Operators with bounded characteristic function and their J-unitary dilation

By CHANDLER DAVIS*) in Toronto and CIPRIAN FOIAŞ in Bucharest

Introduction. Let $\mathfrak{5}$ be a (complex) Hilbert space and let T be a bounded linear operator on 5 .

Denote by Q_{T} the positive square root of $\left|I-T^{*} T\right|$ and by J_{T} the operator $\operatorname{sgn}\left(I-T^{*} T\right)$; similarly, let $Q_{T^{*}}=\left|I-T T^{*}\right|^{\frac{1}{2}}, J_{T^{*}}=\operatorname{sgn}\left(I-T T^{*}\right)$. Let us put.

$$
\begin{equation*}
\Theta_{T}(\lambda)=\left[-T J_{T}+\lambda Q_{T^{*}}\left(I-\lambda T^{*}\right)^{-1} Q_{T}\right] \overline{Q_{T} \mathfrak{H}} \tag{0.1}
\end{equation*}
$$

whenever $\left(I-\lambda T^{*}\right)^{-1}$ exists. This function, whose values are operators from $\mathfrak{D}_{T}=\overline{Q_{T}} \mathfrak{S}$. to $\mathfrak{D}_{T^{*}}=\overline{Q_{T^{*}} \mathfrak{H}}$, is called the "characteristic function" of T (see [13], [10]; for the case where T is a contraction, see [15]). The main result of the present paper is the: following

Theorem. If $\Theta_{T}(\lambda)$ is defined for all λ with $|\lambda|<1$, and if

$$
\sup \left\{\left\|\Theta_{T}(\lambda)\right\|:|\lambda|<1\right\}<\infty,
$$

then T is similar to a contraction.
Here similarity has the usual meaning: Two operators T, T_{1} are called "similar" if there exists an affinity X (i.e. an operator mapping the space of T_{1} onto the spaceof T in a one-to-one and continuous way) such that $T=X T_{1} X^{-1}$, see [15].

It is of interest to have a boundedness condition which implies similarity of ${ }^{-}$ T to a contraction, in view of the fact that the apparently more natural conditions

$$
\sup _{n \cong 0}\left\|T^{n}\right\|<\infty, \quad \sup _{|\lambda|>1}(|\lambda|-1)\left\|(\lambda I-T)^{-1}\right\|<\infty,
$$

formely conjectured to be sufficient for 'similarity to a contraction, have turned out: not to be [4], [7], [8, p. 200].

[^0]However, it is worth while to mention that the existence and boundedness of $\Theta_{T}(\lambda)$ on $\{\lambda:|\lambda|<1\}$ is not necessary for T being similar to a contraction. Indeed, taking $\mathfrak{5}$ the two dimensional complex Euclidean space E^{2} and T the operator corresponding to the matrix $\left(\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right)$ one obtains by simple computations that T is similar to the contraction $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$, while $Q_{T}=Q_{T^{*}}=I$ and $\Theta_{T}(\lambda)$ is given by the matrix

$$
\left(\begin{array}{cc}
(1-\lambda)^{-1} & \lambda^{2}(1-\lambda)^{-1} \\
1 & \lambda
\end{array}\right)
$$

which is unbounded on $\{\lambda:|\lambda|<1\}$.
The theorem is an outgrowth of two known results. The first [15, IX. 1], [6] gives the condition for a contraction to be similar to a unitary. It was generalized by L. A. Sahnovič [12] to apply to general bounded $T:$ If $\Theta_{T}(\lambda)$ is defined and bounded on $\{\lambda:|\lambda| \neq 1\}$ then T is similar to a unitary operator. Our theorem also contains the following similarity theorem of G. C. Rota [11]: If the spectrum $\sigma(T)$ of T is contained in $\{\lambda:|\lambda|<1\}$, then T is similar to a contraction. Indeed $\sigma(T) \subset\{\lambda:|\lambda|<1\}$ implies that $\left\|\left(I-\lambda T^{*}\right)^{-1}\right\|$ is bounded on $\{\lambda:|\lambda| \leqq 1\}$ so that $\Theta_{T}(\lambda)$ satisfies in this case the requirements of our theorem.

Our method is the geometric interpretation of the characteristic function developed in [15, VI]. This interpretation is generalized to the case of operators which need not be contractions, by carrying forward the study of J-unitary dilation begun in [2]; but the proofs demand many considerations which did not arise for contractions. We include in § IV the proof of Sahnovič's theorem by our method.

We remark that our boundedness hypotheses are used in §§ III-IV only to ensure that we have a bounded operator on H^{2}, never to draw conclusions about the (operator) values which $\Theta_{T}(\lambda)$ assumes.

I. Preliminaries

1. As usual in this subject, it is important to note that the identity $T\left(I-T^{*} T\right)=$ $=\left(I-T T^{*}\right) T$ implies

$$
\begin{equation*}
T f\left(I-T^{*} T\right)=f\left(I-T T^{*}\right) T \tag{1.1}
\end{equation*}
$$

for any bounded complex Borel function f defined on the real line. In particular

$$
\begin{equation*}
T Q_{T}=Q_{T^{*}} T, \quad T J_{T}=J_{T^{*}} T \tag{1.2}
\end{equation*}
$$

and taking adjoints,

$$
Q_{T} T^{*}=T^{*} Q_{T^{*}}, \quad J_{T} T^{*}=T^{*} J_{T^{*}}
$$

Thus $T J_{T} Q_{T}=J_{T^{*}} Q_{T^{*}} T=Q_{T^{*}} J_{T *} T$, which implies the fact already mentioned that

$$
\begin{equation*}
\Theta_{T}(\lambda) \mathfrak{D}_{T} \subseteq \mathfrak{D}_{\boldsymbol{T}^{*}} \tag{1.3}
\end{equation*}
$$

