
D'Alembert's functional equation in Banach algebras 

By JOHN A. BAKER in Waterloo (Ontario, Canada) 

1. Suppose B is a Banach algebra and / : R-+ B ( R denotes the field of real 
numbers) such that 

(1) f{s + t ) + f { s - t ) = 2f{s)f{t) 

for all s, t £ R. S . K U R E P A [6] has shown that if B has identity e, / ( 0 ) = e, and / is 
measurable then there exists a unique b £ B such that 

s2b s4b2 
f ( s ) = e + —+ — +... 

for all s£R. Note that if b = a2 for some a£B then f ( s ) = ^{exp(sa)-f-exp( — sa)} = 
= cosh(sa) for all sZR. In this paper we consider the problem of finding the solu-
tions of (1) on (0, » ) and without the assumption that B has an identity. The main 
result is that if / : (0, °°)—B satisfies (1) for j > / > 0 and if (lim / ( / ) exists then 
there exists j,b,c£B such that j2 =j, jb = bj = b, cj — c, jc = 0 and f{s) = 

s2b sAb2 \ f s3b s5b2 ) . 
= j'H 1 1— + c J/-I 1 h--- for all 5 > 0 . This result is 

2 ! 4 ! J { 3 ! 5 ! 

analogous to a result concerning the functional equation / ( j + ?) = f ( s ) f ( t ) which 
can be found on page 2 8 3 of the book of H I L L E and PHILLIPS [4] . Also included in 
the present paper are certain general results concerning (1) when the domain is 
an Abelian group and the range is an associative algebra over the rationals. Some 
regularity properties are also included in cases when topologies are present. 

.2. We begin by deriving some general properties of solutions of (1). Let G 
be an additive Abelian group, let B be an associative algebra over the field of rational 
numbers and suppose / : G—B satisfies (1) for all s,t£G. 

Let j=f(0). Then, putting s = t — 0 in (1) we find 

(2) j2=j. 
With t = 0 in (1) we have 
(3) f(s)=f(s)j 
for all J £ G. 
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Now let g and h be the even and odd parts o f / respectively; that is, 2g(s) = 
= f ( s ) + f ( - s ) , 2h(s ) = f ( s ) - f ( - s ) for all s£G. Letting i ^ O in (1) we find 

(4) g=jf-

Thus g — jg+jh and so, since g and jg are even, 

(5) jh = 0. 
From (4) and (2) it follows that 
(6) jg=j2f=jf=g-
Now (3) implies 
(7) gj=g 
and 
(8) hj = h. 
Thus, by (7) and (5), 
(9) g(s)h(t)=(g(s)j)h(t) = g(s){jh(t)) = 0 

and similarly, by (5) and (8), .;••• 

(10) h(s)h(t)=0 

for all s,t£G. Using (4), (1) and (9) we conclude that 

g(s + t) + g(s-t) = j ( f ( s + t ) + f ( s - t j ) = 2 j f ( s ) f ( t ) = 2 g(s)f(t) = 

(11) =2g(s)g(t) + 2g(s)h{t) = 2g(s)g(t) for all s,t£G. 

I f / ( 0 ) = 0 then, by ( 3 ) , / = 0 . If yVO then j is an identity for the subalgebra 
B' = {x£B: jx = xj = x} and, f rom (6) and (7), g(s)£B' for all s£G. Thus g can be 
considered as a mapping of G into B' which is a solution of (11), or (1) and g(0)=j, 
the identity of B'. 

From (9) and (10) we find 

h(s + t)+h(s-t) = f ( s + t ) + f ( s - t ) - g ( s + t ) - g ( s - t ) = 

(12) =2f{s)f{t)-2g{s)g(t) = 2h(s)g(t) for all s,t£G. 

3. In this section we impose topologies on G and B and consider some regularity 
properties of solutions of (1). 

P r o p o s i t i o n 1. Let G be a locally compact Abelian group, let B be a Banach 
algebra and suppose f\G—B satisfies (1) for all s,t£G. If f is strongly measurable 
on a set of positive, finite Haar measure, then the mapping t -*/(2i) is continuous 
at 0. 

