
Operators with bounded characteristic function and 
their /-unitary dilation 

By CHANDLER DAVIS*) in Toronto and CIPRIAN FOIA§ in Bucharest 

Introduction. Let § be a (complex) Hilbert space and let T be a bounded linear 
operator on 

Denote by QT the positive square root of |I—T*T\ and by JT the operator 
s g n ( / - r * r ) ; similarly, let QT* = \I-TT*\*, Jr* = sgn (I-TT*). Let us put 

(0.1) OT{X) = [-TJt + AQt*{I-AT*)-1Qt}\Q^> 

whenever (/ — kT*)_i exists. This function, whose values are operators from T>T = QT5>-
to T>r» = 2r»§, is called the "characteristic function" of T (see [13], [10]; for the 
case where Tis a contraction, see [15]). The main result of the present paper is thê  
following 

Theorem. If 0r(k) is defined for all k with |/| 1, and if 

sup{||0T(A)||:|A| < 1} <=o, 

then T is similar to a contraction. 

Here similarity has the usual meaning: Two operators T, Ti are called "similar"' 
if there exists an affinity X (i.e. an operator mapping the space of Tt onto the space 
of T in a one-to-one and continuous way) such that T=XTiX~1, see [15]. 

It is of interest to have a boundedness condition which implies similarity of" 
T to a contraction, in view of the fact that the apparently more natural conditions 

sup ||r-|| < oo, sup (|A| — 1) ||(A/ — r ) - 1 | | < 
nm o |A|=-I 

formely conjectured to be sufficient for similarity to a contraction, have turned out: 
not to be [4], [7], [8, p. 200]. 

*) Research done largely during the visit of this author to Bucharest, on a Senior Research 
Fellowship of the National Research Council of Canada. 
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However, it is worth while to mention that the existence and boundedness 
•of© r(A) on {A: |A| < 1} is not necessary for T being similar to a contraction. Indeed, 
taking § the two dimensional complex Euclidean space E2 and T the operator 

•corresponding to the matrix one obtains by simple computations that T 

is similar to the contraction while QT~QT*=I and 0 r(A) is given by the 

matrix 
J ( l - A ) - 1 A2(I 

which is unbounded on {A: |A|<1}. 
The theorem is an outgrowth of two known results. The first [15, IX. 1], [6] 

.gives the condition for a contraction to be similar to a unitary. It was generalized 
by L . A . SAHNOVIC [12] to apply to general bounded T: IfQT(X) is defined and bounded 
•on {A: then T is similar to a unitary operator. Our theorem also contains 
the following similarity theorem of G. C. R O T A [11]: If the spectrum <J(T) of T is 
•contained in {A: |A| < 1}, then T is similar to a contraction. Indeed a(T) c {A: |A| < 1} 
implies that | | ( / -Ar*) - 1 | | is bounded on {A: |A|^1} so that 0 r(A) satisfies in this 
•case the requirements of our theorem. 

Our method is the geometric interpretation of the characteristic function 
developed in [15, VI]. This interpretation is generalized to the case of operators 
which need not be contractions, by carrying forward the study of/-unitary dilation 
begun in [2]; but the proofs demand many considerations which did not arise for 
•contractions. We include in § IV the proof of Sahnovic's theorem by our method. 

We remark that our boundedness hypotheses are used in §§ III—IV only to 
•ensure that we have a bounded operator on H2, never to draw conclusions about the 
(operator) values which 0T(A) assumes. 

I. Preliminaries 

1. As usual in this subject, it is important to note that the identity T(I— T*T) = 
= {I-TT*)T implies 

(1.1) Tf(J-T*T) = f(I-TT*)T 

for any bounded complex Borel function / defined on the real line. In particular 

( 1 .2) 

and taking adjoints, 

(1.2') 

TQT=QT*T, TJT — JT*T, 

QTT^T*QT*, JTT* = T*JT,. 
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Thus TJrQr — ^T* QT* ^— T* T, which implies the fact already mentioned that 
(1.3) 0r(A)£>r c ®T t . 

For later use we derive another property of the characteristic function (cf. 
[6, §2]). We begin with the fact, obvious from the definition (0. 1), that 

(1.4) 0r(A)* = 0 r , ( I ) 

whenever either side is defined. On the other hand, 

0TWQRJT = QA-T+X(I-AT*R1(I-T*T)] = QT*(/—Ar*)-1(A/— T). 