For later use we derive another property of the characteristic function (cf. $[6, \S 2])$. We begin with the fact, obvious from the definition (0.1), that

$$
\begin{equation*}
\Theta_{r}(\lambda)^{*}=\Theta_{T^{*}}(\bar{\lambda}) \tag{1.4}
\end{equation*}
$$

whenever either side is defined. On the other hand,

$$
\Theta_{T}(\lambda) Q_{T} J_{T}=Q_{T^{*}}\left[-T+\lambda\left(I-\lambda T^{*}\right)^{-1}\left(I-T^{*} T\right)\right]=Q_{T *}\left(I-\lambda T^{*}\right)^{-1}(\lambda I-T)
$$

Now assume that $\Theta_{T}(\lambda)$ and $\Theta_{T}\left(\lambda^{-1}\right)$ are both defined; we have

$$
\begin{aligned}
& J_{T} \Theta_{T}\left(\lambda^{-1}\right)^{*} J_{T^{*}} \Theta_{T}(\lambda) Q_{T} J_{T}=J_{T} \Theta_{T^{*}}\left(\lambda^{-1}\right) J_{T^{*}} Q_{T^{*}}\left(I-\lambda T^{*}\right)^{-1}(\lambda I-T)= \\
& =J_{T} Q_{T}\left(I-\lambda^{-1} T\right)^{-1}\left(\lambda^{-1} I-T^{*}\right)\left(I-\lambda T^{*}\right)^{-1}(\lambda I-T)=Q_{T} J_{T}
\end{aligned}
$$

from which it is easy to conclude that

$$
\begin{equation*}
\Theta_{T}(\lambda)^{-1}=J_{T} \Theta_{T}\left(\lambda^{-1}\right)^{*} J_{T^{*}} \mid \mathcal{D}_{T^{*}} \tag{1.5}
\end{equation*}
$$

In particular, if $\Theta_{T}(\lambda)$ is defined and bounded on $\{\lambda:|\lambda| \neq 1\}$ then $\Theta_{T}(\lambda)^{-1}$ exists and is bounded on $D \doteq\{\lambda:|\lambda|<1\}$; thus in this case

$$
\begin{equation*}
\sup _{D}\left\|\Theta_{T}(\lambda)\right\|<\infty, \quad \sup _{D}\left\|\Theta_{T}(\lambda)^{-1}\right\|<\infty \tag{1.6}
\end{equation*}
$$

2. We now recall the construction of the J-unitary dilation [2]. The present discussion differs somewhat in notation, and deals only with bounded T.

The dilation will be an operator on a direct sum space

This means that there are canonical injections of $\mathfrak{y}, \mathfrak{D}_{\mathbb{T}^{*}}$, and \mathfrak{D}_{T} onto orthogonal subspaces of Ω. We indicate these injections by supercript indices. Thus for any $h \in \mathfrak{5}, \stackrel{(0)}{h}$ denotes the corresponding element of the 0 -th co-ordinate subspace $\stackrel{(0)}{\mathfrak{5}}$ of Ω; for any $h \in \mathcal{D}_{T *}, \stackrel{(i)}{h}$ denotes the corresponding element of the i-th co-ordinate subspace ${\stackrel{(1}{D^{*}}}_{(i)}$ of $\Omega(i=-1,-2, \ldots)$; and for any $h \in \mathcal{D}_{T}, \stackrel{(i)}{h}$ denotes the corresponding element of the i-th co-ordinate subspace $\mathcal{D}_{T}^{(i)}$ of $\Omega(i=1,2, \ldots)$. The general element of Ω is a sequence $\sigma=\left(h_{i}\right)_{i=-\infty}^{\infty}$ with $h_{0} \in \mathfrak{H}, h_{i} \in \mathfrak{D}_{T^{*}}(i<0), h_{i} \in \mathfrak{D}_{T}(i>0)$, and $\|\sigma\|^{2}=\sum_{i=-\infty}^{\infty}\left\|h_{i}\right\|^{2}<\infty$; we can equally well write σ as a sum

$$
\begin{equation*}
\sigma=\sum_{i=-\infty}^{\infty}{ }_{i}^{(i)} h_{i} \tag{1.8}
\end{equation*}
$$

of elements in co-ordinate subspaces of $\boldsymbol{\Omega}$.

We define operators U and J on Ω by specifying how they act on the above general element σ :

$$
\begin{equation*}
U \sigma=\sum_{i \neq 0,1}{\stackrel{(i)}{h_{i-1}}+\stackrel{(0)}{h^{\prime}}+\stackrel{(1)}{h^{\prime \prime}}, ~}_{\text {, }} \tag{1.9}
\end{equation*}
$$

$$
h^{\prime}=Q_{T^{*}} h_{-1}+T h_{0}, \quad h^{\prime \prime}=-T^{*} J_{T^{*}} h_{-1}+Q_{T} h_{0}
$$

$$
\begin{equation*}
J \sigma=\sum_{i<0}\left(J_{T^{*}}^{(i)} h_{i}\right)+\stackrel{(0)}{h_{0}}+\sum_{i>0}\left(J_{T}^{(i)} h_{i}\right) . \tag{1.10}
\end{equation*}
$$

Then $J^{*}=J=J^{-1}$, and U is J-unitary, i.e.,

$$
\begin{equation*}
\left(J U \sigma, U \sigma^{\prime}\right)=\left(J \sigma, \sigma^{\prime}\right) \quad\left(\sigma, \sigma^{\prime} \in \Omega\right) \tag{1.11}
\end{equation*}
$$

and U is invertible; we shall have need for the explicit expression for its inverse, acting upon the general σ of (1.8):

$$
\begin{gather*}
U^{-1} \sigma=\sum_{i \neq-1,0} \stackrel{(i)}{h}_{i+1}+\stackrel{(-1)}{k^{\prime}}+\stackrel{(0}{k}^{\prime \prime}, \tag{1.12}\\
k^{\prime}=J_{T^{*}} Q_{T^{*}} h_{0}-J_{T^{*}} T h_{1}, \quad k^{\prime \prime}=T^{*} h_{0}+J_{T} Q_{T} h_{1} .
\end{gather*}
$$

