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§1

In the theory of universal algebras local and residual properties are well known,
and they are to some extent dual properties. It is easy to give a categorical defini-
tion of these notions, but category theoretically they - are not exactly dual. In
universal algebra it is proved that any residual property which is preserved under
homomorphic images is local but the categorically dual statement is not true even
in such a nice category as that of abelian groups (cf. [1], Exercise 3).

The purpose of this paper is twofold. On the one hand, we give a categorical
generalization of this connection between local and residual properties. In this way
it becomes clear why the dual statement is not true in universal algebra (the
reason is GROTHENDIECK’S axiom AB5). On the other hand, as a possible inter-
pretation of the dual statement, we present concrete categories in which it is true.
This dual statement, however, yields well known facts of the general topology; we
estimate it essential that such a categorical aspect is able lo join quite different
branches of mathematics. :

In our investigations we shall consider a bicategory satisfying some rather
natural additional i'equirements. In §2 we shall give a categorical definition of
local and residual properties with some cardinality-restrictions. Such a subtle de-
finition is suitable with respect to the topological applications. We present also a
lemma which establishes an equivalent formulation of a special case of GROTHEN-
DIECK’s axiom AB 5. This lemma will be used in the proof of the Theorem of § 3.
§ 3 is devoted to proving the categorical generalization of the connection between
local and residual properties. In § 4 we give concrete categories in which the dual
- theorem is true (the category of 0-dimensional compact spaces and that of complete
metric spaces with closed continuous mappings). By specialization we obtain e.g.
that Lindeldf property is preserved by forming inverse limit of countable inverse
systems of complete metric spaces.

The author wishes to express hlS thanks to J. GerLiTs for his critical remarks
and valuable advices.
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§2

In" general our terminology is based on MITCHELL’S book [8]. With respect
to the interpretations of § 4 it is appropriate to use the notion of bicategory due to
IsBeLL [5] (cf. also SEMADENI [9] and KENNisON [6]).

Let & be a category. Let # and & be classes of morphisms on €. Then (£, &)
is a bicategory structure on € provided that

(B,) S and & are subcategories of €,

(B,) FNF consists exactly of all equivalences;

(B;) The morphisms of .# are monomorphisms and the morphisms of & are
epimorphisms;

(B,) Every morphism ¢ can be factored as ¢ =¢,¢, with ¢, €%, ¢,€ 5,
moreover this factorization is unique to within an equivalence in the sense that
if p=vy and p€, v€ £ then thereexists an equivalence y for which vy =¢, and
VP =i '

The morphisms of .# and & are called injections and surjections, respectively.
A category equipped with a bicategorical structure is called briefly a bicategory.

Proposition 1 ([6] Prop. 1.1). Let € be a bicategory. Then -
() @Y€ & implies y € S,

_—
P (2) QY €S implies p€ & ; 4
. // (3) Every commutative diagram of the form
Pe P 5/ . ve J indicated by figure (1) can be filled in at ¢ with
commutativity preserved.
/
e . Ifa:A, —~Aisaninjection, then A, is a subob-
ST ject of A, if p:B-—B, is a surjection, then B, is
(1) called a factorobject of B.

An object S of a category ¥ is called a cosin-
gleton, if the following two conditions are satisfied (cf. SEMADENI [9]):

(i) For every object A4 there exists exactly one morphism «: S —4;
(ii) For every object B there exists at least one morphism f: B8 —S.

Throughout § 2 and § 3 we shall assume that the considered category ¥ is a
bicategory, further it satisfies the following axioms:

(A,) % has a cosingleton;
(A;) For every family {4;}ic,, [[|=¥, of factorobjects of any object Ain%

the counion {J* 4, exists;
icl

(A;) € admits products ﬂA,, if |I|<k\
(A,) € admits direct llmlts lim {A;}ie; if H]=R



Local and residual properties in bicategories ) 197

We shall make use of some statements being easy consequences of (A ) and (Aj3).
Suppose that S is a cosingleton, and denote by o; the only morphism S —4,.
Let us suppose that the class of all morphisms A;—~ S is a set for every A,€%. Now,
by the axiom of choice we can select exactly one morphism w;:4;—~S for each
A;€%. Let us define w,;; =w;0;: A;—~ A;. By [9], 3,5 for any objects 4;, A;, A, we have

U)ijw_’-k:wik.
‘Proposition 2 ([9], 3.6). The projection =;: ]7A-—>Ai,_|1|§&, is a sur-

jection for each i€l, and there are IIU@CI‘IOI’IS 0;:A4;—~ ﬂ A; such that mo;=1,,
ic ¢

mio= ,Jfor17fj

Proposition 3. Consider A = [[A; and B = []B,, [I|=R, with the pro-
icl

Jections w; and g;, €1, respectively. If a;: A;—~ B;, zEI lS a family of injections, then
there exists a unique injection o: A — B such that g;,0.=a;m; holds for each i€ 1.

