On the Suzuki structure theory for non self-adjoint operators on Hilbert space

By F. GILFEATHER in Honolulu (Hawaii, U.S.A.) ${ }^{1}$)

Throughout this paper all Hilbert spaces will be complex and all operators considered on them will be linear and bounded. Let A be an operator and $p(z, \bar{z})$ a complex non-commutative polynomial in z and \bar{z}. In Section 1 we shall give a complete structure theorem for the operator A whenever $p\left(A, A^{*}\right)$ is compact. The theorems in Section 1 are based on the structure of the W^{*}-algebra generated by A and they will include the results of N. Suzuki [14], who developed this theory for an operator A with $\operatorname{Im} A$ compact, and also the generalizations of Suzuki's work by H. Behncke [1] and [2] and the author [8]. In Section 2 we shall give an application of this theory to the study of non self-adjoint spectral operators on Hilbert space. By using C^{*}-algebra techniques, one can also obtain many of the results in this paper. In particular, Lemma 4 in [1] and its generalization to nonseparable spaces play a role in the C^{*}-algebra development analogous to the role of Proposition 1 in the W^{*}-algebra approach presented here.

If A is an operator on a Hilbert space, we shall denote by $R(A)$ the W^{*}-or von Neumann algebra generated by A, that is, the smallest weakly closed algebra containing A and I and closed under the operation of taking adjoints. The set of all operators which commute with every operator in $R(A)$ is called the commutant of $R(A)$ and is denoted by $R(A)^{\prime}$. N. Suzukr [14] called an operator primary if $R(A)$ is a factor, that is, if its center $Z(A) \equiv R(A) \cap R(A)^{\prime}$ consists of the scalar multiples of the identity. For the terminology, notation and basic results on von Neumann algebras we refer to J. Dixmier [6].

[^0]
1. Structure theorems

In this section we prove the following main structure theorem.
Theorem 1. Let A be an operator on a Hilbert space H and $p(z, \bar{z})$ be a noncommutative complex polynomial for which $p\left(A, A^{*}\right)$ is a compact operator. Then there exists a unique sequence of central projections $\left\{P_{i}\right\}_{i=0}^{n}(n \leqq \infty)$ in $R(A)$ so that

$$
A=A_{0} \oplus \sum_{i=1}^{n} \oplus A_{i}
$$

where $A_{0} \equiv A P_{0} H$ satisfies $\left.p(z, \bar{z})^{2}\right), A_{i} \equiv A \mid P_{i} H(i \geqq 1)$ are primary operators with $p\left(A_{i}, A_{i}^{*}\right)$ compact and non-zero, and $K=H \ominus P_{0} H$ is separable.

We are interested in studying this theorem in the special cases where $p(z, \bar{z})$ is one of the following polynomials: 1) $p(z, \bar{z})=z-\bar{z}$, 2) $p(z, \bar{z})=z \bar{z}-\bar{z} z)$, 3) $p(z, \bar{z})=z \bar{z} z-\bar{z} z^{2}$, 4) $p(z, \bar{z})=1-\bar{z} z$, and 5) $p(z, \bar{z})=z-z \bar{z} z$. Case 1) has been studied by M. S. Brodskil̆ and M. S. Livšic [3], and N. Suzuki's original work also concerns it. The cases 2) and 3) have been studied by H. Behncke [1] and [2]; and case 3) by A. Brown [4]. Behncke obtained his structure by using C^{*}-algebra methods while Suzuki's original work is based on W^{*}-algebraic techniques. Case 4) has been studied by B. Sz.-NAGY and C. Foias if T is a contraction and by the author [8], where results analogous to Theorem 1 appear.

The proof of the theorem will be based on a proposition from the theory of von Neumann algebras. Let M be a von Neumann algebra and T be an operator in M. The support of T is the projection P on $\overline{T^{*} H}$ and $P \in M$. The central support of T is the smallest projection $F \in Z \equiv M \cap M^{\prime \circ}$ which majorizes P. If \mathscr{F} is a family of operators in M we say that F is the central support of \mathscr{J} if it is the smallest projection in Z which majorizes the support of each $T \in \mathscr{F}$. A non-zero projection $Q \in M$ is called minimal if it is an atom in the lattice of projections in M, that is, whenever R is a non-zero projection in M such that $R \leqq Q$, then $R=Q$.

Proposition 1. Let M be a von Neumann algebra such that $M \cap \mathscr{C} \equiv \mathscr{B}_{M}$ has central support $I .^{3}$) Then the lattice of projections in $Z($ the center of M) is atomic, that is, each non-zero $P \in Z$ majorizes a non-zero minimal projection $Q \in Z$.