Now assume that 07(A) and i9T(I _ 1) are both defined; we have 

JTQT{L-LYJR*ET(L)QTJR = JT0T*(X'-,)JT*QT*(I-¿T*)-í(AI-T) = 

= / r 2 T ( / - A - 1 r r I ( A - 1 / - r * ) ( / - A r * r 1 ( A / - r ) = QTJT, 

from which it is easy to conclude that 

(1.5) 0T(X)-' = J T 0 r (J~ l )*- 'r* |®i-

In particular, i / 0 r ( A ) is defined and bounded on {A: |A|?¿1} then 0 r ( A ) - 1 exists 
and is bounded on D = {X: |A|<1}; thus in this case 

(1.6) sup ||0r(A)|| < =o, sup l^riA)"1!! < 
D D 

2. We now recall the construction of the /-unitary dilation [2]. The present 
discussion differs somewhat in notation, and deals only with bounded T. 

The dilation will be an operator on a direct sum space 
( - 1 ) (0) (1) (2) 

1.7) ft = - - - © D r + © § © D r © l ) T © - - - . 

This means that there are canonical injections of Dr„, and D r onto orthogonal 
subspaces of ft. We indicate these injections by supercript indices. Thus for any 

(0) (0) 
h denotes the corresponding element of the 0-th co-ordinate subspace §> 

(0 
of ft; for any h^X)Tt, h denotes the corresponding element of the i-th co-ordinate 

(0 . (0 
subspace T>T* of ft (/'= — 1, — 2, ...); and for any h£T> T, h denotes the correspond-

to 
ingelement of the /"-th co-ordinate subspace T>T offt ( /= 1, 2,...). The general element 
of ft is a sequence o = (h¡)?L_m with /í0É§, h¡£DTt («"<0), h¡£T>T ( />0) , and 
||o-|[2 = 2 ll̂ íll2 < » ; w e c a n equally well write a as a sum 

1= —Oo 
°° (0 

( 1 . 8 ) a =
 l Z j i 

of elements in co-ordinate subspaces of ft. 

9 A 
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We define operators U and J on ft by specifying how they act on the above 
general element a: 

(0 (0) ( 1 ) 

(1.9) U a = Z Ih- i+h'+'r" , 
i vo , l 

(1.9') h' = Q^h^ + Th^ h" = -T*Jr*h_l + QTh0; 
(0 (0) (0 

(1.10) Jo = 2 (JT*h,) + K + Z Vrh,). 

¡ < 0 ¡5-0 

Then J* —J=J-1, and U is /-unitary, i.e., 

(1.11) (JUa, U<J') = (Ja, a') (<x,ff'€«) 
and U is invertible; we shall have need for the explicit expression for its inverse, 
acting upon the general a of (1. 8): 

(0 ( - 0 (0) 
(1.12) U~io= Z hi+l+ k' +k", 

iZ-I, 0 

( 1 . 1 2 ' ) k' = JTtQr*h0-Jr*Tlh, k" = T*h0 + JTQThl. 

U is a dilation of T, that is, for all 
(0) (0) 

(1.13) (T"h) — PU" h (« = 0 ,1 ,2 , . . . ) , 
(0) 

where P denotes the orthogonal projection of 51 onto §>. We obtain a /-isometric 
dilation of T (i.e., an operator satisfying the analogues of (1. 11) and (1. 13), but 
not necessarily invertible) if we consider the restriction U+ of U to a certain invariant 

(0) 
subspace + . Namely, + = V V" or, perhaps more simply, W + is the set 

11=! o 
OO (i) 

of all vectors Z hi 'n Evidently reduces J. 
;=o 

3. We conclude the preliminaries by recalling some well-known simple notions 
about geometry of subspaces of Hilbert spaces and /-spaces, which are central 
to our main arguments below. These will be stated in a general context: Let 9JÍ and 
9Í be any subspaces of any Hilbert space and let P and Q respectively be the 
orthoprojectors onto SOi and 91. Then we have (see e.g. [1]) 

Lemma 1.1. The operators PQ|sJ.)i and QP\91 have the same spectrum, except 
perhaps for 0. 

Let us say that SOi is "not far from" 9} in case 0$o-(,P(2|$)!)- (In more conven-
tional terminology [3,1], 9Ji neither intersects nor is asymptotic to §091 . ) If A 
denotes Q\M as an operator from № to 91, then A*A=PQ\?Dl; thus W is not far 
from 91 if and only if there exists c > 0 such that, for all ||ö«?|| Sc||m||. A 
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necessary and sufficient condition that 9Jt be not far from 91 and 9f not far from 9Ji 
is that £>|9JJ be an invertible map of 901 onto 91. 

