Some absolute topological properties under monotone unions

By TINUOYE M. ADENIRAN in Zaria (Nigeria)*)

1. Definition. A property P is said to be absolute under monotone unions (aumu) in a class \mathscr{C} of topological spaces if, for any given Y and X_i (i=1, 2, ...) in \mathscr{C} , with $X_i \subset Y$, $X_i \subset X_{i+1}$, the fact that each X_i has property P implies that $\bigcup_{i=1}^{\infty} X_i$ also has property P.

Connectedness and arcwise (path) connectedness are absolute under monotone unions in the class \mathscr{C}_a of all topological spaces. But local connectedness and disconnectedness are not so; as an example illustrating the former, consider the Warsaw circle W, consisting of the curve $\sin \frac{\pi}{x}$ ($0 < x \le 1$), the interval (-1, +1) of the y axis and a simple curve joining the points (0, -1) and (1, 0). Take as X_n the set

$$W - \left\{ (x, y) : y = \sin \frac{\pi}{x}, \quad 0 < x \leq \frac{\pi}{n} \right\};$$

then each X_i is locally connected but $\bigcup_{i=1}^{\infty} X_i = W$ is not so. For an example illustrating the latter, let P be the set of irrationals in E^1 and let $Q = \{r_1, r_2, ...\}$ be an enumeration of $E^1 - P$. Let $P_j = P \cup \{r_1, r_2, ..., r_j\}$. Each P_i is disconnected, but $\bigcup_{i=1}^{\infty} P_i = E^1$ is not. This last example also shows that the property of being 0-dimensional is not aumu in the class of all topological spaces.

By restricting \mathscr{C}_a to the class \mathscr{C}_0 of countable metric spaces, disconnectedness is a unu in \mathscr{C}_0 . This is a simple consequence of the well-known fact, that any non-void connected metric space has at least a continuum number of points.

A further example for a property which is aumu is the property of being F_{σ} in the class \mathscr{C}_a . But the property of being G_{δ} is not aumu in \mathscr{C}_a . This is well known, nevertheless we shall give a simple counter-example:

Consider the real line E^1 . A finite set of rationals is trivially G_{δ} , but the set Q of rationals is not G_{δ} in E^1 . This follows easily from the Baire category theorem and from the fact that Q is a set of first category in itself.

1 A

^{*)} The paper was substantially revised, with the author's subsequent consent, by L. GEHéR. (The Editor.)

2. The reader can easily see that a monotone union of T_0 -spaces is a T_0 -space. In this section we shall show that the property of being T_1 is also aumu in any class \mathscr{C} while any separation axiom beyond this is not. We state the first assertion as

Theorem 1. The property of being a T_1 -space is aumu in any class \mathscr{C} .

Proof. Let Y be a topological space with the sequence $\{X_i: X_i \subset X_{i+1}\}$ of subsets of Y such that each X_i is T_1 . Let $X = \bigcup_{i=1}^{\infty} X_i$ and let x, y be two distinct points of X. Then there exists, for some $j \in Z^+$, $X_j \subset X$ such that $x, y \in X_j$. Since X_j is T_1 there exist open sets U', V' in X_j such that $x \in U', x \notin V', y \notin V', y \notin U'$. Furthermore there exist open sets U, V in X such that $U \cap X_j = U'$ and $V \cap X_j = V'$. Since $x \in U', x \in U$, similarly $y \in V$. $x \in X_j$ and $x \notin V'$ imply that $x \notin V$, similarly $y \notin U$. We have thus found sets U, V open in X with $x \in U, y \in V, x \notin V$ and $y \notin U$. By definition, this entails that X is T_1 and the theorem is proved.

Corollary. Let $\{X_i: X_i \subset X_{i+1}\}$ be a sequence of spaces such that each X_i is T_2 (regular, Tychonoff, normal). Then $\bigcup_{i=1}^{\infty} X_i$ is at least T_1 .

Theorem 2. The property of being T_2 is not aumu in \mathcal{C}_a .

Proof. Let I be the open unit interval (0, 1), and let

(1)
$$X_k = (0 \times I) \cup (1 \times I) \cup \left(\frac{1}{2} \times I\right) \cup \cdots \cup \left(\frac{1}{k} \times I\right)$$
 for $k = 1, 2, \dots$.

Each X_k is a finite union of open intervals in E^2 and since each I is T_2 , each X_k is also T_2 . So let $X = \bigcup_{i=1}^{\infty} X_i$. Topologize X as follows: On $X - (0 \times I)$ use the usual topology on E^1 . For a neighbourhood of a point x in $0 \times I$, take an open interval in I of $0 \times I$ containing x and all the $\left(\frac{1}{j} \times I\right)$ with $\frac{1}{j} < \varepsilon$, where ε is an arbitrary positive real. Now let P_1 and P_2 be two distinct points of $0 \times I$. It is easy to see that any open subset of X containing P_1 meets any other containing P_2 ; we cannot therefore have two disjoint open sets containing P_1 and P_2 respectively; hence $X = \bigcup_{i=1}^{\infty} X_i$ is not T_2 . — The same example shows:

Theorem 3. Any separation axiom implying T_2 is not aumu in \mathscr{C}_a .

Each X_k in (1) is metrizable, but X is not normal, and therefore not metrizable. So we have:

Theorem 4. Metrizability is not aumu in \mathcal{C}_a .

References

[1] J. DUGUNDJI, Topology (1966).

[2] W. HUREWICZ and H. WALLMAN, Dimension Theory (Princeton, 1941).

(Received June 25, 1970)