Proof. Let $0 \neq P \in Z$. If $P T=0$ for each $T \in \mathscr{C}_{M}$, then $(I-P) T=T$ for each $T \in \mathscr{C}_{M}$. Hence $I-P$ would majorize the central support of \mathscr{C}_{M} and $I \leqq I-P$ which implies that $P=0$. Thus there is a $T \in \mathscr{C}_{M}$ such that $P T \neq 0$. Furthermore we may assume that $T=T^{*}$ and $P T=T$. By the spectral decomposition of the compact

[^1]selfadjoint operator T, we may conclude that $E=P E \neq 0$, where E is the spectral projection on an eigenspace corresponding to a non-zero eigenvalue of $T . E$ is finite dimensional since T is compact and the eigenvalue associated with E is nonzero. It is easy to show that $E \in M$ (Proposition 1 in [14]). Since E is a finite dimensional projection in M we may choose a projection $E_{1} \in M$ so that $0<E_{1} \leqq E$ and E_{1} is a minimum non-zero projection in $M\left(E_{1}\right.$ may be chosen so that $0 \neq \operatorname{dim}\left(E_{1} H\right)=\min \{\operatorname{dim}(F H): F \in M$ and $\left.0 \neq F \leqq E\}\right)$. If we let Q be the central support of $E_{1} \in M$, then we shall show that Q is a non-zero minimal projection in Z which is majorized by P. Since $P \geqq E_{1}$, it is clear that $P \geqq Q$. Let $R \in Z$ such that $R \leqq Q$. If $R E_{1}=0$, then $(Q-R) E_{1}=E_{1}$; hence $Q \leqq Q-R$, which implies that $R=0$. Since E_{1} is a minimal projection in M, if $R E_{1} \neq 0$, then we have that $R E_{1}=E_{1}$. Because R is a central projection, we obtain the inequality $0 \neq R \leqq Q \leqq R$, and hence $R=Q$. Therefore we have shown that Q is a minimal projection in Z.

Using this proposition we now prove Theorem 1.
Proof. First we describe the subspace $H \ominus P_{0} H$ which occurs in the statement of the theorem. Let $w\left(A, A^{*}\right)=\prod_{i=1}^{n} A^{k_{i}} A^{*: m_{i}}$ be a word in A and A^{*}, that is, k_{i} and m_{i} are non-negative integers, possibly zero, and n is any positive integer. Denote by $\mathscr{l l}$ the subspace of H generated by $\left\{w\left(A, A^{*}\right) x: x \in p\left(A, A^{*}\right) H\right.$ and $w\left(A, A^{*}\right)$ is any word in A and $\left.A^{*}\right\}$. The image of a compact operator is a separable subspace; hence $p\left(A, A^{*}\right) H$ is separable and thus the separability of \mathscr{A} follows from the construction of \mathscr{H}. It is also clear that \mathscr{I} is invariant under A and A^{*} and hence \mathscr{l} reduces A, that is, if Q is the projection on \mathscr{M}, then $Q \in R(A)^{\prime}$. Let T be an arbitrary operator in $R(A)^{\prime}$ and $y \in \mathscr{M}$ be of the form $w\left(A, A^{*}\right) x$, where $x=p\left(A, A^{*}\right) z$. Then $T y=T w\left(A, A^{*}\right) x=w\left(A, A^{*}\right) T x=w\left(A, A^{*}\right) p\left(A, A^{*}\right) T z \in \mathscr{l}$; thus \mathscr{A} is invariant under $T \in R(A)^{\prime}$. Since $R(A)^{*}=R(A)$, we may conclude that $Q \in R(A)^{\prime \prime}=R(A)$ and therefore that $Q \in Z(A) \equiv R(A) \cap R(A)^{\prime}$.

Denote by P_{0} the central projection $I-Q$ and by A_{0} the restriction of A to P_{0}. Next we shall show that $p\left(A_{0}, A_{0}^{*}\right)=0$. If $x \in H_{0} \equiv P_{0} H$, then $x=(I-Q) x$ and $p\left(A_{0}, A_{0}^{*}\right) x=Q p\left(A_{0}, A_{0}^{*}\right) x=Q p\left(A_{0}, A_{0}^{*}\right)(I-Q) x=Q(I-Q) p\left(A_{0}, A_{0}^{*}\right) x=0$. Furthermore, since Q is a central projection in $R(A), \mathscr{l}$ is generated as before, with A replaced by $A Q$. If we denote by A_{Q} the operator $A \mid Q H$, then $H \ominus H_{0}=\mathscr{M}$ is generated by words in A_{Q} and A_{Q}^{*} acting on $p\left(A_{Q}, A_{Q}^{*}\right)$.