The proof will be analogous to that of [7}, § 14. 3 in the case when the cosingleton
is a zero object.

By the definition of the product there exists a uniquev morphism (the so-called
canonical morphism) « such that diagram (2) is commutative for all i€l We
have to show that « is an injection. Consider a factorization a«=vu with ues,
ve#£. By Proposition | (3) for each /€] there exists such a morphism ¢; that
diagram (3) is commutative. Since 4 = [[ 4;, the canonical morphism y: C—4

icl
7[}; : jri A
A ————— 4 A ——— 4
A
6 /
. ./
o« o< A } o4y
/
Ve
Ve
B — > B € — 5
5 27
- (2) ' (3)

exists. Obviously yu has to be 1. Hence Proposntlon 1(D) lmplleq u€f and thus «
is indeed an injection.
In §2 and § 3 we shall assume that the bicategory ¥ satisfies condition

(CQ) The direct limit lim {A;};c, of every direct family of subobjects {A;}ic;»

[[|=% of an olyecf is the union {J A;.
i€l
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Condition (C) without any restriction to the cardinality of , is fulfilled by every
category of any primitive class (i.e. variety) of universal algebras (as it turns out e.g.
from [3], § 21) and for a complete abelian category (C) is equivalent to GROTHEN-
DIECK’s axiom AB 5 (cf. [4]. Proposition 1,8 or [8]. III Proposition 1,2). GROTHEN-
DIECK [4] has also pointed out that a category satisfying axiom AB 5 as well as its
dual one, has to consist of zero objects. 4

- We need also an other form of condition (C). Let {4 };c; and {Bi}ic;, [I|=
be dlrect systems of subobjects of the objects;4 and B with {J A;=A and | B;= B

il icl
and with the commutative dlagrams (4 and 5) foralli=j=kel

o . B} B4
Ai - Bl - B/ Can Bk.
Y
&y B; l By
8 .
(4) (5)

Lemma. Assuming that U A;, [I|=8, exists in € Jor every direct system of
subobjects {A;} of any object A condition (C) is equivalent to condmon

D) If ¢;: B;~A;, icl, |[|=8 is a system of surjections such that diagram
(6) is commutative for all i=jel, then there exists a unique surjection ¢: B—~A
(B = UB,, A = U A) such that diagram (7) is also commutative for all i€l

i€ iel

Bl A

1 e
-  ——
B, ————> B}. 4 B; ) B
7 I ¥ fi b4
A — Az 5 A= — A
# 4

(6) - ' (7)
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Proof. (C)=(D). According to (C) we have diagram (8). Since a;¢; maps B;
into A such that ‘ o
By = apbe; = 0, is=jel

therefore by the definition of direct limit there exists a unique morphism, the canonical
one, ¢:B—A such that «,¢;=¢p; holds for all i€ I. Moreover, by (B,) ¢ can be

. /51' , B: (o
By —————>B=UBi=lim {B};¢; : #
S
. & 7/
¥ Yef 4 vey
i - /
/
/
— R A — - A
ST AT A}ies Y
' (8) : (9)

factoredlas @=vu with u€&, ve ¢ and so according to Proposition 1 (3) for each

~ I€I there exists a morphism o; with commutativity preserved in diagram (9).
Hence by the definition of the direct limit there exists the canonical morphism y .
such that diagram (10) is commutative for all i€ L.

By

5, ———— B

y v

(10)

Since 4 = lim {4,};¢,, therefore vy=1, follows. Thus by Proposition I (2)
we have v€.%. This implies ¢ = vu €.



200 - R. Wiegandt

(D)=(C). Put 4;=B,, i¢l. Now by condition (D) there exists a morphism

Y:lim {4,}=A4~ UA =A and ¢:lim {4;}= B—»UA = B such that diagrams (1/)
i€l
and (12) are commutative for all /€. By the uniqueness of ¢ and ¥ it follows

oY =1,. Hence y: lim {4,}ic, ~ U 4; is an equivalence, and so condition (C) is
icl

satisfied.

A=lim (4],

i€l
'
Aj —————> B=UA4;
€l
?
A B
(11) - . (12)

Consider an abstract property P of objects of €, i.e. if 4 and B are eqﬁivalent
objects, then either both 4 and B or none of them has property P. Since property
P divides the objects of € into two classes, so the fact 4 has property P will be denoted
by A€P.
Let & be a cardinality. By an 8-local system' of subobjects of an object 4 one
understands a direct systemi {A4;};c, such that UIA,-=A and |I|=X. The object
ic

A is said to be R-locally P, if there is an R-local system of subobjects of A4 all 4,
belonging to P. If every object which is &-locally P actually belongs to P itself,
then P is said to be an 8-local property. In view of condition (C), an ¥-local property
P means such an abstract property which is closed under forming direct limits of
direct systems having cardinality = §.