U is a dilation of T, that is, for all $h \in \mathfrak{F}$,

$$
\begin{equation*}
\left({ }^{(0)} h\right)=P U^{(0)} \stackrel{(0)}{h} \quad(n=0,1,2, \ldots), \tag{1.13}
\end{equation*}
$$

where P denotes the orthogonal projection of Ω onto $\stackrel{(0)}{\mathfrak{5})}$. We obtain a J-isometric dilation of T (i.e., an operator satisfying the analogues of (1.11) and (1.13), but not necessarily invertible) if we consider the restriction U_{+}of U to a certain invariant subspace Ω_{+}. Namely, $\Omega_{+}=\bigvee_{n \geqq 0} U^{n} \stackrel{(0)}{5}$, or, perhaps more simply, Ω_{+}is the set of all vectors $\sum_{i=0}^{\infty}{ }_{0}^{(i)}$ in Ω. Evidently Ω_{+}reduces J.
3. We conclude the preliminaries by recalling some well-known simple notions about geometry of subspaces of Hilbert spaces and J-spaces, which are central to our main arguments below. These will be stated in a general context: Let \mathfrak{M} and \mathfrak{N} be any subspaces of any Hilbert space \mathfrak{G}, and let P and Q respectively be the orthoprojectors onto \mathfrak{M} and \mathfrak{M}. Then we have (see e.g. [1])

Lemma. 1.1. The operators $P Q \mid \mathfrak{M}$ and $Q P \mid \mathfrak{N}$ have the same spectrum, except perhaps for 0 .

Let us say that \mathfrak{M} is "not far from" \mathfrak{N} in case $0 \notin \sigma(P Q \mid \mathfrak{M})$. (In more conventional terminology [3, 1$], \mathfrak{M}$ neither intersects nor is asymptotic to $\mathfrak{S} \ominus \mathfrak{9}$.) If A denotes $Q \mid \mathfrak{M}$ as an operator from \mathfrak{M} to \mathfrak{M}, then $A^{*} A=P Q \mid \mathcal{M}$; thus \mathfrak{M} is not far from \mathfrak{M} if and only if there exists $c>0$ such that, for all $m \in \mathfrak{M l},\|Q m\| \geqq c\|m\|$. A
necessary and sufficient condition that \mathfrak{M} be not far from \mathfrak{M} and \mathfrak{P} not far from \mathfrak{M} is that $Q \mid \mathfrak{M}$ be an invertible map of \mathfrak{M} onto \mathfrak{M}.

Lemma 1. 2. If \mathfrak{M} is not far from \mathfrak{M} then $\mathfrak{S} \ominus \mathfrak{M}$ is not far from $\mathfrak{S} \ominus \mathfrak{M}$.
This follows immediately from the previous Lemma: $0 \ddagger \sigma(P Q \mid \mathfrak{M})$ implies $1 \notin \sigma(P(1-Q) \mid \mathfrak{M})$, which implies $1 \notin \sigma((1-Q) P \mid \mathfrak{G} \ominus \mathfrak{M})$, which implies

$$
0 \nleftarrow \sigma((1-Q)(1-P) \mid \mathfrak{G} \ominus \mathfrak{M}) \text {, q.e.d. }
$$

See also [14, Lemma 9. 1. 1].
Lemma 1. 3. If \mathfrak{M} is not far from \mathfrak{M} then $\mathfrak{M}+(\mathfrak{G} \ominus \mathfrak{9})$ is closed (and is the direct sum of $\mathfrak{M i}$ and $\mathfrak{S} \ominus \mathfrak{M}$).

This is well known, e.g. [9, § 3], [3, I].
Now let there also be defined on \mathfrak{G} a symmetry J, i.e. $J^{-1}=J=J^{*}$, making it a J-space. We will use the notion of a regular subspace (pravil'noe podprostranstvo) of \mathfrak{G} [5]. Let \mathfrak{M} and P be as above; let P_{+}denote $\frac{1}{2}(I+J)$, the orthoprojector onto the canonical positive subspace of \mathfrak{G}. \mathfrak{M} is called "regular" in case it is not far from $J M$, in the sense defined above.

Using the fact that the orthoprojector onto $J M 1$ is $J P J$, and that $P J P J \mid M 1$ is the square of the hermitian operator $P J \mid \mathcal{M}$, it is not hard to see that each of the following conditions is equivalent to $\mathfrak{M l}$ being regular:
(i) $\|P J x\|$ defines on 9 P a norm equivalent to the given norm;
(ii) $P J \mid \supseteqq \mathcal{M}$ has a bounded inverse on \mathfrak{M};
(iii) $\frac{1}{2} \notin \sigma\left(P P_{+} \mid \mathfrak{M}\right)$;
(iv) $\frac{1}{2} \notin \sigma\left(P_{+} P \mid P_{+} \mathfrak{y}\right)$.

The equivalence of (iii) with (iv) here is a case of Lemma 1.1.
Lemma 1.4. If $\mathfrak{M l}$ is regular, then the following are also regular: $J \mathfrak{M}$; the orthogonal complement $\mathfrak{G} \ominus \mathfrak{M}$ of \mathfrak{M}; and the J-orthogonal complement $\mathfrak{G} \ominus J \mathfrak{M}$ of M.

As to $J \mathfrak{M}$, this follows from (i) and the fact that J is unitary; as to $\mathfrak{G} \ominus \mathfrak{M}$, it follows from (iv); the rest is obvious.

It is only for regular subspaces that the J-orthogonal complement deserves its name:

Lemma 1.5. If \mathfrak{M} is regular, then \mathfrak{G} is the direct sum of \mathfrak{M} and $\mathfrak{G} \ominus J \mathfrak{M}$.
This is a corollary of Lemma 1.3. (The converse is known too, but we will not need it.)

We now return to the special context of the Introduction, so the symbols \mathfrak{G}, J, etc. will have the special meanings which were attached to them.

