinvariant subspaces of triangular and «-normal operators 

An operator is said to be n-normal if it is (unitarily equivalent to) an operator 
in the tensor product of some abelian von Neumann algebra and the algebra of 
nXn matrices. In other words, «-normal operators can be written in the form 

1 ^12 ••• n 

^„2 ... Ann 

where is a collection of commuting normal operators. 
R . G . D O U G L A S and C : P E A R C Y showed that every 2-normal operator has 

a non-trivial hyperinvariant subspace, and T . B . H O O V E R [5] generalized this result 
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to «-normal operators. HOOVER shows that every «-normal operator is quasi-
similar to an «-normal operator in "Jordan form", and derives the existence of 
hyperinvariant subspaces from this result together with Dunford's characterization 
of spectral operators. 

We show that the existence of hyperinvariant subspaces for «-normal operators 
follows from the more easily proven result that every «-normal operator is unitarily 
equivalent to an «-normal operator in upper triangular form [2], together with the 
simple theorem given below. 

Theorem. If A is unitarily equivalent to an operator in the upper triangular 
form 

'An * . .. * 
0 * . .. * 

,0 0 . .A 

where the spectra of An and Ann are disjoint, then A has a non-trivial hyperinvariant 
subspace. 

•Proof. Let 

' * * . . . * ' 

A !*•••*, 
be any operator in the commutant si of A. The fact that the entry in position 
(«, 1) of AB is equal to the entry in position (n, 1) of BA gives AnnBnl =BnlAn. 
Since the spectra of An and A„„ are disjoint, Rosenblum's theorem implies 
that Bnl= 0. Let x be any vector of the form (xj, 0, 0, 0, ..., 0) with x^O 
and y any vector of the form (0, 0, ..., 0, yn) with >>„5̂ 0. We have shown that 
{Bx,y) = 0 for all B£si. Thus the closure of {Bx: B£si} is a non-trivial hyper-
invariant subspace for A. 

Corollary. If A is not a multiple of the identity and is unitarily equivalent 
•to an operator in the upper triangular form (*), where A,, and Ann are normal, then 
A has a non-trivial hyperinvariant subspace. 

Proof. If the spectrum of An consists of only one point, then An is a multiple 
of the identity. In this case A has a non-trivial eigenspace, and it is trivial to verify 
the fact that an eigenspace of A is hyperinvariant. 

If the spectrum of Au consists of more than one point, then, by the spectral 
theorem, we can write An=A°, @A]i and A„„ = A*n where the spectra of 

B = 



Hyperinvariant subspaces 125 

and Aln are disjoint. Then A is unitarily equivalent to an operator of the form 

(4° 0 * * 

0 Al * * 

0 0 * * 

0 0 A° -rlnn * 

0 0 A1 
Sinn 

Thus the Theorem above gives the result. 

Corol lary (Hoover). Every n-normal operator which is not a multiple of the 
identity has a non-trivial hyperinvariant subspace. 

Proof. A theorem of D E C K A R D and P E A R C Y [2, Theorem 2] implies that every 
«-normal operator is unitarily equivalent to an «-normal operator in upper triangular 
form. Thus the result follows from the previous corollary. 

Remark. As H O O V E R [5] shows, quasi-similarity preserves the existence of 
hyperinvariant subspaces. Thus the theorem and the first corollary above can be 
stated with "unitarily equivalent" replaced by "quasi-similar". 
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