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§1 

In the theory of universal algebras local and residual properties are well known, 
and they are to some extent dual properties. It is easy to give a categorical defini-
tion of these notions, but category theoretically they are not exactly dual. In 
universal algebra it is proved that arty residual property which is preserved under 
homomorphic images is local but the categorically dual statement is not true even 
in such a nice category as that of abelian groups (cf. [1], Exercise 3). 

The purpose of this paper is twofold. On the one hand, we give a categorical 
generalization of this connection between local and residual properties. In this way 
it becomes clear why the dual statement is not true in universal algebra (the 
reason is G R O T H E N D I E C K ' S axiom AB 5). On the other hand, as a possible inter-
pretation of the dual statement, we present concrete categories in which it is true. 
This dual statement, however, yields well known facts of the general topology; we 
estimate it essential that such a categorical aspect is able to join quite different 
branches of mathematics. 

In our investigations we shall consider a bicategory satisfying some rather 
natural additional requirements. In § 2 we shall give a categorical definition of 
local and residual properties with some cardinality-restrictions. Such a subtle de-
finition is suitable with respect to the topological applications. We present also a 
lemma which establishes an equivalent formulation of a special case of G R O T H E N -

DIECK'S axiom AB 5. This lemma will be used in the proof of the Theorem of § 3. 
§ 3 is devoted to proving the categorical generalization of the connection between 
local and residual properties. In § 4 we give concrete categories in which the dual 
theorem is true (the category of O-dimensional compact spaces and that of complete 
metric spaces with closed continuous mappings). By specialization we obtain e.g. 
that Lindelof property is preserved by forming inverse limit of countable inverse 
systems of complete metric spaces. 

The author wishes to express his thanks to j. G E R L I T S for his critical remarks 
and valuable advices. 
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§2 

I I I general our terminology is based on M I T C H E L L ' S book [8]. With respect 
to the interpretations of § 4 it is appropriate to use the notion of bicategory due to 
ISBELL [5] (cf. also SEMADENI [9] and K E N N I S O N [6] ) . 

Let 'if be a category. Let J and Sf be classes of morphisms on <6. Then (J, S?) 
is a bicategory structure on f6 provided that 

(B,) , /and y are subcategories of 
(B 2 ) consists exactly of all equivalences; 
(B3) The morphisms of J are monomorphisms and the morphisms of y are 

epimorphisms; 
(B4) Every morphism (p can be factored as (p — cp2 (pi with (p± £ i f , cp2 £ , 

moreover this factorization is unique to within an equivalence in the sense that 
if <p = v/i and J then there exists an equivalence y for which vy = (p2 and 
yep i =1-1. 

The morphisms of J and if are called injections and surjections, respectively. 
A category equipped with a bicategorical structure is called briefly a bicategory. 

Propos i t ion 1 ([6] Prop. 1.1). Let (<3 be a bicategory. Then 
(1) (ptp € J" implies £ 
(2) (pij/ey implies (pe^; 
(3) Every commutative diagram of the form 

y f e 3 indicated by figure (1) can be filled in at a with 
commutativity preserved. 

1 If a:A i-*A is an injection, then A1 is a subob-
ject of A, if is a surjection, then 5 , is 

( i j called a factorobject of B. 
An object S of a category is called a cosin-

gleton, if the following two conditions are satisfied (cf. SEMADENI [ 9 ] ) : 

(i) For every object A there exists exactly one morphism a: S^A; 
(ii) For every object B there exists at least one morphism — S. 

Throughout § 2 and § 3 we shall assume that the considered category 'if is a 
bicategory, further it satisfies the following axioms: 

(AJ ^ has a cosingleton; 
(A2) For every family {/!,},• of factorobjects of any object A in <i? 

the counion exists; 
>er 

(A3) admits products ]]A;, if 
H i 

(A4) i? admits direct limits hm {^¡} i€ / if 

(I) 
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We shall make use of some statements being easy consequences of (A,) and (A3). 
Suppose that S is a cosingleton, and denote by <r; the only morphism S-^-Ai. 

Let us suppose that the class of all morphisms Ai — S is a set for every A i f t f . Now, 
by the axiom of choice we can select exactly one morphism — S for each 
AiZW. Let us define coij = coioJ: At -*Aj. By [9], 3,5 for any objects Ah Aj, Ak we have 

Propos i t ion 2 ([9], 3.6). The projection 7i;: fJA^Ai, is a sur-
i f 

jection for each if /, and there are injections a^.A^ [J At such, that ni<ji = \A , 
¡it ' 

71 j = 0Jij for i ^-j-

Propos i t ion 3. Consider A = fJAt and B = [J Bh with the pro-
iil iil 

jections ni and i f / , respectively. If a;:/i,—if I is a family of injections, then 
there exists a unique injection a:A->-B such that ov7. = aini holds for each if I. 