The algebra $R(A)_{Q}=\{T \mid Q H: T \in R(A)\}$ is equal to $R\left(A_{Q}\right)$ and $Z(A)_{Q}=Z\left(A_{Q}\right)$ [6]. By our remarks above, the identity operator on $Q H$ is the central support of the set of operators consisting of $p\left(A_{Q}, A_{Q}^{*}\right)$ multiplied by words in A_{Q} and A_{Q}^{*}. Each of these operators is compact and thus I_{Q} is the central support of $\mathscr{C}_{R\left(A_{Q}\right)}$: By Proposition 1, the lattice of projections in $Z\left(R\left(A_{Q}\right)\right)$ is a complemented atomic lattice. By Zorn's lemma we may choose a maximal family $\left\{\widetilde{P}_{i}\right\}_{i=1}^{n}(n \leqq \infty)$ of mutually orthogonal minimal projections in $Z\left(A_{Q}\right)$. This family is countable since
$Q H=\mathscr{M}$ is separable and $\sum_{i=1}^{n} \tilde{P}_{i}=I_{Q}$ since the family is maximal. Because $Z\left(A_{Q}\right)=$ $:=Z(A)_{Q}$ there are projections $\left\{Q_{i}\right\}_{i=1}^{n} \subset Z(A)$ such that $Q_{i} \mid Q H=\widetilde{P}_{i}$. If we define $P_{i} \equiv Q_{i} Q$, then $P_{i} \mid Q H=\widetilde{P}_{i}$ and $\left\{P_{i}\right\}_{i=1}^{n}$ is a family of mutually orthogonal minimal projections in $Z(A)$ with the property that $\sum_{i=1}^{n} P_{i}=Q$.

Since P_{i} is minimal projection in $Z(A)$, it follows that $A_{P_{i}}$ is primary. Since $p\left(A_{P_{i}}, A_{P_{i}}^{*}\right)=p\left(A, A^{*}\right) \mid P_{i} H$, it is clear that $p\left(A_{P_{i}}, A_{P_{i}}^{*}\right)$ is compact; however, we must show that $p\left(A_{P_{i}}, A_{P_{i}}^{*}\right) \neq 0$. If we assume that $p\left(A_{P_{j}}, A_{P_{j}}^{*}\right)=0$ for some $j \geqq 1$, then $w\left(A_{P_{j}}, A_{P_{j}}^{*}\right) p\left(A_{P_{j}}, A_{P_{j}}^{*}\right)=0$, for any word $w\left(A_{P_{j}}, A_{P_{j}}^{*}\right)=\prod_{i=1}^{\Pi} A_{P_{j}}^{k_{i}} A_{P_{i}}^{* m_{i}}$. We would then have that $\{0\}=w\left(A_{P_{j}}, A_{P_{j}}^{*}\right) p\left(A_{P_{j}}, A_{P_{j}}^{*}\right) P_{j} H=P_{j}\left(w\left(A, A^{*}\right) p\left(A, A^{*}\right) H\right.$; thus it would follow that $P_{j} Q=0$. Thercfore $P_{j} \perp Q$, which is a contradiction, since P_{j} is non-zero and $P_{j} \leqq Q$.

Remark 1. The argument given in the paragraph above is valid if P_{j} is any projection in $R(A)^{\prime}$. That is, if N is a reducing space of A on which $p\left(A\left|N, A^{*}\right| N\right)=0$, then $N \subset P_{0} H$.

Remark 2. The central support P of an operator $T \in M$ is also the central support of T^{*} and P also majorizes the projection on the smallest reducing space of T which contains $T H$. Thus we see that Q, as defined in the proof of Theorem 1, is the central support of $p\left(A, A^{*}\right)$.

For each $i \geqq 1$, we have that $0 \neq p\left(A_{i}, A_{i}^{*}\right)$ and thus the dimension of $p\left(A_{i}, A_{i}^{*}\right) H_{i}$ ($\left.H_{i} \equiv P_{i} H\right)$ is $\geqq 1$. Therefore, if $p\left(A, A^{*}\right)$ is itself of finite rank, then the decomposition given in Theorem 1 is finite.

Corollary 1. Let A be an operator and $p(z, \bar{z})$ a nonmmutative polynomial for which $p\left(A, A^{*}\right)$ has finite rank. Then the decomposition in Theorem 1 is finite, that is, the index n in Theorem 1 is finite.

Proof. The decomposition of A given by Theorem 1 has the property that $\operatorname{dim}\left(p\left(A, A^{*}\right) H\right)=\sum \operatorname{dim}\left(p\left(A_{i}, A_{i}^{*}\right) H_{i}\right)$ and for $i \geqq 0 \operatorname{dim}\left(p\left(A_{i}, A_{i}^{*}\right) H_{i}\right) \neq 0$.

In some cases we may wish to consider more than one non-commutative polynomial of z and \bar{z}. We can then extend the above idea so as to include this situation. For simplicity we shall only consider the case of two non-commutative polynomials.

Proposition 2. Let A be an operator and $p(z, \bar{z})$ and $q(z, \bar{z})$ be commutative polynomials. Then there exists unique central projections, $P_{i}(i=1,2,3 ; 4)$ in $R(A)$ such that $A=A_{1} \oplus A_{2} \oplus A_{3} \oplus A_{4}$, where $A_{1} \equiv A \mid P_{1} H$ satisfies p and q, A_{2} satisfies p and has no reducing subspace on which it satisfies q, A_{3} satisfies q and has no reducing subspace on which it satisfies p, and A_{4} has no reducing space on which it satisfies either p or q.