We define an 8-residual system of an object 4 to be a system {A Yie; consisting
of factorobjects of A4 such that U*A =4 and |I|=R. By an R-residual P object we

mean an object which has an & res1dua1 system consisting of factorobjects belonging
to P. The property P is said to be an N-residual property, if every object which is
N-residually P actually belongs to P itself.

Let us mention that ®-local and &-residual properties are not dual notions.
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However, any system {4;};c;, [[|= R, of subobjects of ‘an object 4 with U 4,=A
: iel
generates a direct system consisting of finite unions {J A4,, but 4,€P, icl, do not.
finite .
imply U A €P.
finite
§3

In this section we are going to prove the following

Theorem. Let the bicategory € satisfy axioms (A;)—(A,) and condition (C).
If P is an N-residual property preserved by surjections then P is an R-local property.

Let us remark that this theorem is valid for any category of Q-algebras. The:
corresponding statement without any restrictions to the cardinality, is just Proposi-
tion 7,4 of Coun [1] (there the existence of cosingleton is not supposed).

Proof. The outline of the proof is the following. We shall consider an object
A which is §-locally P with an 8-local system {A4,};c;, A;€P, [[|=8. From {4 }ic,
we construct an object B which is §-residually P, and so by the assumption B will:
have property P. Further we shall show that there exists a surjection B —A. Hence:
also the object 4 will have property P.

Consider an object 4 having an R-local system {4;};¢, with injections o;: 4; — A4,
o' A;—~A; such that ajof =a;, i=jc/, [I|= R, and A,€P for all i€P. Let ;:4 ~D;
be an equivalence for all i¢ I, and form the product C = i[Z D; with the projections.
n;:C — D;. By Proposition 2, every xi; is a surjection. Furtlier, for all i, define C;
and C¥ by C;, = -Hle and Cf = ][ D;, respectively. (For the empty set
p J] D; means C(_)Jsiéngleton.) Accordinjg“to Proposition 3 both C; and C} are:
sujbeozbjects of C. The object A; can be embedded-
“diagonally” in C; for any icI as follows. The ‘f:
morphism &% =¢;a}:4;~D; embeds A4; into D; for B —L > 4;
every i=jcl. The canonical morphism 6;:4;~C;
satisfies 7,0;=4% where 7 is the projection C;~D;.
Hence Proposition 1 (1) implies that §; is an injection 4 Jdi
for each i< 1. According to Proposition 3 B, = C¥ X 4;

is a subobject of C = CFfXC; X [[ D, by an in-
. inker . CC — o
jection 7; such that diagram (/3) is commutative. Y. o

Here ¢; and y; denote the projections of B; and C
into 4; and C,;, respectively. Moreover by Proposi-
tion 2 they are surjections. /

For any fixed i<j¢/I, consider the injections &yai:4,—D, (i=k<j) and
o:’;.:Ai—»Aj. Now by Proposition 1 (1) the canonical morphism of 4; into B; =

(13)
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= C{X [J] DyXAjisaninjection for i <jé€ [l Soapplying Proposition 3 to B, and

isk<j
B; we obtainjthat there exists a unique injection f%: B, ~ B; such that (/4)and (15)
are commutative diagrams for i=k<jel Hence lettmg Bi= lp, for any
isk=jwe get @f = o, =« kg = dhofi = @;f%pi, and by the uniqueness
of B} we have Bi=p5p;. Thus {B;};c, forms a direct system. With respect to
condition (C) we have B = lim {B;}ic; =-'Ul B;, and so B is a subobject of C
by injection f. Now =, maps B into D,. §ince D; is a subobject of B;,, and so
-of B by an injection J;, therefore by Proposition 2 for the injection d,: D, ~ B we have

Bé;=0; and mfs; = 0d; = lDi :

“Thus by Proposition 1 (2) the morphism n;8:B—D; is a surjection for all ié[.

50‘
B; ——t > A, L'
i A B; A
i ol i . i
5 §k°‘k B o<
8, ——— D, 8 —————— A;
T 4 -
(14) . (13

Now we are able to prove BEP To this alm it is suﬁiment to show U* D B
iel

Tbecause P is an N-residual property and =;8:B—~D;~A,;cP is surjection for all

i¢l. Put B, = J*D;. Now there ex1st surjectlons Bo:B—By and g;: By —~D; such
IEI

ithat ;8o =n;B is valid for all i€/. On the other hand B, can be embedded in
C = ]]D by the canonical morphism g, such that m;0, = 0; holds for every i€l

Hence we have ;04 8, =7;8 and the uniqueness of f yields g, f,=8. Since § is an
:injection, so by Proposition 1 (1) also f, is an injection. Hence /3069 N.#, and so
Band B, are equlvalent objects. Thus B€P is proved.