II. The characteristic function and the J-unitary dilation

1. We will now show that the dilation contruction gives rise to the characteristic function here in almost as natural a way as in the case of contractions.

For this purpose we consider two subspaces on which U_{+}acts as a unilateral shift (of some multiplicity $\geqq 0$). First,

$$
\begin{equation*}
\Omega_{+}=\stackrel{(0)}{\mathfrak{H}} \oplus \mathfrak{M}, \quad \mathfrak{M}=\bigoplus_{i=1}^{\infty} \mathfrak{D}_{T}^{(i)}=\bigvee_{n \geqq 0} U^{n} \mathfrak{D}_{T}^{(1)} \tag{2.1}
\end{equation*}
$$

and $U_{+} \mid M$ is, by definition, an isometric mapping of each co-ordinate subspace onto the next.

Second, we consider

$$
\begin{equation*}
\mathfrak{M}_{*}=\bigvee_{n \geqq 0} U^{n+1}{\stackrel{(-1)}{\mathfrak{D}_{T^{*}}} ~}_{\text {. }} \tag{2.2}
\end{equation*}
$$

It is plain from (1.9), (1.9') that $\mathfrak{M}_{*} \subseteq \Omega_{+}$. In the contractive case, it was shown [15] that in (2.2) as well, U_{+}maps each of the sequence of subspaces isometrically onto the next. In the general case, it need not be isometric, but it is expansive: for all

$$
\sigma=\sum_{i=0}^{\infty} h_{i}^{(i)} \in \Omega_{+}
$$

we have

$$
\begin{gathered}
\left\|U_{+} \sigma\right\|^{2}=\left\|T h_{0}\right\|^{2}+\left\|Q_{T} h_{0}\right\|^{2}+\left\|h_{1}\right\|^{2}+\cdots \geqq \\
\geqq\left\|T h_{0}\right\|^{2}+\left(J_{T} Q_{T} h_{0}, Q_{T} h_{0}\right)+\left\|h_{1}\right\|^{2}+\cdots=\left\|h_{0}\right\|^{2}+\left\|h_{1}\right\|^{2}+\cdots=\|\sigma\|^{2}
\end{gathered}
$$

2. Let us now introduce the Fourier representations of \mathfrak{M} and \mathfrak{M}_{*}. For finite sums

$$
\begin{equation*}
\sigma=\sum_{n=0}^{N} \stackrel{(n+1)}{h_{n}}=\sum_{n=0}^{N} U^{n} \stackrel{(1)}{h_{n}} \in \mathfrak{M}, \quad \sigma_{*}=\sum_{n=0}^{N_{*}} U^{n+1} \stackrel{(-1)}{h_{* n}} \in \mathfrak{M}_{*} \tag{2.3}
\end{equation*}
$$

(where $h_{n} \in \mathfrak{D}_{T}, h_{* n} \in \mathfrak{D}_{T^{*}}$), we put

$$
\begin{equation*}
\Phi \sigma(\lambda)=\sum_{n=0}^{N} \lambda^{n} h_{n}, \quad F \sigma_{*}(\lambda)=\sum_{n=0}^{N_{*}} \lambda^{n} h_{* n} . \quad(|\lambda|<1) . \tag{2.4}
\end{equation*}
$$

Linear applications are thereby defined from dense subsets of \mathfrak{M}, resp. \mathfrak{M}_{*}, into the space $H^{2}\left(\mathfrak{D}_{T}\right)$, resp. $H^{2}\left(\mathfrak{D}_{T^{*}}\right)$. These are Hardy H^{2} spaces of vector-valued functions, see [15, V]. The mapping Φ is obviously isometric and can be extended to a unitary mapping of \mathfrak{M} onto $H^{2}\left(\mathfrak{D}_{T}\right)$, which will still be denoted by Φ. Under this isomorphism, the isometric unilateral shift $U_{+} \mid \mathfrak{M}$ corresponds to $\Lambda: \Phi U_{+} \mid \mathfrak{M}=\Lambda \Phi$. Here Λ is the multiplication by the independent variable, that is, for $u \in H^{2}\left(\mathcal{D}_{T}\right)$ we have $\Lambda u(\lambda)=\lambda u(\lambda)(|\lambda|<1)$. This correspondence of unilateral shift to multiplica-
tion is the essential feature of the Fourier representation. It carries over to the nonisometric Fourier representation F : if Λ_{*} denotes the multiplication by λ in $H^{2}\left(\mathfrak{D}_{T^{*}}\right)$ then obviously $F U \sigma_{*}=\Lambda_{*} F \sigma_{*}$ for the above finite sums σ_{*}.

We introduce J-space structure in the H^{2} spaces in the natural way. Denote by \mathbf{J} the operator defined on $H^{2}\left(\mathcal{D}_{T}\right)$ by $(\mathbf{J} u)(\lambda)=J_{T}(u(\lambda))(|\lambda|<1)$. It is immediate that $\Phi J \mid \mathfrak{M}=\mathbf{J} \Phi$ and hence identically $(\mathbf{J} \Phi \sigma, \Phi \sigma)=(J \sigma, \sigma)(\sigma \in \mathfrak{M})$, showing how to regard Φ as preserving also the J-space structure. Similarly, define \mathbf{J}_{*} on $H^{2}\left(\mathfrak{D}_{T^{*}}\right)$ by $\left(J_{*} u_{*}\right)(\lambda)=J_{T^{*}}\left(u_{*}(\lambda)\right)$. We will verify the relation

$$
\begin{equation*}
\left(\mathbf{J}_{*} F \sigma_{*}, F \sigma_{*}\right)=\left(J \sigma_{*}, \sigma_{*}\right) \tag{2.5}
\end{equation*}
$$

for finite sums in \mathfrak{M}_{*}, but it is less immediate because the terms in the definition (2.3) of σ_{*} do not belong to subspaces which are clearly invariant under J. However, the J-unitary property (1.11) of U allows us to write

$$
\left(J \sigma_{*}, \sigma_{*}\right)=\sum_{n=0}^{N_{*}} \sum_{m=0}^{N_{*}}\left(J U^{n+1} h_{* n}^{(-1)}, U^{m+1} h_{* m}^{(-1)}\right)=\sum_{n=0}^{N_{*}}\left(J h_{* n}^{(-1)}, h_{* n}^{(-1)}\right)=\sum_{n=0}^{N_{*}}\left(J_{T} h_{* n}, h_{* n}\right)
$$