Proof. Let Q_{1} be the central support of $p\left(A, A^{*}\right)$ and Q_{2} the central support of $q\left(A, A^{*}\right)$. Let $Q_{1} \cdot Q_{2}=P_{4}$; then by Remark $1 A_{4} \equiv A \mid P_{4} H$ has no reducing space on which A_{4} satisfies either p or q. Let Q_{3} be the central support of the set $\left\{p\left(A, A^{*}\right), q\left(A, A^{*}\right)\right\}$, that is $Q_{3}=Q_{2}+Q_{1}-Q_{1} Q_{2}$. If $P_{1}=I-Q_{3}, P_{2}=Q_{3}-Q_{1}$, and $P_{3}=Q_{3}-Q_{2}$, then $\left\{P_{1}, P_{2}, P_{3}, P_{4}\right\}$ satisfy the conclusion of the proposition.

Remark. As a special case of Proposition 2 we may consider only one polynomial $p(z, \bar{z})$. In this case we decompose A into $A_{0} \oplus A_{1}$ where $p\left(A_{0}, A_{0}^{*}\right)=0$. By the remark following the proof of Theorem 1, we note that H_{1}, the space on which A_{1} is defined, is generated by $\left\{w\left(A, A^{*}\right) p\left(A, A^{*}\right) H: w\left(A, A^{*}\right)\right.$ is any word in A and $\left.A^{*}\right\}$. This result is known in some special cases. Livšic and Brodskiĭ [3] call an operator simple if it has no reducing space on which it is selfadjoint. In this case H_{1} is generated by $\left\{A^{n}\left(A-A^{*}\right) H: n=0,1,2, \ldots\right\}$ and $A \mid H_{1}$ is called the simple part of A. Halmos [9] calls an operator abnormal if it has no reducing space on which it is normal. Finally B. Sz.-NAGY and C. FoIAş use the terminology completely non-unitary for contractions with no reducing spaces on which they are unitary. This latter notation seems the most descriptive of the situation.

If we combine Theorem 1 and Proposition 2.we obtain the form that the structure theorem takes in many of its applications.

Theorem.2. Let A be an operator and $p(z, \vec{z})$ and $q(z, \bar{z})$ be two non-commutative polynomials such that $p\left(A, A^{*}\right)$ is compact. Then there exists unique central projections $\left\{P_{i}\right\}_{i=1}^{n}(n \leqq \infty)$ in $R(A)$ so that

$$
A=A_{1} \oplus A_{2} \oplus A_{3} \oplus \sum_{i \geqq 4} \oplus A_{i}
$$

where $A_{i} \equiv A \mid P_{i} H, p\left(A_{1}, A_{1}^{*}\right)=q\left(A_{1}, A_{1}^{*}\right)=0, p\left(A_{2}, A_{2}^{*}\right)=0, A_{2}$ has no reducing space on which $q\left(A_{2}, A_{2}^{*}\right)=0, q\left(A_{3}, A_{3}^{*}\right)=0$, and A_{3} has no reducing subspaces on which $p\left(A_{3}, A_{3}^{*}\right)=0, A_{i}(i \geqq 4)$ are primary operators with $p\left(A_{i}, A_{i}^{*}\right)$ compact, and eack $A_{i}(i \geqq 4)$ has no reducing subspace on which $q\left(A_{i}, A_{i}^{*}\right)=0$ or $p\left(A_{i}, A_{i}^{*}\right)=0$.

Proof. From Proposition 2 we obtain the projections P_{1}, P_{2}, and P_{3}. Applying Theorem 1 to the operator $A_{P_{4}}$ and the algebra $R\left(A_{P_{4}}\right)$ we complete the decomposition of A.

We now turn to the structure of primary operators A for which $p\left(A, A^{*}\right)$ is compact and non-zero. Here the algebraic character of the operator plays the important role. This fact was first noticed by Suzukı for primary operators with compact imaginary parts. The following proposition is essentially a restatement of Proposition 2 in [14]. Let A be a primary operator and $p(z, \bar{z})$ a non-commutative polynomial for which $p\left(A, A^{*}\right)$ is compact and non-zero. The projections on proper subspaces of $\operatorname{Re}\left(p\left(A, A^{*}\right)\right)$ and $\operatorname{Im}\left(p\left(A, A^{*}\right)\right)$ corresponding to non-zero proper values have
finite rank and belong to $R(A)$. Since at least one such projection exists and is nonzero, we have that $R(A)$ contains finite dimensional projections and hence $R(A)$ contains minimal projections. Therefore the von Neumann algebra $R(A)$ is a factor of type I and the dimension n of a minimal projection in $R(A)$ is uniquely determined. The number n is a unitary invariant for A and is called the multiplicity of A.

Proposition 3. Let A be a primary operator and $p(z, \bar{z})$ a non-commutative polynomial for which $p\left(A, A^{*}\right)$ is compact and non-zero. If n is the multiplicity of A, then $R(A)^{\prime}$ (the commutant of $R(A)$) is of type I_{n}.