P r o o f . Suppose / is strongly measurable on a measurable set A of positive 
finite Haar measure. Then / is the pointwise limit almost everywhere on A of a 
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sequence of countably valued measurable functions (see [4] page 72). As in the 
complex valued case, the theorems of Egorov and Lusin can be proved (see [3] 
pages 158—160) and we conclude that there exists a compact subset K of A of 
positive Haar measure such that the restriction of / to K is continuous. It follows 
that / i s uniformly continuous on K. (See [7] page 256.) 

Since K has positive finite Haar measure there exists a neighborhood V of 
0 6 C such that ' 

Kr\(K + v)n(K-v) 0 

whenever v£V. (See [2] page 296.) 
Let e > 0 and M = ma\ {||/(/)|| :t£K). Since / is uniformly continuous on K 

there exists a symmetric neighborhood U of O f G such that || f{s)~/(Oil < e/4Af 
provided s,t(LK and s~t£U. Now 

/(2v) +f(2u) = 2f(u + v)f(u - v) 
and so 

|| /(2v) - / ( 0 ) | | = 2|| f(u + v)f(u + v) -f(u)f(u)|| S 

^ 2|| f(u + o)|| || f(u - v) - / ( « ) | | + 2|| f(u)\\ || /(« + v) -/(U)||. 

If v6 VH U then there exists u6K such that u + v6K and u — v£K so that v€ VD U 
implies || f(2v) -/(0)11 < £• 

C o r o l l a r y . If in addition to the hypotheses of Proposition 1 it is assumed that 
the mapping / — 2/ is a bicontinuous automorphism of G, then f is continuous at 0. 

P r o p o s i t i o n 2. Let X be a Hausdorjf linear topological space, B a Banach 
algebra and suppose f:X-*B satisfies (1) for all s,t£X. If f is continuous at 0, then f 
is continuous everywhere. 

P r o o f . Replace s by nt in (1) where n is a positive integer to find that 

/((«4-1)/) - 2 / (« / ) / (0 - / ( ( « - 0 0 

for all t£X and « = 1,2, ... . Since / is continuous at 0, / is bounded on an open 
neighborhood U of 0 6 X. Hence, by induct ion , / i s bounded on nU for n = 1,2,3, ... . 

But X =[} nU and thus / is bounded in a neighborhood of each point of A'since 
n=i 

each nU is open. We know that 

lim = Um/(s)/(0 =/(,)/(0) =f(s) 

for all s£X by (1) and (3). S u p p o s e / i s not continuous at some fixed s£X. Then 
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there exists i / > 0 and a net { / „ } c l such that tx-~ 0 and 

11/(^ + 0 - / ( ^ ) 1 1 — d for all a. 
But then, by (1) and (3), 

II f ( s + 2 0 - / ( 5 ) 1 1 = || As + 2Q + / 0 ' ) - 2f(s + O - 2f(s) + 2f(s + Oil = 

- II {2f(s + 0 / ( 0 - 2f(s + 0 / ( 0 ) } - 2 { / ( .v) - / ( * + 0 } l ! s 

s 211 f ( s ) - f ( s + Oil - 211 f ( s + O { / ( O - / (0 ) } | | 

for all a. S i n c e / i s bounded in a neighborhood of s and / is continuous at 0, 
lim || f{s + O { / ( O - / (0 )} | | - 0. Hence a 

lim sup 11/(5 + 2 0 - / ( 5 ) 1 1 S 2d. 
a 

It follows by induction that 

lim sup II/(* + 2 * 0 - / ( * ) l l = 2kd a 

for each k= 1,2, ... which contradicts the fact that / i s bounded in a neighborhood 
of s. Thus, by contradiction, / is continuous at every s£X. 

C o r o l l a r y . If B is a Banach algebra, f : R"-+B satisfies (1) for all s, t£R" and 
i f f is measurable on a set of positive, finite, n-dimensional Lebesgue measure, then f is 
continuous. 

P r o o f . This follows from the corollary to Proposition 1 and Proposition 2. 