Lemma 1.2. If is not far from 91 then §©91 is not far from § 0 9Ji. 

This follows immediately from the previous Lemma: O$<r(.P2[S0i) implies 
Ho-(/>(l - 0 | a « ) , which implies l$<r((] - 0 / ' | § © 9 1 ) , which implies 

0 $ f f ( ( l - e ) ( l - P ) | S e 9 t ) , q-e.d. 

See also [14, Lemma 9. 1. 1]. 

Lemma 1.3. If 9Ji is not far from 91 then 9J! + (§©9!) is closed {and is the 
direct sum o/9Ji and §©91). 

This is well known, e.g. [9, § 3], [3,1]. 
Now let there also be defined on § a symmetry/, i.e. / " ' = / = /* , making 

it a /-space. We will use the notion of a regular subspace (pravil'noe podprostranstvo) 
of § [5]. Let 901 and P be as above; let P+ denote \ (/ + / ) , the orthoprojector 
onto the canonical positive subspace of 991 is called "regular" in case it is 
not far from /9Ji, in the sense defined above. 

Using the fact that the orthoprojector onto /9JJ is JPJ, and that P/P/|9JJ is 
the square of the hermitian operator P/l®?, it is not hard to see that each of the 
following conditions is equivalent to 9J1 being regular: 

(i) \\PJx\\ defines on 901 a norm equivalent to the given norm; 
(ii) 7V|9.U has a bounded inverse on 9)1; 
(in) Ma(,P/\hDi); 
(iv) \io{P+P\P+9)). 

The equivalence of (iii) with (iv) here is a case of Lemma 1.1. 

Lemma 1.4. IfSRis regular, then the following are also regular: /9Jf; the ortho-
gonal complement §©9Ji of W; and the J-orthogonal complement §©/9Ji of M. 

As to /9JI, this follows from (i) and the fact that / is unitary; as to §©9Jf, it 
follows from (iv); the rest is obvious. 

It is only for regular subspaces that the /-orthogonal complement deserves its 
name: 

Lemma 1.5. If 9Ji is regular, then § is the direct sum of 9)1 and §©/9J?. 

This is a corollary of Lemma 1. 3. (The converse is known too, but we will 
not need it.) 

We now return to th? special context of the Introduction, so the symbols 
/ , etc. will have the special meanings which were attached to them. 
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II. The characteristic function and the У-unitary dilation 

1. We will now show that the dilation contruction gives rise to the characteristic 
function here in almost as natural a way as in the case of contractions. 

For this purpose we consider two subspaces on which U+ acts as a unilateral 
shift (of some multiplicity £0). First, 

(0) ' ~ (;) (1) 
(2. i) = од = © x>T = V u n T ) T , 

i = 1 n i O 

and U + |9JÍ is, by definition, an isometric mapping of each co-ordinate subspace 
onto the next. 

Second, we consider 

(2 .2 ) . 9Л* = У 
NSO 

It is plain from (1. 9), (1. 9') that In the contractive case, it was shown 
[15] that in (2. 2) as well, U+ maps each of the sequence of subspaces isometrically 
onto the next. In the general case, it need not be isometric, but it is expansive: 
for all 

~ (0 
( 7 = + 

i — 0 

we have 

\\U+a\\2= ||r/;0||2 + | | e T / j 0 | ! 2 + | | / ! l | | 2 + - ^ 

Ё ц г / г 0 | | 2 + ( 7 г е г / г 0 , е 1 . л 0 ) + | | / г 1 | | 2 + - = i i / * O I i 2 + i i m 2 + - = и 2 . 

2. Let us now introduce the Fourier representations of 9Л and 9Л*. For 
finite sums 

IV ( > i + l ) N (1) NT ( - 1 ) 
( 2 . 3 ) 2 К = 2 u n h n m , 2vn+1h*nOK 

n = 0 n = 0 n = 0 

(where /г„6®т, we put 

(2.4) ФА{Х) — ¿ A " / 7 „ , F<R¿K)= 2 >">ЧП ( W - l ) -
N = 0 п=О 

Linear applications are thereby defined from dense subsets of 9Ji, resp. 5Ш*, 
into the space Н2(ЪТ), resp. Н2(ЪТ*). These are Hardy H2 spaces of vector-valued 
functions, see [15, V]. The mapping Ф is obviously isometric and can be extended 
to a unitary mapping of 90Í onto Н2{ЪТ), which will still be denoted by Ф. Under this 
isomorphism, the isometric unilateral shift £/+|9Jt corresponds to А: ФИ+\Ш — АФ. 
Here A is the multiplication by the independent variable, that is, for II£H2(T>T) 
we have Ли(Х) — Хи(Х) (|A| < 1). This correspondence of unilateral shift to multiplica-
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tion is the essential feature of the Fourier representation. It carries over to the non-
isometric Fourier representation F: if /1* denotes the multiplication by X in / / 2 ( £ r * ) 
then obviously FUa^ — A^Fa^ for the above finite sums o^. 