The proof is similar to the proof of Proposition 2 in [14].
The type of algebra generated by an operator has been studied by many authors. As a corollary to Proposition 3, we have the following result.

Proposition 4. If A is an operator and $p(z, \bar{z})$ is a non-commutative polynomial for which $p\left(A, A^{*}\right)$ is compact, then $R(A)$ is a type I algebra if and only if A_{0} (given by Theorem 1) generates an algebra of type I .

Now for special cases we can determine certain operators that generate type I algebras.

Corollary 2. Let A be an operator for which $p\left(A, A^{*}\right)$ is compact. Then A. generates a type I von Neumann algebra if
i) $p(z, \bar{z})=z-\bar{z}, \quad$ ii) $p(z, \bar{z})=\bar{z} z-z \bar{z}$, or \quad iii) $p(z, \bar{z})=1-z \bar{z}$.

Proof. This result is known for case i) (Suzuki [14]) and case ii) (Behncke [1]). Case iii) follows since an isometry generates a type I von Neumann algebra.

Remark. Carl Pearcy gives examples of partial isometric operators which do not generate type I von Neumann algebras [10]. Hence for $p(z, \bar{z})=z-z \bar{z} z$ and an operator A such that $p\left(A, A^{*}\right)$ is compact, the algebra $R(A)$ need not be type I.

Now we complete the algebraic structure of operators A for which $p\left(A, A^{*}\right)$ is compact and non-zero. We shall show that when the operator A is also primary, then it is just the direct sum of n copies of an irreducible operator V with the properties that $p\left(V, V^{*}\right)$ is compact and non-zero. The following theorem is similar to Theorem 3 in [14] where the case $p(z, \bar{z})=z-\bar{z}$ was considered.

Theorem 3. Let A be a primary operator and $p(z, \bar{z})$ a non-commutative polynomial such that $p\left(A, A^{*}\right)$ is compact and non-zero. If m is the multiplicity of A, then A is unitarily equivalent to an operator $V \otimes I_{m}$, where V is an irreducible operator with $p\left(V, V^{*}\right)$ compact and non-zero and I_{m} is the identity operator on an m-dimensional Hilbert space.

Proof. A von Neumann algebra of type $\mathrm{I}_{\alpha m}$ is spatially isomorphic to $\mathscr{L}(K) \otimes$ $\otimes\left\{\lambda I_{m}\right\}$, where $\mathscr{L}(K)$ is the algebra of all bounded operators on an α-dimensional Hilbert space K and λI_{m} are the scalar multiples of the identity operator I_{m} on an m-dimensional Hilbert space [6]. Thus A is unitarily equivalent to an operator of the form $V \otimes I_{m} \in \mathscr{L}(K) \otimes\left\{\lambda I_{m}\right\}$. One can then show that V must be irreducible.

If $p(z, \bar{z})$ is a non-commutative polynomial, we say that the operator A has p-rank r if rank $p\left(A, A^{*}\right)$ is r. Using strictly algebraic ideas we obtain the following two corollaries of Theorem 3.

Corollary 3. If A is a primary operator with p-rank r and multiplicity m then A is unitarily equivalent to $V \otimes I_{m}$ and the p-rank of V is n where $r=n \cdot m$.

Corollary. 4. Let A be a primary operator with p-rank r. If the multiplicity of A is 1 and r is a prime number, then A is either irreducible or else A is unitarily equivalent to $V \otimes I_{r}$, in which case the p-rank of V is 1 .

We wish to illustrate this theory with examples using the specific non-commutative polynomials mentioned at the beginning of this section. Operators A with $A-A^{*}$ compact have been extensively studied by various authors; see [3] and [14]. In this case A is uniquely decomposed by central projections in $R(A)$ as

$$
A=A_{0} \oplus \sum_{i=1}^{n} \oplus A_{i} \quad(n \leqq \infty)
$$

where A_{0} is a self adjoint operator and each $A_{i}(i \geqq 1)$ is a primary operator with Im A_{i} compact. By theorem 3 each $A_{i}=V_{i} \otimes I_{n_{i}}, V_{i}$ is irreducible with Im V_{i} compact and non-zero, and $n_{i}<\infty$. These results are due to N. Suzuki [14].

Following Suzuki's original work, H. Behncke [1] used the theory of C^{*}-algebras to prove the analogous theorem when $p(z)=\bar{z} z-z \bar{z}$. If $A^{*} A-A A^{*}$ is compact then A is uniquely decomposed by central projections in $R(A)$ as

$$
A_{0} \oplus \sum_{i=1}^{n} \oplus A_{i} \quad(n \leqq \infty),
$$

where A_{0} is normal, each A_{i} is primary with $A_{i}^{*} A_{i}-A_{i} A_{i}^{*}$ compact and each $A_{i}=$ $=V_{i} \otimes I_{n_{i}}$, where V_{i} is irreducible $V_{i}^{*} V_{i}-V_{i} V_{i}^{*}$ is compact and non-zero, and $n_{i}<\infty$.