4. The theorem of this section, which generalizes a theorem of S . K U R E P A [6], 
is the main result of this paper. In its proof we use several properties of a Riemann-
type integral for vector valued functions for which we omit the elementary proofs. 
If [a, b] is a compact interval, if A" is a Banach space and / : [a, b] — X is continuous, 
then / is uniformly continuous on [a, b]. As in the real valued case one can prove 
the existence of a unique x£X which has the following property: To each e > 0 

n 
there corresponds ¿ > 0 such that ||x— ^ {tk — tk_ f{s,)\\ < e provided a = t ^ 

t = i 
= i and l ^ - ^ . j l < 5 for k = 1, 2, . . . , n. 

b 
We write x = J f(t)dt and call this vector the integral of / over [a,b]. 

a 

L e m m a . Let X be a Banach space and let 0 < a ^ Suppose that (p\ (0,a) — X 
is continuous, (p'(t) exists, and ||<p'(OII ^ M< °° for Then 

(i) lim (p(t) = oc exists; 

(ii) i f . \\m^<p'{t) = P exists, we have P— lirn^ -j-(<p(?) — a). 
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P r o o f , (i) Suppose {/„}r=i = ( 0 , a) and / „ ^ 0 as Then 

,'m 

\\<P(tn)-<P(tm)\\ = || j (p\t)dt\\ = M\tn-tm\ - 0 as n, m -
tn 

Thus a = Jim(p(in) exists since X is complete. If {s„}~=1 ^ ( 0 , a) and sn -+0 as n — <=o 

then of — l im<p(s) exists. Letting u„ = t„ fo r n even and u„=sn for n odd we find 
/1 CO N / 

a = lim (p(t„) = lim q>(u„) = lim <p(s„) = a. 
n n a 

Hence l im<p(0 exists and is equal to a . 
1 - 0 + 

i<p'(t) if 0 < i < a , 
(ii) Let <P(0 = .j. ^ Then i>: [0, a)—X is continuous and 

s e s c 

J<&{t) dt = f $(t)dt + f (p'(t)dt = f<P(t)dt + <p(s)-<p(E) 
0 O n 0 

s 

whenever 0 < e < s Letting s — 0 + we conclude <p(s) — a = J <P(t)dt for 0 -=a 
and so 0 

s 

— ((p(s)-a) = — f$(t)dt - <i>(0) = P as 5 0 + . 
S S 0 

T h e o r e m . Let B be a Banach algebra and let f : (0, B be such that 

f ( s + t ) + f ( s - t ) = 2 f ( s ) f ( t ) 

whenever s > / > 0 . If lirn^ f ( t ) = j exists then j2 =j and there exist elements b, c£B 

such that jb = bj = b, cj = c, jc = 0 and 

_ f . s2b s4b2 1 { . s3b s5b2 ) 

for all s > 0 . Conversely, with such j, b, and c, if f is defined by (13) for all s£R then 
f satisfies (1) for all s, t£R. 

P r o o f . We begin by proving the first assertion. Putt ing s = 2t in (1) we find 

(14) / ( 3 0 + / ( 0 = 2 / ( 2 0 / ( 0 

for all ?=>0. If we let r— 0 + in (14) we conclude that j2 =j. 

Since (lim f(t) e x i s t s , / i s bounded on an interval of the form (0, a) f o r some 
a > 0 . But then (14) i m p l i e s / i s bounded on (0, (3/2)a). By induction one can prove 
that / is bounded on any finite subinterval of (0, 
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We now aim to show that 

( I s ) f(').i=m 

for all / > 0 . To this end let q>(t) = f { t ) - f ( t ) j for / > 0 . Since j2 =j = ,lim / ( / ) 

we have lim (p(t) = 0. Also, whenever 0, (p(s + t) + (p(s — t) = 2 f ( s ) f ( t ) — 
- 2 m m j = 2 № < p ( t ) . i f u>v>o, 