We introduce /-space structure in the H 2 spaces in the natural way. Denote by 
J the operator defined on H2(T>T) by (Jw)(A) = JT(u(X)) (|A|<1). It is immediate 
that <i>/|9[)l = J<5 and hence identically (J<PO, <PO) — (Ja, a) (<rg30i), showing how 
to regard <P as preserving also the /-space structure. Similarly, define J* on H2(T>T*) 

by (J* M*) (A) = /-,.*(»* (A)). We will verify the relation 

. ( 2 . 5 ) ( J * ^ * , Fa J = (/CT^, <7+) 

for finite sums in , but it is less immediate because the terms in the definition (2. 3) 
of do not belong to subspaces which are clearly invariant under / . However, 
the /-unitary property (1. 11) of U allows us to write 

N* N*- (— 1) (-1) N* (-1) (-1) N* 
= 2 2(JVn+,Kn,Um+,lhm)= 2{Jh*n,h*n) = 2(JT*K„,h,„) 

n = 0 m = 0 11 = 0 n = 0 

( - 1 ) ( - 1 ) 

(the terms for M^N vanish because U'" " Dr*_L £>T*)- But the right-hand member, 
by the definition of /* and the definition of the inner product in H2, is equal to 

Fa^), with Fa* as in (2.4). Thus (2. 5) is proved. 

3. We thus have two naturally defined subspaces sDi and 9JI*, and the projectors 
PW, PW* onto them do not commute. It is not surprising that fairly complete in-
formation about Tis contained in an invariant description of the contraction />a)P|sJDi. 
If one tries to make this description giving 9JJ and 50i+ their Fourier representations, 
one finds the contraction from S)i to 301* is replaced by a mapping from / / 2 (D T ) 
to //2(X)r*), given exactly by the characteristic function. 

We now exhibit this relationship formally, for arbitrary T. Tn the following 
section we will give it a geometric sense, by using the hypothesis of boundedness 
of the characteristic function. 

o o 

For any ii£H2(T)t), with power-series expansion u(X) = £ let ©r" 
o = 0 

denote the function whose values are defined by (0ru)(X) — QT(X)u(X). This function 
is defined and analytic, with values in T>r*, at least for <min (H?! - 1 , 1), and 
this is all we need for the moment (indeed it would be possible to proceed using only 
formal power series). We can write in the neighborhood of X=0 

( 2 - 6 ) (0ru)(X)= 2 X"\ 2 On_mul 
n = 0 \m = 0 ) 

o o 

here the 0n are the Taylor coefficients of Qr\QT{X) = £ Xn0„. From the definition 
n = 0 . 
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(0. 1) we can derive this explicit expression: 

(2 7) (JU»h U « ^ 7 n = l ° i f 
{ ° { ' 1 (ON_„,JTH,LH) if N^M 

for all /;££>•,-. To prove this, use the /-unitary property in the same way 
as above: 

(i) ' (-D (0 ( - 0 
(JUm h , U"+i /7* ) = (JUm-"-lli, /)* ) 

which obviously is 0 for m £ /7 + 1. If /77—/;—1 = — k, A'>0, then we need to 
_.(») (-1) 

find the component of U /7 in D r t ; this we can do by iterating (1. 12), (1. 12'), 
and the result is 

-JT*Th if k—-\, JT*QT*T*k~2JTQTh if k> 1. 
Therefore 

/ jrj-kV c l ' \ = \(-TI'> = (°o J rh , K) if k= 1, 
1 ' \ ( Q r * T * k - 2 Q T j T h , h j = (ek^JTh,h,) if 

using (0. 1). This establishes (2. 7). 
We are now in a position to discuss inner products of elements of 9JI with 

elements of 9J!*. Let 0, <7* be as in (2. 3). Then, by (2. 7), 
AT AT, (1) ( - 1 ) 

(2. 8) (Jo, <RJ = 2 2 (JUmhm, i/"+1 h,„) = 2 (&N-MJTHM, //*„). . 
fii = 0 n = 0 nmmSO 

Also by (2. 6) and (2. 4) 
«> f min (n, N) | 

(0T0Ja) (A) = (0TJr<Pa) (A) = 2 2 0n_mJThm . 
n=0 ( m=0 ) 

This is analitic in A with values in X)T*, but need not lie in / / 2 (£),*); if it does, its 
inner product with Fa^ from (2. 4) is, by (2. 8), 

A!
+ (min (ti, t\i 

2 \ 2 0„-
n = 0 t. m = 0 

Jrhm,KA = (.Jo, ff*). 