Using the polynomial $p(z, \bar{z})=z \bar{z} z-\bar{z} z^{2}$ and $q(z, \bar{z})=\bar{z} z-z \bar{z}$ and Theorem 2, we can obtain the decomposition given by H. Behncese in [2] whenever $p\left(A, A^{*}\right)$ is compact.

For contraction operators A with $p\left(A, A^{*}\right)=I-A^{*} A$ compact the algebraic decomposition has been given by the author [8]. If we consider the polynomials $p(z, \bar{z})=1-\bar{z} z$ and $q(z, \bar{z})=1-z \bar{z}$ and an operator A for which $p\left(A, A^{*}\right)$ is
compact, then Theorems 2 and 3 give the following unique central decomposition.

$$
A=A_{0} \oplus A_{1} \oplus A_{2} \oplus \sum_{i=3}^{n} \oplus A_{i} \quad(n \leqq \infty)
$$

where A_{0} is unitary, A_{1} is a forward unilateral shift, A_{2} is a backward unilateral shift and each $A_{1}(i \geqq 3)$ is a primary operator. Furthermore, for $i \geqq 3, A_{i}=V_{i} \otimes I_{n_{i}}$, where V_{i} is irreducible, $I-V_{i}^{*} V_{i}$ is compact and non-zero, $n_{i}<\infty$, and V_{i} is completely non-isometric.

2. Applications

In this section we give an application of Theorem 1 based on the theory of spectral operators [7]. The results of this section give striking examples of how the algebraic decomposition of an operator can be used to determine its exact structure.
J. Schwartz [12] and N. Suzuki [15] have determined a structure theorem for the spectral operator A whenever $A-A^{*}$ is compact. We will give the analogous result whenever: i) $\dot{A}^{*} \dot{A}-A A^{*}$, ii) $I-A^{*} A$, or iii) $A A^{*} A-A^{*} A^{2}$ is compact. This will correspond to three specific uses of Theorem 1.

In what follows we shall use several results concerning the Calkin algebra associated with $\mathscr{L}(H)$. The algebra $\mathscr{L}(H) / \mathscr{C}(\mathscr{C}$ is the compact operators in $\mathscr{L}(H))$ is a B^{*} algebra with involution * and it is called the Calkin algebra associated with \boldsymbol{H}. If \hat{A} denotes the image of A in $\mathscr{L}(H) / \mathscr{C}$, then $(\hat{A})^{*}=\hat{A}^{*}$ and $\sigma(\hat{A}) \subset \sigma(A)$. For details concerning this algebra we refer to [5].

The following lemma gives conditions on a spectral operator A which imply that the quasinilpotent part is compact or equivalently, that the operator \hat{A} is a scalar type operator in $\mathscr{L}(H) / \mathscr{C}$.

Lemma 1. Let A be a spectral operator with the canonical decomposition $A=S+N$, where S is a scalar type operator and N is a quasinilpotent operator. Then N is compact if any of the following operators i) $A^{*} A-A A^{*}$, ii) $A^{*}-A$, iii) $I-A^{*} A$, or iv) $A A^{*} A-A^{*} A^{2}$ is compact.

Proof. Since $A=S+N$, we have $\hat{A}=\hat{S}+\hat{N}$ as the canonical decomposition of \hat{A} in $\mathscr{L}(H) / \mathscr{C}$. In cases i) and ii) we clearly have that \hat{A} is normal. Since the decomposition into scalar and quasinilpotent parts is unique, we may conclude that $\hat{N}=0$ and therefore N is compact. Part i) was proven by Schwartz in [12]:

In the case iii), \hat{A} is an isometry. It can be shown directly that isometric spectral operators are normal.

In case iv) we are considering an operator $\hat{A}=B$ such that $B B^{*} B-B^{*} B^{2}=0$. A. Brown [4] has completely characterized these operators; he shows that $B=V D$,
where V is an isometry, $D \geqq 0$ and $V D=D V$. Again one can directly show that a spectral operator B satisfying iv) is normal. However in case iii) and iv) the operatcr A is also subnormal.
J. Stampfli has shown [13] that in a separable Hilbert space every subnormal spectral operator is normal. His proof is independent of separability and hence can be used here. Hence in either iii) or iv) we may conclude that $\hat{N}=0$ and therefore N is compact.