<P(«) + <K») = 2 / 
u + v 

<p 
u — v 

Fix 0 and let M = sup ( | | / (0 I I : 0 < / < a } . Let £ > 0 and choose <5>0 such that 
0 < i < < 5 implies ||</>(011 < e / 4 M . Then if 0 < y < M < a and u — v < 25, 

so that 
II(p(u) + <p(Oil s 2M(e/4M) = e/2 

M + y 
<P(v)~<P 

<p(u) + <p 
u + v + <p(v) + <p 

u + v 

We have shown that <p is uniformly continuous on (0, a) for any 0 and hence <p 
is continuous. Thus, for any 

2<p(s) =flim (p(s+t) + <p(s-t) = \im 2f(s)(p(t) = 0, 

which proves (15). 
The next step in the proof consists of showing that / i s continuous. Let a > 0 

and M = { | | / (0II : 0 < i < a } . If 0 < v < u c a then by (1) and (15) 

f{u)+f{v)-2f 2 /1 " r 1 / 
u - v ) 0 f M + u 1 . 
— R 2 F R ^ Y 

S 2 M 

Thus for every e > 0 there exists 5 > 0 such that 

u + v (16) f(u)+f(v)-2f 

whenever 0 < U , v<a and 0 < |M — D| < 5. 
Now s u p p o s e / i s not continuous at s where 0 -< s < a. Then there exist d > 0 and 

a sequence {/„} converging to 0 such that | | / ( j + i„)—/(Oil S dfor each n = 1, 2, ... . 
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Hence 

\\f(s + 2Q-№\\ = \\As + 2tn)+f(s)-2f(s + tn) + 2f(s + t„)-2f(s)\\ ^ 

^2\\f(s + tn)-f(s)\\-\\f(s + 2tn)+f(sy-2f(s + 0\l 

for each « = 1 , 2 , . . . . But, by (16), 

lim | | /(5 + 2/„) + / ( 5 ) - 2f(s + / J = 0 
co 

so that 
lim sup \\f{s + 2t^—f{s)\\ s 2d. n— co 

As in the proof of Proposition 2, this' contradicts the boundedness o f / in a neigh-
borhood of s. Thus / is continuous at s. Since a was arbitrary, / is continuous on 
(0, 

Now define F(s)= . Then F is continuous on [0, oo), 
[ j for 5 = 0 

(17) F{s + t) + F(s-t) = 2F(s)F(t) 
whenever i S / 5 0 and 
(18) Fj=F. 

Motivated by the consideration in section 2 we let G—jF and H = F—G. 
Then 

(19) G (0) = jF(0) —j2—j and H(0) = F(0)~G(0) = 0, 

G and H are continuous on [0, «>) and, by (18), 
(20) jG = G = Gj, jH = 0 and Hj = H. 
Therefore, by (20), 
(21) G(s)H(t) = (G(s)j)H(t) = G(s)(jH(t)) = 0 
and 
(22) . H(s)H(t)=(H(s)j)H(t) = H(s)(jH(t)) = 0 for all 5 , 0 . 

Let B' = {x£B: xj=jx=x}. Then B' is a closed subalgebra of B and is thus 
a Banach algebra. Furthermore, j is the identity of B'. Also note that, by (20), 
G: [0, and, f rom (21), 

(23) G(s + t) + G(s-t) = 2jF(s)F(t) = 2G(s)G(t) 
provided s ^ t ^ O . 

Let a > 0 . If O - ^ s ^ a ^ s then, by (23), 

e e 

J G(s + t) + G(s-t)dt = 2 G(s) f G{t)dt. 
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e £ 
But £lim+ (l/e) j G(t)dt = G(0)=j so for sufficiently small e > 0 , JG(t)dt has an 

o o 
£ 

inverse in B'. We fix e > 0 and let y - 1 = j G(t)dt to deduce that G(s) = 
o 

j r s + c ' s ^ 

= - j J G(t)dt - J G{t)dt I y for all 5 It follows that G has continuous deriv-
es S—E ' 

atives of every order on (a, and, since a was arbitrary, G has continuous deriv-
atives of every order on (0, °=>). 

Differentiating (23) with respect to t we find 

G\s + t ) - G \ s - t ) = 2G{s)G\t) 

whenever 0. With sufficiently small s > 0 , 

J im (?'(/) = J im ^ G ( 5 ) - ' [ G ' ( 5 + 0 - G ' ( 5 - 0 ] - 0. 