III. Geometric properties of the /-unitary dilation in case the characteristic 
function is bounded 

1. Assume now that 0T is defined on the open unit disk D and that 

sup [|0t(a)|| = 
D 

Then for any U£H2(T)t), 0tU belongs to H2(T>R*) and its norm in that space is 
^C\\u\\. Let 0:H2(T>r)-~H2(X>r*) be defined by 0u — 0Tu\ it is an operator of 
norm C. 
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The conclusion of the last section can now be rewritten as 

{Ja,aJ={0<PJa,FoJ. 

Because elements Ja (with & a finite sum (2*3)) are dense in and 0 and <P are 
continuous, we deduce that 

(3.1) FaJ Gi€3K). ' 

This is not quite the promised interpretation of 0T in terms of Pm* because the 
second factor in the inner product is still restricted to be a finite sum. 

We will remedy this by proving that F has a unique extension to an affinity o/Stf* 
1 onto H2(T>r*). 

To this end taking ¡x=Pwa i f in (3. 1), we obtain 

I I J 2 = ff*) = (04^«ff*, f O 35 C\\pwaj IIFffJ| 
whence 
(3-2) \\PwaJ2 sC2\\Fo,\\2. 

Let P denote the projection onto the complement of 9J1 in which by (2. 1) 
. fO) 

is By (2. 5) and the definition (1. 10) of J, 

(J* Fa*, Ftr*) = (/<7*, <7+) = IIFo-̂ H2 +(JPwcri., PSRC*), 

which yields, because J* and J are contractions, 

IIFff*||2 ^ | | / V J 2 - + | | F f f J 2 ' S (C2 + 1)||F<tJ2 

(using (3. 2)). Add this to (3. 2) to obtain 

K l l 2 S (l+2C2)||F<rJ2. 

This proves that F has a bounded inverse G. The domain of G is dense, so G 
has a -unique bounded extension to the whole of / /2(D r»); denote this also by G. 
By continuity, we deduce from (2. 5) that 

(.JGu, Gu) = (J* u, u) (u£H2 (X).,.•)). 

This is the same as saying G*PWtJG — J* ( = J*1)- Thus G has the left-inverse 
i^G*Pw,J, which as a product of bounded operators is bounded. It is an extension 
of F because F is inverse to G on a dense set. This completes the proof that F has a 
unique extension to an affinity; the extension will still be denoted by F. 

Then we know also that tr* in (3. 1) can be replaced by an arbitrary element 
^ o f S B , . 

2. We now introduce the residual part of U, in imitation of the contraction case, 
( - n 

The images of 35r* under non-negative powers of U do span all of + . 
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Its images under positive powers of U, on the other hand, span the subspace 9JZ* 
which need not be all of Consider the /-orthogonal complement of 9J?*: 

(3.3) = ft+e/»t* = S K Q J V UNWTL; 

it is clear that the two definitions are equivalent. The latter expression (3. 3), together 
with the /-unitary property of (7(1. 11), make it clear that 9i is invariant under both 
Uand U~x. Thus we may define the "residual part" R = £/|9?, an invertible operator. 

Being a restriction of U+ (not just of U), R is expansive (see §11.1 above). 
Hence 
( 3 . 4 ) \\R->\\ S i . 

Our next aim is to prove that 

(3.5) sup ||i?"|| < 00, 
— «XB<w 

and (3.4) takes care of this for all n S 0. 
Return to (2. 5), which implies at once 

F*J*F=P„,J\W*. 

Now that we are able to assert that F (and therefore also F*) is an affinity, we can 
deduce that the equation represents an invertible operator on 9JZ*. That is, 9.lf* is 
a regular subspace of the /-space £+. (See § I. 3.) By Lemma 1.4, we deduce now 
from (3. 3) that 91 is also regular, that is, that /^/19? is invertible. 

Set /9l = /' iR/|9i. We now know that for some c > 0 

(3.6) c||g|| s n/^ll s Hell (e€9t). 