Now we present the main theorem of this section.
Theorem 4. Let A be a spectral operator on a Hilbert space H. Whenever at least one of the operators i) $A^{*} A-A A^{*}$, ii) $A^{*}-A$, iii) $I-A^{*} A$, or iv) $A A^{*} A-A^{*} A^{2}$ is compact, then A decomposes into the algebraic direct sum

$$
\dot{A}=A_{0}+\sum_{i=1}^{n}+\left(\lambda_{i} I_{i}+N_{i}\right) \quad(n \leqq \infty) \quad \text { on } \quad H=H_{0}+\sum_{i=1}^{n}+H_{i}
$$

where $\left\{H_{i}\right\}_{i=0}$ are invariant subspaces for $A, A_{0} \equiv A \mid H_{0}$ is scalar, I_{i} is the identity operator on $H_{i},\left(\lambda_{i} I_{i}+N_{i}\right) \equiv A \mid H_{i}, \lambda_{i} \in \sigma(A), N_{i}$ is a compact quasinilpotent operator and $\left\|N_{i}\right\| \rightarrow 0$ if $n=\infty$. Furthermore in the cases ii) and iii) we also have, that respectively, A_{0} is similar to a self-adjoint operator with $\operatorname{Im} \lambda_{i} \rightarrow 0$ if $n=\infty$; and A_{0} is similar to a unitary operator with $\left|\lambda_{i}\right| \rightarrow 1$ if $n=\infty$. Finally, the non-scalar summand $\sum_{i=1}^{n}+H_{i}$ is separable.

Proof. Let A be a spectral operator with canonical decomposition $A=S+N$ where N is compact. Let R be the invertible operator for which $R S R^{-1}$ is normal and let $B \equiv R A R^{-1}, T \equiv R S R^{-1}$, and $L \equiv R N R^{-1}$. Now L is also compact and T is normal, so that $\hat{B}=\hat{T}$ and $B^{*} B-B B^{*}$ is compact.

Using the polynomial $p(z, \bar{z})=\bar{z} z-z \bar{z}$ in Theorem 1, the operator B decomposes as

$$
B=B_{0} \oplus \sum_{i=1}^{n} \oplus B_{i} \quad(n \leqq \infty), \quad \text { with } \quad H=H_{0} \oplus \sum_{i=1}^{n} \oplus H_{i}
$$

where $B_{0} \equiv B \mid H_{0}$ is normal and $B_{i} \equiv B \mid H_{i}$ is a primary operator ($i \geqq 1$).
Each $B_{i}(i \geqq 1)$ is also a spectral operator and has the canonical decomposition $B_{i}=T_{i}+L_{i}$. Since $T, L \in R(B)^{\prime}$ and the decomposition of B was by central projections in $R(B)$, the operator T_{i} is $T \mid H_{i}$ and L_{i} is $L \mid H_{i}$. Each T_{i} is normal and belongs to the center of the algebra $R\left(B_{i}\right)$. Since B_{i} is a primary operator, we may conclude that $T_{i}=\lambda_{i} I_{i}$ for some scalar $\lambda_{i}\left(I_{i}\right.$ is the identity operator on $\left.H_{i}\right)$. Because $\left\{\lambda_{i}\right\}=\sigma\left(T_{i}\right) \subset \sigma(T)=\sigma(B)=\sigma(A)$, we note that $\lambda_{i} \in \dot{\sigma}(A)$. Therefore B is decomposed as $B=B_{0} \oplus \sum_{i=1}^{n} \oplus\left(\lambda_{i} I_{i}+L_{i}\right) \quad(n \leqq \infty)$; furthermore, since L is compact, $\left\|L_{i}\right\| \rightarrow 0$ if $n=\infty$.

If A satisfies any of the conditions i)-iv), we have by Lemma 1 that N is compact. Therefore, A has the decomposition given above. Now we shall discuss the special cases ii) and iii). In either case $\sigma(B)=\sigma(A) \supset \sigma\left(B_{0}\right)$ and $\sigma(\hat{A})=\sigma(\hat{B}) \supset \sigma\left(\hat{B}_{0}\right)$. In case ii), $\sigma(\hat{A})$ is real and hence B_{0} is a normal operator with $\sigma\left(\hat{B}_{0}\right)$ real, that is, \hat{B}_{0} is self adjoint and $\operatorname{Im}\left(B_{0}\right)$ is compact. By reordering, in the above decomposition, and redenoting B_{0} as the selfadjoint part of B_{0}, we obtain in case ii):

$$
B=B_{0} \oplus \sum_{i=1}^{n} \oplus\left(\lambda_{i} I_{i}+L_{i}\right) \quad(n \leqq \infty),
$$

where B_{0} is selfadjoint, Im $\lambda_{i} \rightarrow 0$ and $\left\|L_{i}\right\| \rightarrow 0$ if $n=\infty$. In case a particular λ_{i} arises from the previous B_{0} we simply define $L_{i} \equiv 0$. Now if we premultiply by R and postmultiply by R^{-1} we obtain the desired result

$$
A=A_{0}+\sum_{i=1}^{n} \dot{+}\left(\lambda_{i} I_{i}+N_{i}\right) \quad(n \leqq \infty) \quad \text { on } \quad H=H_{0}+\sum_{i=1}^{n}+H_{i}
$$