By the lemma, 

(24) G"(0) = lim G V - G < ® = 0. 

F rom (23) it follows that 

(25) . G"(s + t) + G"(s-t) = 2G(s)G"(t) 

for 0. Thus for sufficiently small 

J i m G"(t) = J i m y [ G ( j ) - 1 ] [ G " ( i + / ) + C " ( i - 0 ] = G i s ) " 1 « / " ^ . 

It follows from the lemma that G' is continuously d i f ferent ia te on [0, ®=>). If we 
let b = C"(0) £ B' and let / - 0 + in (25) we find that 

(26) G"{s) = G(s)b 

for all 5 > 0. Since b 6 B', (26) also holds if s=0. 
From (26), (24) and (19) it follows that 

t u t 

G(<) =j+f J G{s)bdsdu = j+ J (t — s)G(s)b ds 
0 0 0 

for all 0. By iteration one finds 
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for all 0. The last term on the right tends to 0 as /7 — =° for any fixed / > 0 , so 

t2b t*b2 

(27) G{t) =] + — + — +••• 

for all / s 0 since this series converges absolutely. Also note that bj=jb — b since 

We now solve for H. From (17) and (23), 

H(s + t) + H(s-t) = 2F(s)F(t)-2G(s)G(t) 

and then, in view of (21) and (22), we find 

(28) H(s + t) + H(s-t) = 2H(s)G(t) for s^t^O. 

As with G, we deduce from (28) that H has continuous derivatives of every 
order on (0, Differentiating (27) twice with respect to t and letting t-*0+ we 
find 
(29) H"(s)=H(s)b for all ,v>0. 

Now since lim H"(s) = lim H(s)b = 0 it follows from the lemma that 

lim H'(s) = c exists. Another application of the lemma proves that H'(0) = c 
exists and c = lim H'(s). 

As with G, we deduce from (28), (19), and the fact that //'(()) = c that for all 
0 

( s3b ssb2 

(30) H ( s ) = + y + 

From (20) we find that jc = 0 and cj = c. 
We have thus shown that / satisfies (13) for all 0. 
To prove the converse let j, b, c£ B such that jb=bj = b, cj = c and jc = 0. Define 

G\ R~B by (27) and H\ R^B by (30) and let f ( s ) = G(s)+H(s) for all s£R. 
Note that bc = (bj)c = b(jc) = 0 and thus 

(31) G(s)H(t) = H(s)H(t) = 0 

for all s, t£R. It is not difficult to verify directly that G satisfies (23) for all s, t£R. 
Note that H = cG' so that 

(32) H(s + t) + H(s-t) = cG'Cy + O + c G ' C y - / ) = 2cG\s)G(t) = 2H(s)G(t) 

for all s,t£R. Thus by (23), (31) and (32) 

f ( s + t ) + f ( s - t ) = 2G(s)G{t) + 2H(s)G(t) = 

= 2[G(s) + H(s)][G(t) + H(t)] = 2 f ( s ) f ( t ) for all s,t£R. 
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This completes the proof of the theorem. 
The following corollary follows directly from the corollary to Proposition 2 

and the above theorem. 

Corollary. Let B be a Banach algebra and suppose f : R^ Bis such that (1) is true 
for all s, t € R. Then f is measurable on a set of positive Lebesgue measure if and only 
if f has the form (13) for constants j, b, c£B satisfying j2 = j, jb = bj = b, cj — c and 
cj = 0. 

R e m a r k s . Many authors have considered equation (1), often called D'Alem-
bert's equation (see [1]). K A N N A P P A N [5] has shown that the general solution of (1) 
among complex valued functions defined on an Abelian group G is of the form 
f ( s ) = 2 {m(s) + m( — 5)} where m is a complex valued function defined on G 
and satisfying m(s + t) = m(s)m(t) for all s,t^G. S O V A [8] has considered the 
strongly continuous solutions of (1) where / is defined on (0, and has values 
in the Banach algebra of bounded operators on a Banach space and succeeded in 
proving an analogue of the Hille—Yosida theorem in the theory of semi-groups of 
operators. 
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