But we also know from the remarks following (3. 3) that 

( J ^ R - ' q ^ - ' Q ' ) = ( / i Z - ' ^ t / - Y ) = ( J Q , Q ' ) = (J-}\ Q, £?') 

for q , so that (iterating) J K = ( R ~ " ) * J i { R - n («>0). With (3.4) and (3.6), 
this gives 

S 11/3,51| = \\(R-<YJ*R-Q\\ S H/S./I-ELL S \\R-Q\\, 

whence ||*"e|| s J Hell (e€SR; n = l , 2 , ...)-

To sum up, (3. 5) has been established, with 

s u p p ? " | | s - ; sup \\R"\\ S 1 . 

Now we appeal to the theorem of B. SZ.-NAGY that any operator R with. 
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sup ||/?"|[ S — is similar to a unitary [14]. More precisely, it tells us that 
— o o < / K c o C 

there exists a self-adjoint inuertible operator A on such that 

I M M M - ' l l ^ l 

and such that V = A~iRA is unitary. 

3. We are ready to prove the theorem stated in the introduction. We begin by 
defining a new Hilbert space 

H = //2(35r*)ffi9i 

with a canonical mapping into : 

(3.7) X(u®g) = F-ht + Ag. (udH2(T>T*), 3?). 

As u and g vary, the term F~x u here ranges over all of 9JJ* and the term Ag over all 
of 91, because F"1 and A are affinities. But 91 is the /-orthogonal complement of 
9Ji* by definition (3. 3), and 9JI* was just proved to be regular, so by Lemma 1. 5, 
X maps H onto 

(0) 
Let P again denote the orthoprojector on onto § ; we now see that PX 

(0) 

maps H onto § . Let Q denote the orthoprojector on H onto the orthogonal comple-
ment of the null-space of PX. We define Y: g H —§ by 

(0) 
(3.8) 7(w©e) = h if and only if PX(u®g) = h. 

Being continuous, 1—1, and onto, 7jnust be an affinity of QH onto 
Now the operator U defined by 

U(w© ¡5) = A^u® Vo, 

where V is the unitary found in § III. 2, is an isometry on H; and it is related to U+ 

by the application (3.7): 

(3.9) XV = F-^^ + AV = U+F~l + RA = U+X. 

(0) 

We project down onto That is, we operate on (3. 9) on the left by P\ using the 
definition (3. 8) and the dilation property (1. 13), we obtain 

ygU = TY. 

But Y is an affinity and g U is certainly a contraction (on 0 H to QW). This completes 
the proof of the theorem. 
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IV. Similarity to a unitary operator 

This section will be devoted to the proof of the result of S A H N O V I C stated in the 
introduction. Accordingly we now strengthen the hypotheses used in §111, and assume 
that 0T(A) is defined for |A| ̂  I and 

sup ||0Г(А)|| = С < oo. 
UMi 

We saw in § I. 1 that this makes 0,-(A) and 0 T (A) - 1 both uniformly bounded analytic 
operator-functions on D, see (1. 5) and (1. 6). Therefore 0 is an affinity of Н2(ЪТ) 
onto Н2(ЪГ*) \ indeed its inverse is given by 

(0 - , и # ) (Я) = 0г(А)-1
1/ДА) (|A| < 1) 

f o r И , Е Я 2 ( 1 ) Г , ) . 

We begin, as before, with (3. 1), extended to 

(Ц, f i j = (вФц, FuJ (H € m, e 9ЯJ, 

(4.1) = 

Now, however, since all three operators on thé right are affinities, we.are able to 
.short-cut the considerations of §111.3. Indeed, (4. 1) says directly that / ^ J W is 
an affinity of 9Л onto 9Л*. This implies that 9Л is not far from 9Л* and 9Л* is not 

(0) 
far from 9Л, in the sense of § I. 3. By Lemma 1.2, § is not far from J9Î and vice 

(0) (0) 
versa. Applying the unitary / , we see that J§> ( = § ) is in the same relationship 

( 0 ) 

to 9Î. Hence f |9 î is an affinity of 9Î onto § just as in the contraction case. 
Let A, V be the operators found in § III. 2. Define Y: 9Î — § by 

10) 

Yg = h if and only if PAg= h. 

Then У is an affinity from 9Î onto and the equation 

PA V= PRA =PUA, 
together with the dilation relation (1. 13), gives YV=TY. This is a similarity of T 

/to a unitary operator, as was required. 
i 
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