(the terms for $m \neq n$ vanish because $U^{m-n} \stackrel{(-1)}{\mathfrak{D}_{T^{*}} \perp}\left(\underset{\mathfrak{D}_{T^{*}}}{(-1)}\right.$. But the right-hand member, by the definition of J_{*} and the definition of the inner product in H^{2}, is equal to $\left(J_{*} F \sigma_{*}, F \sigma_{*}\right)$, with $F \sigma_{*}$ as in (2.4). Thus (2.5) is proved.
3. We thus have two naturally defined subspaces \mathfrak{M} and \mathfrak{M}_{*}, and the projectors $P_{\mathfrak{M}}, P_{\mathfrak{M}}$ onto them do not commute. It is not surprising that fairly complete information about T is contained in an invariant description of the contraction $P_{\mathrm{SM}^{*}} \mid \mathfrak{M i}$. If one tries to make this description giving \mathfrak{M} and \mathfrak{M}_{*} their Fourier representations, one finds the contraction from \mathfrak{M} to \mathfrak{M}_{*} is replaced by a mapping from $H^{2}\left(\mathfrak{D}_{T}\right)$ to $H^{2}\left(\mathfrak{D}_{T^{*}}\right)$, given exactly by the characteristic function.

We now exhibit this relationship formally, for arbitrary T. In the following section we will give it a geometric sense, by using the hypothesis of boundedness of the characteristic function.

For any $u \in H^{2}\left(\mathcal{D}_{T}\right)$, with power-series expansion $u(\lambda)=\sum_{n=0}^{\infty} \lambda^{n} u_{n}$, let $\Theta_{T} u$ denote the function whose values are defined by $\left(\Theta_{T} u\right)(\lambda)=\Theta_{T}(\lambda) u(\lambda)$. This function is defined and analytic, with values in $\mathfrak{D}_{r^{*}}$, at least for $|\lambda|<\min \left(\|T\|^{-1}, 1\right)$, and this is all we need for the moment (indeed it would be possible to proceed using only formal power series). We can write in the neighborhood of $\lambda=0$

$$
\begin{equation*}
\left(\Theta_{T} u\right)(\lambda)=\sum_{n=0}^{\infty} \lambda^{n}\left(\sum_{m=0}^{n} \theta_{n-m} u_{m}\right) \tag{2.6}
\end{equation*}
$$

here the θ_{n} are the Taylor coefficients of $\Theta_{r}: \Theta_{T}(\lambda)=\sum_{n=0}^{\infty} \lambda^{n} \theta_{n}$. From the definition
(0.1) we can derive this explicit expression:

$$
\left(J U^{m} h, U^{n+1} h_{*}^{(-1)}\right)=\left\{\begin{array}{lll}
0 & \text { if } & n<m \tag{2.7}\\
\left(\theta_{n-m} J_{T} h, h_{*}\right) & \text { if } & n \geqq m
\end{array}\right.
$$

for all $h \in \mathfrak{D}_{T}, h_{*} \in \mathcal{D}_{T^{*}}$. To prove this, use the J-unitary property in the same way as above:

$$
\left(J U^{m}\left(\frac{1)}{h}, U^{n+1} \stackrel{(-1)}{h_{*}}\right)=\left(J U^{m-n-1} \stackrel{(1)}{h}, \stackrel{(-1)}{h_{*}}\right)\right.
$$

which obviously is 0 for $m \geqq n+1$. If $m-n-1=-k, k>0$, then we need to find the component of $U^{-k} \stackrel{(1)}{h}$ in $\stackrel{(-1)}{\mathfrak{D}_{T^{*}}}$; this we can do by iterating (1.12), (1.12'), and the result is

$$
-J_{T^{*}} T h \quad \text { if } \quad k=1, \quad J_{T^{*}} Q_{T^{*}} T^{* k-2} J_{T} Q_{T} h \quad \text { if } \quad k>1
$$

Therefore

$$
\left(J U^{-k}{ }^{(1)},(-1), h_{*}\right)= \begin{cases}\left(-T h, h_{*}\right)=\left(\theta_{0} J_{T} h, h_{*}\right) & \text { if } k=1, \\ \left(Q_{T^{*}} T^{* k-2} Q_{T} J_{T} h, h_{*}\right)=\left(\theta_{k-1} J_{T} h, h_{*}\right) & \text { if } k>1\end{cases}
$$

using (0.1). This establishes (2.7).
We are now in a position to discuss inner products of elements of \mathfrak{M} with elements of \mathfrak{M}_{*}. Let σ, σ_{*} be as in (2.3). Then, by (2.7),

$$
\begin{equation*}
\left(J \sigma, \sigma_{*}\right)=\sum_{m=0}^{N} \sum_{n=0}^{N_{*}}\left(J U^{m} h_{m}^{(1)}, U^{n+1} h_{* n}^{(-1)}\right)=\sum_{n \geqq m \geqq 0}\left(\theta_{n-m} J_{T} h_{m}, h_{* n}\right) . \tag{2.8}
\end{equation*}
$$

Also by (2.6) and (2.4)

$$
\left(\Theta_{T} \Phi J \sigma\right)(\lambda)=\left(\Theta_{T} j_{T} \Phi \sigma\right)(\lambda)=\sum_{n=0}^{\infty} \lambda^{n}\left(\sum_{m=0}^{\min (n, N)} \theta_{n-m} J_{T} h_{m}\right)
$$

