A connection between commutativity and separation of spectra of operators

By MARY R. EMBRY in Charlotte (North Carolina, U.S.A.)

1. Introduction. Recent results indicate that there is a basic connection between the commutativity of certain operators on a Banach space and the spectra of those operators. In [2] it was shown that if A is an operator on a complex Banach space and $\sigma(A) \cap \sigma\left(e^{2 \pi i k / n} A\right)=\emptyset$ for $k=1, \ldots, n-l$, then A and A^{n} commute with the same operators. This result was strongly generalized in [3] as follows: if f is holomorphic on a neighborhood of $\sigma(A), f$ is $1-1$ on $\sigma(A)$ and $f^{\prime}(z) \neq 0$ on $\sigma(A)$, then A and $f(A)$ commute with the same operators. In this paper we generalize the results of [2] for the case $n=2$ by considering two operators A and B such that $\sigma(A) \cap \sigma(B)=\emptyset$.
2. Notation and terminology. We shall consider a Banach algebra \mathscr{B} with an identity element I and elements $A, B, X, \ldots ; \sigma(A)$ is the spectrum of A. In case \mathscr{B} is the algebra of continuous linear operators on a Hilbert space we use the standard notation: if $A \in \mathscr{B}$, then A^{*} is the (Hilbert space) adjoint of $A, \operatorname{Re} A=\left(A+A^{*}\right) / 2$, and $\operatorname{Im} A=\left(A-A^{*}\right) / 2 i$. In this case we say that A is normal if $A A^{*}=A^{*} A$ and A is unitary if $A A^{*}=A^{*} A=I$.
3. The theorem. In [4, Theorem 3.I] it was proved that if $\sigma(A) \cap \sigma(B)=\emptyset$, then for each Y in \mathscr{B} there exists a unique solution to the equation $B X-X A=Y$. In particular, $B X-X A=0$ only in case $X=0$. We use this result to prove:

Theorem. If $\sigma(A) \cap \sigma(B)=\emptyset$, then X commutes with each of A and B if and only if X commutes with each of $A+B$ and $A B$.

Proof. One of the implications is obvious. Assume that X commutes with $A+B$ and $A B$. Then

$$
\begin{aligned}
A(A X-X A)-(A X-X A) B=A^{2} X & -A X(A+B)+X(A B)= \\
& =A^{2} X-A(A+B) X+(A B) X=0
\end{aligned}
$$

Thus by [4, Theorem 3.1], we have $A X-X A=0$. It is now obvious that $B X-X B=0$ also.

The hypothesis of the theorem, calling for a separation of the spectrum of A and the spectrum of B, is dictated by the example of the operators $A=-B=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ on two-dimensional complex Banach space. In this case $A+B=A B=0$.
4. Applications. We list below a few of the general applications of our theorem and then concentrate on the applications to operators on Hilbert space.

Corollary 1. If $\sigma(A) \cap \sigma(B)=\emptyset$, then A and B commute if and only if $A+B$ and $A B$ commute.

Proof. A and B commute if and only if $A+B$ commutes with each of \dot{A} and B. Apply the theorem with $X=A+B$.

Corollary 2. ([2] and [3]) If $\sigma(A) \cap \sigma(-A)=\emptyset$, then X commutes with A if and only if X commutes with A^{2}.

Proof. Apply the theorem with $B=-A$.
The next result is applicable to any invertible element of \mathscr{B} of norm less than 1 .
Corollary 3. If A is invertible and $\sigma(A) \cap \sigma\left(A^{-1}\right)=\emptyset$, then X commutes with A if and only if X commutes with $A+A^{-1}$.

Proof. Apply the theorem with $B=A^{-1}$.
Other general algebraic applications are obvious.
In Corollaries 4-8 we assume that \mathscr{B} is the Banach algebra of continuous linear operators on a Hilbert space.

The first application to operators on Hilbert space is obtained by choosing $B=A^{*}$.

Corollary 4. If $\sigma(A) \cap \sigma\left(A^{*}\right)=\emptyset$, then X commutes with each of A and A^{*} if and only, if X commutes with each of $\operatorname{Re} A$ and $A A^{*}$.

A special result of Corollary 4 is obtained by choosing $X=\operatorname{Re} A$.
Corollary 5. If $\sigma(A) \cap \sigma\left(A^{*}\right)=\emptyset$, then A is normal if and only if $\operatorname{Re} A$ commutes with $A A^{*}$.

This last corollary is reminiscent of the result in [1, Theorem 1]: A is normal if and only if each of $A A^{*}$ and $A^{*} A$ commutes with $\operatorname{Re} A$. The restriction on the spectrum of A in Corollary 5 thus reduces the number of commutativity relations required to force A to be normal.

Another consequence of Corollary 4 is obtained by assuming that A is unitary.

Corollary 6. If A is unitary and $\sigma(A) \cap \sigma\left(A^{*}\right)=\emptyset$, then X commutes with A if and only if X commutes with $\operatorname{Re} A$.

If the Hilbert space under consideration is finite dimensional and A is any unitary operator, then it follows from Corollary 6 that some unit multiple of A, say $e^{i \theta} A$, is such that an operator X commutes with $\operatorname{Re}\left(e^{i \theta} A\right)$ if and only if X commutes with $\operatorname{Im}\left(e^{i \theta} A\right)$.

Corollary 7. If either $\operatorname{Re} A$ or $\operatorname{Im} A$ is invertible, then X commutes with each of A and A^{*} if and only if X commutes with each of A and $(\operatorname{Re} A) \cdot(\operatorname{Im} A)$.

Proof. Under the hypothesis, we have $\sigma(\operatorname{Re} A) \cap \sigma(i \operatorname{Im} A)=\emptyset$. Apply the theorem with $A_{1}=\operatorname{Re} A$ and $B_{1}=i \operatorname{Im} A$.

As a final application consider Corollary 7 with $X=A$ to give an equivalent condition for the normality of an operator A.

Corollary 8. If either $\operatorname{Re} A$ or $\operatorname{Im} A$ is invertible, then A is normal if and only if A commutes with $(\operatorname{Re} A) \cdot(\operatorname{Im} A)$.

References

[1] M. R. Embry, Conditions implying normality in Hilbert space, Pac. J. Math., 18 (1966), 457-460.
[2] M. R. Embry, $n^{\text {th }}$ roots of operators, Proc. Amer. Math. Soc., 19 (1968), 63-68.
[3] M. Finkelstein and A. Lebow, A note on " nth roots of operators", Proc. Amer. Math. Soc., 21 (1969), 250.
[4] M. Rosenblum, On the operator equation $B X-X A=Q$, Duke Math. J., 23 (1956), 263-269. University of north Carolina at charlotte
(Received Jine 3, 1970)