The proof will be analogous to that of [7], § 14. 3 in the case when the cosingleton 
is a zero object. 

By the definition of the product there exists a unique morphism (the so-called 
canonical morphism) a such that diagram (2) is commutative for all if I. We 
have to show that a is an injection. Consider a factorization a = vp with ¡.ifi?, 
vf^. By Proposition 1 (3) for each if I there exists such a morphism c; that 
diagram (3) is commutative. Since A = JJA;, the canonical morphism y. C-*A 

iil 

c o -

exists. Obviously yp has to be \A. Hence Proposition 1 (1) implies pf ^anà thus a 
is indeed an injection. 

In § 2 and § 3 we shall assume that the bicategory (<2 satisfies condition 

(C) The direct limit hrn {/l;};r, of every direct family of subobjects {/l,}lE,, 
|/| = X of an object is the union \J A ¡. 

m 
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Condition (C) without any restriction to the cardinality of I, is fulfilled by every 
category of any primitive class (i.e. variety) of universal algebras (as it turns out e.g. 
from [3], §21) and for a complete abelian category (C) is- equivalent to G R O T H E N -

DIECK'S axiom AB 5 (cf. [4]. Proposition 1,8 or [8]. Ill Proposition 1,2). G R O T H E N -

DIECK [4] has also pointed out that a category satisfying axiom AB 5 as well as its 
dual one, has to consist of zero objects. 

We need also an other form of condition (C). Let and {£;};<:/, | / | s K 
be direct systems of subobjects of the objects, ^ and B with U AA = A and (J Bt = B 

and with the commutative diagrams (4 and 5) for all 

Lemma. Assuming that (J Ah |/| K, exists in V> for every direct system of 
¡zi 

subobjects {/4j of any object A, condition (C) is equivalent to condition 

(D) / / Bi-*Ah i£l, is a system of surjections such that diagram 
(6) is commutative for all i=j(L i, then there exists a unique surjection cp: B-~A 
(B = [} B-t, A — U AJ such that diagram (7) is also commutative for all i£l. 

V 

(6) (7) 
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Proof. (C)=>(D). According to (C) we have diagram (8). Since a;<p; maps fi; 
into A such that 

VjCPjP) = u//j<p; = a.tp, / = s / € / , 

therefore by the definition of direct limit there exists a unique morphism, the canonical 
one, <p:B~A such that afipi = (pPi holds for all Moreover, by (B4) <p can be 

% 

% 

HI = Ue¿ = lim {s¿3,-e£ 
iel "" 

= IM¿ = linn {¿¿^ 
izl iel 

(8) 

M RI 

VE J 

factored as <p = v[i with v t / and so according to Proposition 1 (3) for each 
there exists a morphism tr,- with commutativity preserved in diagram (9). 

Hence by the definition of the direct limit there exists the canonical morphism y 
such that diagram (10) is commutative for all i£ I. 

(10) 

Since A = lim therefore v y ^ l ^ follows. Thus by Proposition I (2) 
we have This implies (p = v(iÇ.y. 
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(D)=>(C). Put Ai = Bh if I. Now by condition (D) there exists a morphism 
ip:hm {Ai} — U Ai =A and cp: lim {Aj} = B — IJ Af — B such that diagrams (11) 

m 
and (12) are commutative for all if I. By the uniqueness of q> and ij/ it follows 
<p\l/ = lA. Hence i/i:lim {Ai}^,-* LMi is an equivalence, and so condition (C) is 

¡a 
satisfied. 

^ A=[}At 
ief 

(12) 

Consider an abstract property P of objects of i.e. if A and B are equivalent 
objects, then either both A and B or none of them has property P. Since property 
P divides the objects of ^ into two classes, so the fact A has property P will be denoted 
b y ^ ^ P . 

Let X be a cardinality. By an $-local system of subobjects of an object A one 
understands a direct system such that \jAt = A and |/| = X- The object 

A is said to be locally P, if there is an K-local system of subobjects of A all At 

belonging to P. If every object which is X-locally P actually belongs to P itself, 
then P is said to be an $-localproperty. In view of condition (C), an K-local property 
P means such an abstract property which is closed under forming direct limits of 
direct systems having cardinality ^ K. 