This is analitic in λ with values in $\mathfrak{D}_{T^{*}}$, but need not lie in $H^{2}\left(\mathfrak{D}_{T^{*}}\right)$; if it does, its inner product with $F \sigma_{*}$ from (2.4) is, by (2.8),

$$
\sum_{n=0}^{N_{*}}\left(\sum_{m=0}^{\min \left(n_{1} N\right)} \theta_{n-m} J_{T} h_{m}, h_{* n}\right)=\left(J \sigma, \sigma_{*}\right)
$$

III. Geometric properties of the J-unitary dilation in case the characteristic function is bounded

1. Assume now that Θ_{T} is defined on the open unit disk D and that

$$
\sup _{D}\left\|\Theta_{T}(i)\right\|=C<\infty
$$

Then for any $u \in H^{2}\left(\mathcal{D}_{T}\right), \Theta_{T} u$ belongs to $H^{2}\left(\mathcal{D}_{T^{*}}\right)$ and its norm in that space is $\leqq C\|u\|$. Let $\Theta: H^{2}\left(\mathfrak{D}_{T}\right) \rightarrow H^{2}\left(\mathfrak{D}_{T^{*}}\right)$ be defined by $\Theta u=\Theta_{T} u$; it is an operator of norm C.

The conclusion of the last section can now be rewritten as

$$
\left(J \sigma, \sigma_{*}\right)=\left(\Theta \Phi J \sigma, F \sigma_{*}\right)
$$

Because elements $J \sigma$ (with σ a finite sum (2.3)) are dense in \mathfrak{M}, and Θ and Φ are continuous, we deduce that

$$
\begin{equation*}
\left(\mu, \sigma_{*}\right)=\left(\Theta \Phi \mu, F \sigma_{*}\right) \quad(\mu \in \mathfrak{M}) \tag{3.1}
\end{equation*}
$$

This is not quite the promised interpretation of Θ_{T} in terms of $P_{\mathbb{m}^{*}}$ because the second factor in the inner product is still restricted to be a finite sum.

We will remedy this by proving that F has a unique extension to an affinity of $\mathfrak{M n}_{*}$ 'onto $H^{2}\left(\mathfrak{D}_{T^{*}}\right)$.

To this end taking $\mu=P_{\mathfrak{M}} \sigma_{*}$ in (3.1), we obtain

$$
\left\|P_{\mathfrak{M}} \sigma_{*}\right\|^{2}=\left(P_{\mathfrak{M}} \sigma_{*}, \sigma_{*}\right)=\left(\Theta \Phi P_{\mathfrak{M}} \sigma_{*}, F \sigma_{*}\right) \leqq C\left\|P_{\mathfrak{M}} \dot{\sigma}_{*}\right\|\left\|F \sigma_{*}\right\|
$$

whence

$$
\begin{equation*}
\left\|P_{\mathfrak{M}} \sigma_{*}\right\|^{2} \leqq C^{2}\left\|F \sigma_{*}\right\|^{2} \tag{3.2}
\end{equation*}
$$

Let P denote the projection onto the complement of \mathfrak{M} in Ω_{+}, which by (2.1) is $\stackrel{(0)}{5}$. By (2.5) and the definition (1.10) of J,

$$
\left(\mathbf{J}_{*} F \sigma_{*}, F \sigma_{*}\right)=\left(J \sigma_{*}, \sigma_{*}\right)=\left\|P \sigma_{*}\right\|^{2}+\left(J P_{\mathfrak{M}} \sigma_{\dot{*}}, P_{\mathfrak{9 R}} \sigma_{*}\right),
$$

which yields, because J_{*} and J are contractions,

$$
\left\|P \sigma_{*}\right\|^{2} \leqq\left\|P_{\mathfrak{M}} \sigma_{*}\right\|^{2}+\left\|F \sigma_{*}\right\|^{2} \leqq\left(C^{2}+1\right)\left\|F \sigma_{*}\right\|^{2}
$$

(using (3.2)). Add this to (3.2) to obtain

$$
\left\|\sigma_{*}\right\|^{2} \leqq\left(1+2 C^{2}\right)\left\|F \sigma_{*}\right\|^{2}
$$

This proves that F has a bounded inverse G. The domain of G is dense, so G has a unique bounded extension to the whole of $H^{2}\left(\mathfrak{D}_{T^{*}}\right)$; denote this also by G. By continuity, we deduce from (2.5) that

$$
(J G u, G u)=\left(\mathbf{J}_{*} u, u\right) \quad\left(u \in H^{2}\left(\mathfrak{D}_{T^{*}}\right)\right) .
$$

This is the same as saying $G^{*} P_{\mathfrak{M}_{*}} J G=\mathbf{J}_{*}\left(=\mathbf{J}_{*}^{-1}\right)$. Thus G has the left-inverse $\mathbf{J}_{*} G^{*} P_{\mathfrak{m}} J$, which as a product of bounded operators is bounded. It is an extension of F because F is inverse to G on a dense set. This completes the proof that F has a unique extension to an affinity; the extension will still be denoted by F.

Then we know also that σ_{*} in (3.1) can be replaced by an arbitrary element μ_{*} of \mathfrak{M}_{*}.
2. We now introduce the residual part of U, in imitation of the contraction case.

The images of $\stackrel{(-1)}{\mathfrak{D}_{T^{*}}}$ under non-negative powers of U^{-1} do span all of $\Omega \ominus \Omega_{+}$.

Its images under positive powers of U, on the other hand, span the subspace \mathfrak{M}_{*} which need not be all of $\mathfrak{\Omega}_{+}$. Consider the J-orthogonal complement of \mathfrak{M}_{*} :

$$
\begin{equation*}
\mathfrak{R}=\mathfrak{\Omega}_{+} \ominus J \mathfrak{M}_{*}^{-}=\mathfrak{N} \ominus J \bigvee_{-\infty}^{\infty} U^{n} \frac{(-1)}{\mathfrak{D}_{T^{*}}} \tag{3.3}
\end{equation*}
$$

it is clear that the two definitions are equivalent. The latter expression (3.3), together with the J-unitary property of $U(1.11)$, make it clear that \mathfrak{R} is invariant under both U and U^{-1}. Thus we may define the "residual part" $R=U \mid \Re$, an invertible operator.