By (I) we have o, @, = ;8 for all i=j€c I. Thus with respect to the Lemma there
-exists a surjection ¢:B —~A such that @f; =a;¢; is valid for all i€ L. Since property
P is preserved by surjections, so B€P implies 4 €P. Hence P is f&-local, and the
theorem is proved. '
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§4

1. Let @, be the category of Boolean algebras. In ¥y all the conditions (Al)—-(A4)
as well as (C) are satisfied without any restriction on the cardinality. By the well-
known duality between the category %} of O-dimensional compact spaces (the
so-called Boolean spaces) and that of Boolean algebras, the dual statement of the
Theorem holds in €. (According to the duality we hint to [9].)

2. As an other possibility to interpret the dual statement of the Theorem, let us
consider the category €, consisting of complete metric spaces (with bounded metric)
and closed continuous mappings. For the notions well known in general topology*
we refer to ENGELKING’s book [2). @, becomes a bicategory by choosing .# and &
to be the class of closed continuous embeddings and that of continuous onto-
mappings. The one point space is a singleton in %, so the dual condition (AY) of
(A)) is satisfied. If -{4,};¢, is a system of closed subspaces of a space A, then the
closure iUI—Z:. of the union of the subspaces will be, clearly, the categorical union
of the SLelbspaces A;, i€l Hence also (A}) is fulfilled in @,.

To show the validity of (A¥), let us remark that in the category of topological
spaces the coproduct is precisely the disjoint union of the spaces. We shall show
- that the disjoint union of complete metric spaces is again a complete metric space.
By {2] Theorem 4.2.1 this disjoint union is a metric space. Consider a Cauchy
sequence {x,} in the disjoint union A = @[A,-J Now to any &=0 there exists a
natural number N such that g(x,, x,) <s llxéolds for every n, m= N. This is possible
only if x, and x,, belongs to the same space 4; for a fixed 7¢I, Since A4; is complete,
so the sequence {x,} is convergent in A4; as weli as in 4.

(A})%, admits inverse limit of countable inverse systems. Since the Carte51an
product of a countable number of complete metric
spaces is again such a space ([2] Theorem 4. 3. 7), so
taking into account that the inverse limit is a closed
subspace of the Cart651an product the vahdlty of (A*) ' "
is obvious. '

(C*) Let us consider an inverse system {4,
i=1,2,...} of quotient spaces A4;€%,, of a space
AEB,. First of all we shall show that the canonical
map y:A~lim {4;} is an onto-mapping. By (B,) 7y
can be factored as y =y with Y €4 and ¢ € ¥such
that diagram -(16) is commutative for i=1,2,....
Consider an arbitrary element aclim {4,}. Obviously
a has the form (..., a;, ..., a;, ...) with n’a;,=a;. The
inverse image F;=(m;y)”(a;) is a closed subset of C, (16)

c
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moreover F, D F,D ... holds. If 6(F;) denotes the diameter of F;, then by [2] Theo-
rem 4.2.2 we have '

5(F) = 5(n7" (@) = -

Thﬁs lim §(F) =0, and so the completeness of C implies that the interse’ctioﬁ a F;
j—oco i=1

is not empty. For b¢ G F; we have, clearly, y(b) =a, and so ¥ is a surjection too.
i=1

Hence y is indeed an onto-mapping.
If 8:4—~D is a surjection such that diagram (J7) is commutative for
i=1,2, ..., then diagram (/8) is also commutative.

(17) (18)

Hence by the definition of the inverse limit, for the canonical map 6":D —Ilim {4;}
we get 86=7y. Now y€.& implies §'¢¥, and so lim {4;} = G*A,- is proved.
i=1

Thus €,, fulfils condition (C*).
A reformulation of the dual statement of the Theorem is

Theorem.* Let P be atopological property of complete metric spaces such that
it is inherited for closed subspaces, and it is preserved to the closure of the union of
countable many subspaces belonging to P. Then property P is preserved by Sforming
inverse limit of countable inverse systems of complete metric spaces.

To motivate Theorem*, let us choose property P as follows:
a) P means the Lindeldf property;
"b) P means that the space A has weight w(A)=m(= R,).

Let us recall that in @, the Lindelof property is equivalent to the separability,
and w(4)=wm means exactly that 4 contains a dense subset of cardinality =m
(cf. [2], Chapter 4).
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