We define an X-residual system of an object A to be a system consisting 
of factorobjects of A such that (J* A~A and |/| = By an X-residual P object we 

iii 
mean an object which has an ^-residual system consisting of factorobjects belonging 
to P. The property P is said to be an ^-residual property, if every object which is 
K-residually P actually belongs to P itself. 

Let us mention that K-local and X-residual properties are not dual notions. 
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However, any system |/ | = X, of subobjects of an object A with (J A; = A 
• a 

generates a direct system consisting of finite unions U Ak, but A^ P , do n o t 
finite 

imply U 4 t € P . 
finite 

§ 3 

In this section we are going to prove the following 

Theorem. Let the bicategory satisfy axioms (A,)—(A4) and condition (C). 
IfP is an X-residual property preserved by surjections then P is an 8-local property. 

Let us remark that this theorem is valid for any category of i2-algebras. The 
corresponding statement without any restrictions to the cardinality, is just Proposi-
tion 7,4 of COHN [1] (there the existence of cosingleton is not supposed). 

Proof. The outline of the proof is the following. We shall consider an object 
A which is ^-locally P with an K-local system A^P, From {y4,-}ier 

we construct an object B which is N-residually P, and so by the assumption B wilt 
have property P. Further we shall show that there exists a surjection B—A. Hence, 
also the object A will have property P. 

Consider an object A having an x-local system {AJ}I(L with injections A^.A^A,. 
a y . A ^ A j such that a^cc^a,., i ^ j i l , X, and A ^ P for all P. Let 
be an equivalence for all i£l, and form the product C = JJ D; with the projections. 

HI 
7i;:C — B y Proposition 2, every 7r; is a surjection. Further, for all /£ / , define Cr 

and Cf by C, = JJ Dj and C* = JJ D , respectively. (For the empty set 
¡sj'e/ i>j£ i 

0 JJ Dj means cosingleton.) According to Proposition 3 both C; and Cf ar& 
j ee 

subobjects of C. The object At can be embedded 
"diagonally" in C, for any as follows. The 
morphism d'j^QjOty.AI—DJ embeds A-T into DJ for 
every i^jel. The canonical morphism <5£:— C; 

satisfies 7Z'JDI^&J where N'J is the projection DJ. 
Hence Proposition 1 (1) implies that <5; is an injection 
for each i£l. According to Proposition 3 Bi — C f X A t 

is a subobject of C = C f X C ; X JJ DK by an in-
dite/ 

jection fi such that diagram (13) is commutative. 
Here (pi and denote the projections of B-t and C 
into Ai and C,, respectively. Moreover by Proposi-
tion 2 they are surjections. 

For any fixed consider the injections (i^k<j) and 
(¿.-.Ai—Aj. Now by Proposition 1 (1) the canonical morphism of into Bj — 

(13) 
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= C*X 77 D
k X A j is an injection for /<76/ . So applying Proposition 3 to and 

iSk<j 

Bj we obtain that there exists a unique injection/^: 5, -*Bj such that (14) and (15) 
.are commutative diagrams for i s k < j £ I . Hence letting P\ = \B. for any 
i — k—j we get ( p f i ) = a)(pt = а)аi

k(pi = а)<ркр'к = (pjPjPi, and by the uniqueness 
of P'j we have Р^ = Р)Р'к- Thus { f o r m s a direct system. With respect to 
•condition (C) we have В — lim {i?,•},•£/ — U 3nd so В is a subobject of С 

ire/ 
by injection /?. Now maps В into D;. Since Z), is a subobject of Bi+l and so 
-of В by an injection <5;, therefore by Proposition 2 for the injection — if we have 

= ai and ni[idi = cr<5£ = 1D.. 

Thus by Proposition 1 (2) the morphism 7r,/?:i? —Z>, is a surjection for all /£/ . 

4 
V 

e-
7TkSj 

(14) . 

IH 

(15) 

Now we are able to prove Bf P. To this aim it is sufficient to show \J* D ~ B 
i€f 

Tbecause P is an ^-residual property and •Kif}:B-—Di?zAi(iP is surjection for all 
n f l . Put B0 = (J* A - Now there exist surjections p0:B-»B0 and Q^Bs—Di such 
-¡that gipo = nip is valid for all if I. On the other hand B0 can be embedded in 
C = JJD, by the canonical morphism Q0 such that 7r;£?o = !?; holds for every i£l. 

te.i 
Hence we have n iQopo=n ll} and the uniqueness of P yields Q0P0=P. Since P is an 

injection, so by Proposition 1 (1) also P0 is an injection. Hence p 0 £ 9 T a n d so 
B and B0 are equivalent objects. Thus BfP is proved. 