Being a restriction of U_{+}(not just of U), R is expansive (see \S II. 1 above). Hence

$$
\begin{equation*}
\left\|R^{-1}\right\| \leqq 1 \tag{3.4}
\end{equation*}
$$

Our next aim is to prove that

$$
\begin{equation*}
\sup _{-\infty<n<\infty}\left\|R^{n}\right\|<\infty \tag{3.5}
\end{equation*}
$$

and (3.4) takes care of this for all $n \leqq 0$.
Return to (2.5), which implies at once

$$
F^{*} \mathbf{J}_{*} F=P_{\mathfrak{M}^{*}} J \mid \mathfrak{M} \boldsymbol{i}_{*}
$$

Now that we are able to assert that F (and therefore also F^{*}) is an affinity, we can deduce that the equation represents an invertible operator on \mathfrak{M}_{*}. That is, \mathfrak{M}_{*} is a regular subspace of the J-space Ω_{+}. (See § I. 3.) By Lemma 1.4, we deduce now from (3.3) that \mathfrak{R} is also regular, that is, that $P_{\mathfrak{R}} J \mid \mathfrak{R}$ is invertible.

Set $J_{\mathfrak{H}}=P_{\Re} J \mid \Re$. We now know that for some $c>0$

$$
\begin{equation*}
c\|\varrho\| \leqq\left\|J_{\mathfrak{M}} \varrho\right\| \leqq\|\varrho\| \quad(\varrho \in \mathfrak{R}) \tag{3.6}
\end{equation*}
$$

But we also know from the remarks following (3.3) that

$$
\left(J_{\mathfrak{M}} R^{-1} \varrho, R^{-1} \varrho^{\prime}\right)=\left(J U^{-1} \varrho, U^{-1} \varrho^{\prime}\right)=\left(J \varrho, \varrho^{\prime}\right)=\left(J_{\Re} \varrho, \varrho^{\prime}\right)
$$

for $\varrho, \varrho^{\prime} \in \mathfrak{R}$, so that (iterating) $J_{\mathfrak{M}}=\left(R^{-n}\right)^{*} J_{\mathfrak{R}} R^{-n}(n>0)$. With (3.4) and (3.6), this gives

$$
c\|\varrho\| \leqq\left\|J_{\mathfrak{R}} \varrho\right\|=\left\|\left(R^{-n}\right)^{*} J_{\mathfrak{\Re}} R^{-n} \varrho\right\| \leqq\left\|J_{\mathfrak{R}} R^{-n} \varrho\right\| \leqq\left\|R^{-n} \varrho\right\|
$$

whence $\left\|R^{n} \varrho\right\| \leqq \frac{1}{c}\|\varrho\| \quad(\varrho \in \mathfrak{R} ; n=1,2, \ldots)$.
To sum up, (3.5) has been established, with

$$
\sup _{n>0}\left\|R^{n}\right\| \leqq \frac{1}{c} ; \quad \sup _{n<0}\left\|R^{n}\right\| \leqq 1
$$

Now we appeal to the theorem of B. Sz.-NAGY that any operator R with.
$\sup _{-\infty<n<\infty}\left\|R^{n}\right\| \leqq \frac{1}{c}<\infty$ is similar to a unitary [14]. More precisely, it tells us that there exists a self-adjoint invertible operator A on \Re such that

$$
\|A\| \cdot\left\|A^{-1}\right\| \leqq \frac{1}{c}
$$

and such that $V=A^{-1} R A$ is unitary.
3. We are ready to prove the theorem stated in the introduction. We begin by defining a new Hilbert space

$$
\mathbf{H}=H^{2}\left(\mathfrak{D}_{\mathbf{T}^{*}}\right) \oplus \mathfrak{R}
$$

with a canonical mapping into Ω_{+}:

$$
\begin{equation*}
X(u \oplus \varrho)=F^{-1} u+A \varrho . \quad\left(u \in H^{2}\left(\mathcal{D}_{T^{*}}\right), \varrho \in \mathfrak{R}\right) . \tag{3.7}
\end{equation*}
$$

As u and ϱ vary, the term $F^{-1} u$ here ranges over all of \mathfrak{M}_{*} and the term $A \varrho$ over all of $\boldsymbol{\Omega}$, because F^{-1} and A are affinities. But $\boldsymbol{\Omega}$ is the J-orthogonal complement of \mathfrak{M}_{*} by definition (3.3), and \mathfrak{M}_{*} was just proved to be regular, so by Lemma 1. 5 , X maps \mathbf{H} onto Ω_{+}.

Let P again denote the orthoprojector on Ω_{+}onto $\stackrel{(0)}{5}$; we now see that $P X$ maps \mathbf{H} onto $\stackrel{(0)}{5}$. Let Q denote the orthoprojector on \mathbf{H} onto the orthogonal complement of the null-space of $P X$. We define $Y: Q H \rightarrow \mathfrak{S}$ by

$$
\begin{equation*}
Y(u \oplus \varrho)=h \text { if and only if } P X(u \oplus \varrho)=\stackrel{(0)}{h} \tag{3.8}
\end{equation*}
$$

Being continuous, $1-1$, and onto, Y must be an affinity of $Q \mathbf{H}$ onto $\mathfrak{5}$.
Now the operator \mathbf{U} defined by

$$
\mathbf{U}(u \oplus \varrho)=\Lambda_{*} u \oplus V \varrho,
$$

where V is the unitary found in § III. 2, is an isometry on \mathbf{H}; and it is related to U_{+} by the application (3.7):

$$
\begin{equation*}
X \mathbf{U}=F^{-1} A_{*}+A V=U_{+} F^{-1}+R A=U_{+} X \tag{3.9}
\end{equation*}
$$

We project down onto $\stackrel{(0)}{5}$. That is, we operate on (3.9) on the left by P; using the definition (3.8) and the dilation property (1.13), we obtain

$$
Y Q \mathbf{U}=T Y
$$

But Y is an affinity and $Q \mathbf{U}$ is certainly a contraction (on $Q \mathbf{H}$ to $Q \mathbf{H}$). This completes the proof of the theorem.