where A_{0} is a scalar operator with real spectrum, Im $\lambda_{i} \rightarrow 0$ and $\left\|N_{i}\right\| \rightarrow 0$ if $n=\infty$.
In case iii) we may proceed as in case ii). Since spectral isometries are unitary, it follows that \hat{A} is unitary; thus $\sigma(\hat{A}) \subset\{z:|z|=1$. $\}$ and $\sigma(\hat{B}) \subset\{z:|z|=1\}$. Thus B_{0} is a normal operator with $\sigma\left(\hat{B}_{0}\right)$ on the boundary of the unit disk. Hence $B_{0}=$ $=U \oplus \sum \oplus \lambda_{i} I_{i}$, where U is a unitary operator, $\left\{\lambda_{i}\right\}=\sigma\left(B_{0}\right) \backslash\{z:|z|=1\}$, and I_{i} is the identity operator on the eigenspace corresponding to λ_{i}. We may redenote B_{0} as the unitary part of B_{0} and obtain the decomposition:

$$
B=B_{0} \oplus \sum_{i=1}^{n} \oplus\left(\lambda_{i} I_{i}+L_{i}\right) \quad(n \leqq \infty)
$$

where B_{0} is unitary and $\left\|L_{i}\right\| \rightarrow 0$ if $n=\infty$. The set $\left\{\lambda_{i}\right\}$ does not have limit points in the set $\{z:|z|<1\}$, since $\partial \sigma(A) \subset \sigma(\hat{A}) \cup$ \{isolated eigenvalues of A of finite multiplicity\} [11]; therefore, we conclude that $\left|\lambda_{i}\right| \rightarrow 1$ if $n=\infty$.

By premultiplying by R and postmultiplying by R^{-1} we finally obtain that:

$$
A=A_{0}+\sum_{i=1}^{n} \dot{+}\left(\lambda_{i} I_{i}+\dot{N}_{i}\right) \quad(n \leqq \infty) \quad \text { on } \quad H=H_{0}+\sum_{i=1}^{n} \dot{+}\left(\lambda_{i} I_{i}+N_{i}\right)
$$

where A_{0} is a scalar type operator with $\sigma\left(A_{0}\right)$ lying on the circumference of the unit circle, $\left|\lambda_{i}\right| \rightarrow 1$ and $\left\|N_{i}\right\| \rightarrow 0$ if $n=\infty$.

Remark. The use here of Theorem 1 is similar to that made by N. Suzuki in the case ii) [15]. However, the use of the spectral properties of an operator A and \hat{A} are details that differ from the proof of ii) in [15]. This Theorem for case ii) was originally given by J. Schwartz using completely different methods.

Remark. By the argument given in the first part of the proof, we see that the decomposition in the theorem holds for any spectral operator with compact quasinilpotent part.

References

[1] H. Behncke, Structure of certain nonnormal operators, J. of Math. and Mech., 18 (1968), 103107.
[2] H. Behncke, A class of nonnormal operators (to appear).
[3] M. S. Brodskil̆ and M. S. Livšic, Spectral analysis of non self-adjoint operators and intermediate systems, Uspehi Mat. Nauk, 13 (1958), 265-346.
[4] A. Brown, On a class of operators, Proc. Amer. Math. Soc., 4 (1953), 723-728.
[5] J. W. Calkin, Two-sided ideals and congruences in the ring of bounded operators in Hilbert space, Ann. of Math., 42 (1941), 839-873.
[6] J. Dixmier, Les algèbres d'opérateurs dans l'espace hilbertien (Paris, 1957).
[7] N. Dunford, Spectral operators, Pacific J. Math., 4 (1954), 321-354.
[8] F. Gilfeather, Thesis, University of California, Irvine, 1969.
[9] P. R. Halmos, A Hilbert space problem book (Princeton, 1967).
[10] C. Pearcy, On certain von Neumann algebras which are generated by partial isometries, Proc. Amer. Math. Soc., 15 (1965), 393-395.
[11] C. R. Putnam, The spectra of operators having resolvents of first order growth, Trans. Amer. Math. Soc., 133 (1968), 505-510.
[12] J. T. Schwartz, On spectral operators in Hilbert space with compact imaginary part, Comm. Pire Appl. Math., 15 (1962), 95-97.
[13] J. G. Stampfli, Analytic extensions and spectral localization, J. Math. and Mech., 16 (1966), 287-296.
[14] N. Suzuki, The algebraic structure of non self-adjoint operators, Acta Math. Sci., 27 (1966), 173-184.
[15] N. Suzuki, The structure of spectral operators with completely continuous imaginary part, Proc. Amer. Math. Soc., 22 (1969), 82-84.
[16] B. Sz.-Nagy and C. Foias, Analyse harmonique des opérateurs de l'espace de Hilbert. (Budapest, 1967).

[^0]: ${ }^{1}$) This paper was prepared while the author was an Office of Naval Research Postdoctoral Associate at Indiana University (1969-70). This work represents generalizations of parts of the author's Ph. D. thesis which was directed by N. Suzuki.

[^1]: ${ }^{2}$) We say that the operator T satisfies $p(z, \bar{z})$ if $p\left(T, T^{*}\right)=0$.
 ${ }^{3}$) \mathscr{C} is the two sided ideal of compact operators in H.