By (/) we have a'j <p, = cpj p'j for all i ^ j f /. Thus with respect to the Lemma there 
-exists a surjection q>:B^A such that (p/?; = a;<p; is valid for all i f l . Since property 
.P is preserved by surjections, so B£P implies Af P. Hence P is K-local, and the 

t̂heorem is proved. 
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§ 4 

1. Let C€B be the category of Boolean algebras. In <$B all the conditions (Ax)—(A4) 
as well as (C) are satisfied without any restriction on the cardinality. By the well-
known duality between the category of 0-dimensional compact spaces (the 
so-called Boolean spaces) and that of Boolean algebras, the dual statement of the 
Theorem holds in ((>\. (According to the duality we hint to [9].) 

2. As an other possibility to interpret the dual statement of the Theorem, let us 
consider the category "i?M consisting of complete metric spaces (with bounded metric) 
and closed continuous mappings. For the notions well known in general topology' 
we refer to E N G E L K I N G ' S book [2]. becomes a bicategory by choosing J and i f 
to be the class of closed continuous embeddings and that of continuous onto-
mappings. The one point space is a singleton in so the dual condition (A*) of 
(AJ is satisfied. If {^¡}i€f is a system of closed subspaces of a space A, then the 
closure U Ai of the union of the subspaces will be, clearly, the categorical union 

iil 
of the subspaces A / £ / . Hence also (A2) is fulfilled in M . 

To show the validity of (A3), let us remark that in the category of topological 
spaces the coproduct is precisely the disjoint union of the spaces. We shall show 
that the disjoint union of complete metric spaces is again a complete metric space. 
By [2] Theorem 4. 2. 1 this disjoint union is a metric space. Consider a Cauchy 
sequence {x„} in the disjoint union A = © AK. Now to any e > 0 there exists a 

natural number N such that Q(X„, xm)<e holds for every n, m^N. This is possible 
only if x„ and xm belongs to the same space At for a fixed /£ / . Since At is complete, 
so the sequence {x„} is convergent in A-t as well as in A. 

(AD^V admits inverse limit of countable inverse systems. Since the Cartesian 
product of a countable number of complete metric 
spaces is again such a space ([2] Theorem 4. 3. 7), so 
taking into account that the inverse limit is a closed 
subspace of the Cartesian product, the validity of (A*) 
is obvious. 

(C*) Let us consider an inverse system {Ah 

i= 1 ,2 , . . . } of quotient spaces A{ £ <SM of a space / 
First of all we shall show that the canonical 

map y lim {A^ is an onto-mapping. By (B4) y 
can be factored as y = \j/<p with i/'g./and such 
that diagram (16) is commutative for / = 1 , 2 , . . . . 
Consider an arbitrary element a£!iin Obviously 
a has the form (..., aJf ..., at, ...) with n^a—aj. The 
inverse image Fi — (Tti\f/)~i(ai) is a closed subset of C, 

im 
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moreover F1aF2Z)... holds. If <5(F;) denotes the diameter of F{, then by [2] Theo-
rem 4. 2. 2 we have 

<5 (F,) S <5 (tt," •(«,)) S y -

CO 

Thus lim <5(F;)=0, and so the completeness of C implies that the intersection f) Ft 
¡ - c o U i 

is not empty. For b£ (J Fj we have, clearly, iJ/(b) = a, and so i¡/ is asurjection too. 
• = 1 

Hence y is indeed an onto-mapping. 
If <5:-4—D is a surjection such that diagram (17) is commutative for 

/ = 1 , 2 , . . . , then diagram (18) is also commutative. 

(¡7) 

cr 
D 

¿i 

(18) 

Hence by the definition of the inverse limit, for the canonical map lim {/!,•} 

we get 5'5 = y. Now y £ ̂ implies S'^y, and so lim {At} = U * At is proved. 
i= 1 

Thus <gM fulfils condition (C*). 
A reformulation of the dual statement of the Theorem is 

Theorem.* Let P be a topological property of complete metric spaces such that 
it is inherited for closed subspaces, and it is preserved to the closure of the union of 
countable many subspaces belonging to P. Then property P is preserved by forming 
inverse limit of countable inverse systems of complete metric spaces. 

To motivate Theorem*, let us choose property P as follows: 
a) P means the Lindelof property, 
b) P means that the space A has weight w(A) s 

Let us recall that in (dM the Lindelof property is equivalent to the separability, 
and w ( i ) s i n means exactly that A contains a dense subset of cardinality Sin 
(cf. [2], Chapter 4). 
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