IV. Similarity to a unitary operator

This section will be devoted to the proof of the result of Sahnovič stated in the introduction. Accordingly we now strengthen the hypotheses used in § III, and assume that $\Theta_{T}(\lambda)$ is defined for $|\lambda| \neq 1$ and

$$
\sup _{|\hat{a}| \neq 1}\left\|\Theta_{T}(\lambda)\right\|=C<\infty .
$$

We saw in § I. I that this makes $\Theta_{T}(\lambda)$ and $\Theta_{T}(\lambda)^{-1}$ both uniformly bounded analytic operator-functions on D, see (1.5) and (1.6). Therefore Θ is an affinity of $H^{2}\left(\mathfrak{D}_{T}\right)$ onto $H^{2}\left(\mathcal{D}_{T^{*}}\right)$; indeed its inverse is given by

$$
\left(\Theta^{-1} u_{*}\right)(\lambda)=\Theta_{T}(\lambda)^{-1} u_{*}(\lambda) \quad(|\lambda|<1)
$$

for $u_{*} \in H^{2}\left(\mathfrak{D}_{T^{*}}\right)$.
We begin, as before, with (3.1), extended to

$$
\begin{gather*}
\left(\mu, \mu_{*}\right)=\left(\Theta \Phi_{\mu}, F \mu_{*}\right) \quad\left(\mu \in \mathfrak{M}, \mu_{*} \in \mathfrak{M}_{*}\right), \\
P_{\mathfrak{M} *} \mid \mathfrak{M}=F^{*} \Theta \Phi \tag{4.1}
\end{gather*}
$$

Now, however, since all three operators on the right are affinities, we are able to short-cut the considerations of \S III. 3. Indeed, (4.1) says directly that $P_{\mathfrak{M}_{*}} \mid 9 \mathrm{M}$ is an affinity of \mathfrak{M} onto \mathfrak{M}_{*}. This implies that \mathfrak{M} is not far from $\mathfrak{M P}_{*}$ and \mathfrak{M}_{*} is not far from \mathfrak{M}, in the sense of §I.3. By Lemma 1.2, $\stackrel{(0)}{5}$ is not far from $J 9$ and vice versa. Applying the unitary J, we see that $\stackrel{(0)}{J 5}(=\stackrel{(0)}{5})$ is in the same relationship to \mathfrak{R}. Hence $P \mid \mathfrak{R}$ is an affinity of \mathfrak{R} onto $\stackrel{(0)}{\mathfrak{G}}$ just as in the contraction case.

Let A, V be the operators found in § III. 2. Define $Y: \mathfrak{R} \rightarrow 5$ by

$$
Y \varrho=h \text { if and only if } P A \varrho=\stackrel{(0)}{h} .
$$

Then Y is an affinity from \mathfrak{R} onto \mathfrak{S}; and the equation

$$
P A V=P R A=P U A,
$$

together with the dilation relation (1.13), gives $Y V=T Y$. This is a similarity of T to a unitary operator, as was required.

References

[1] Ch. Davis, Separation of two linear subspaces, Acta Sci. Math., 19 (1958), 172-187.
[2] Ch. Davis, J-unitary dilation of a general operator, Acta Sci. Math., 31 (1970), 75-86.
[3] J. Dixmier, Étude sur les variétés et les opérateurs de Julia, avec quelques applications, Bull. Soc. Math. France, 77 (1949), 11-101.
[4] S. R. Foguel, A counterexample to a problem of Sz.-Nagy; Proc. Amer. Math. Soc., 15 (1964), 788-790.
[5] Ju. P. Ginzburg and I. S. Iohvidov, Studies on the geometry of infinite-dimensional subspaces with bilinear metric (In Russian), Uspehi Mar. Naık, 17 (1962), no. 4 (106), 3-56.
[6] I. C. Gohberg and M. G. Krein, An expression for contraction operators similar to unitary operators, Funkcional. Anal. i Priložen., 1 (1967), 38-60.
[7] P. R. Halmos, On Foguel's answer tọ Nagy's question, Proc. Amer. Math. Soc., 15 (1964), 791-793.
[8] M. G. Krein, Analytic problems and results in the theory of linear operators in Hilbert space (In Russian), Proc. International Congress of Mathematicians, Moscow - 1966, (Moscow, 1968), 189-216.
[9] M. G. Kreĭn, M. A. Krasnosel'skil̆, and D. P. Mil'man, Defect numbers of linear operators in Banach space and some geometric questions (In Russian), Sbornik Trud. Inst. Mat. Akad. Nauk USSR, no. 11, (Kiev, 1948), 97-112.
[10] V. T. PoljackiĬ, On the reduction to triangular form of quasi-unitary operators (In Russian), Doklady Akad. Nauk SSSR, 113 (1957), 756-759.
[11] G. C. Rota, On models for linear operators, Comm. Purl. Appl. Math., 13 (1960), 469-472.
[12] L. A. SAHNOVIČ, Non-unitary operators with absolutely continuous spectrum (In Russian), Izv. Akad. Nauk SSSR (ser. mat.), 33 (1969), 52-64.
[13] Ju. L. Smul'jan, Operators with degenerate characteristic function (In Russian), Doklady Akad. Nauk SSSR, 93 (1953), 985-988.
[14] B. Sz.-NaGy, On uniformly bounded linear transformations in Hilbert space, Acta Sci. Math., 11 (1947), 152-157.
[15] B. Sz.-Nagy and C. Folas,, Analyse harmonique des opérateurs de l'espace de Hilbery (Budapest and Paris, 1967).
(Received May 15, 1970)

[^0]: ${ }^{*}$) Research done largely during the visit of this author to Bucharest, on a Senior Research Fellovrship of the National Research Council of Canada.

