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Throughout this paper all Hilbert spaces will be complex and all operators 
considered on them will be linear and bounded. Let A be an operator and p(z, z) 
a complex non-commutative polynomial in z and z. In Section 1 we shall give a 
complete structure theorem for the operator A whenever p(A, A*) is compact. The 
theorems in Section 1 are based on the structure of the W*-algebra generated by 
A and they will include the results of N . S U Z U K I [14 ] , who developed this theory 
for an operator A with Im A compact, and also the generalizations of Suzuki's 
work by H. B E H N C K E [1] and [2] and the author [8] . In Section 2 we shall give an 
application of this theory to the study of non self-adjoint spectral operators on 
Hilbert space. By using C*-algebra techniques, one can also obtain many of the 
results in this paper. In particular, Lemma 4 in [1] and its generalization to non-
separable spaces play a role in the C*-algebra development analogous to the role of 
Proposition 1 in the f-F*-algebra approach presented here. 

If A is an operator on a Hilbert space, we shall denote by the W*-or von 
Neumann algebra generated by A, that is, the smallest weakly closed algebra con-
taining A and / and closed under the operation of taking adjoints. The set of all 
operators which commute with every operator in R{A) is called the commutant 
of R(A) and is denoted by R(A)'. N. SuzuKt [14] called an operator primary if 
i?04) is a factor, that is, if its center Z(A) = consists of the scalar 
multiples of the identity. For the terminology, notation and basic results on von 
Neumann algebras we refer to J . DIXMIER [6]. 

*) This paper was prepared while the author was an Office of Naval Research Postdoctoral 
Associate at Indiana University (1969—70). This work represents generalizations of parts of the 
author's Ph. D. thesis which was directed by N.. S U Z U K I . 
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1. Structure theorems 

In this section we prove the following main structure theorem. 

T h e o r e m I. Let A be an operator on a Hilbert space H andp(z, z) be a non-
commutative complex polynomial for which p(A, A*) is a compact operator. Then 
there exists a unique sequence of central projections {/',}"=0 (11 = <*>) in R(A) so that 

n 
A A g @ ^ ® Aj, 

1 = 1 

where A0=AP0H satisfies p(z, z)2) , At = A\PtH are primary operators with 
p{An A*) compact and non-zero, and K = HQP0H is separable. 

We are interested in studying this theorem in the special cases where p(z, z) is 
one of the following polynomials: 1) p(z,z) = z — z, 2) p(z,z) = zz—zz), 
3) p(z, z) = zzz — zz2, 4) p(z, z) = 1 — zz, and 5) p(z, z) — z — zzz. Case 1) has 
been studied by M. S. BRODSKII and M. S. Livsic [3], and N. SU Z U K I 'S original 
work also concerns it. The cases 2) and 3) have been studied by H . BEHNCKE [ I ] 

and [2]; and case 3) by A. B R O W N [4]. BEHNCKE obtained his structure by using 
C*-algebra methods while Suzuki's original work is based on ^ - a l g e b r a i c 
techniques. Case 4) has been studied by B . S Z . - N A G Y and C. FOIA§ if T is a con-
traction and by the author [8], where results analogous to Theorem 1 appear. 

The proof of the theorem will be based on a proposition f rom the theory of 
von Neumann algebras. Let M be a von Neumann algebra and T be an operator 
in M. The support of T is the projection P on f*H and P£ M. The central support 
of T is the smallest projection F£Z = MPlM'°which majorizes P. If / is a family 
of operators in M we say that F is the central support of # if it is the smallest pro-
jection in Z which majorizes the support of each T £ f . A non-zero projection 
QdM is called minimal if it is an a tom in the lattice of projections in M, that is, 
whenever R is a non-zero projection in M such that R = Q, then R = Q. 

P r o p o s i t i o n 1. Let M be a von Neumann algebra such that A*/ V/ - Wm 
has central support I. 3) Then the lattice of projections in Z (the center of M) is atomic, 
that is, each non-zero P^Z majorizes a non-zero minimal projection Q£Z. 

P r o o f . Let O^P^Z. If PT=0 for each T ^ M , then {I-P)T = T for each 
Hence I—P would majorize the central support of and / ^ I— P which 

implies that P = 0. Thus there is a T(Le£M such that i>7V0. Furthermore we may 
assume that T=T* and PT=T. By the spectral decomposition of the compact 

2) We say that the operator 7"satisfies p(z, z) if p(T,T*) = 0. 
3) is l:ho two sided ideal of compact operators in H. 
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selfadjoint operator T, we may conclude that E = PE?i 0, where E is the spectral 
projection on an eigenspace corresponding to a non-zero eigenvalue of T. E is 
finite dimensional since T is compact and the eigenvalue associated with E is non-
zero. It is easy to show that £ £ M (Proposition 1 in [14]). Since E is a finite dimen-
sional projection in M we may choose a projection El so that 0 <EiSE and 
Ei is a minimum non-zero projection in M ( £ , may be chosen so that 
0 ^ d i m ( £ , / / ) = min { d i m ( E H ) : F£M and O^FsE}). If we let Q be the central 
support of £ , 6 M, then we shall show that Q is a non-zero minimal projection in 
Z which is majorized by P. Since P s £ , , it is clear that P^Q. Let R£Z such that 
R ^ Q . If 7?£, = 0 , then ( £ ) - / ? ) £ , = £ , ; hence Q ^ Q - R , which implies that 
R= 0. Since £ , is a minimal projection in M, if REt ^ 0, then we have that REt — £ j . 
Because R is a central projection, we obtain the inequality 0 ^ R = Q = R, and 
hence R = Q. Therefore we have shown that Q is a minimal projection in Z. 

Using this proposition we now prove Theorem 1. 
P r o o f . First we describe the subspace HQP0 H which occurs in the statement 

n 
of the theorem. Let w(A, A*) — ]J Ak'A*'"' be a word in A and A*, that is, kt 

i= 1 
and 777,- are non-negative integers, possibly zero, and n is any positive integer. Denote 
by Ji the subspace of H generated by {w(A, A*)x: x£p(A, A*)H and w(A, A*) 
is any word in A and A*}. The image of a compact operator is a separable sub-
space; hence p(A, A*)H is separable and thus the separability of Ji follows from 
the construction of Ji. It is also clear that Ji is invariant under A and A* and hence 
Ji reduces A, that is, if Q is the projection on Ji, then Q 6 R(A)'. Let Tbe an arbitrary 
operator in R{A)' and y^Ji be of the form w(A, A*)x, where x—p(A, A*)z. Then 
Ty = Tw(A, A*)x—w(A, A*)Tx = w(A, A*)p(A, A*)Tz£Ji; thus Ji is invariant 
under T£R(A)'. Since R(A)* = R ( A ) , we may conclude that Q £R{A)" = R{A) and 
therefore that Q£Z(A) = R{A)f\R{A)'. 

Denote by P0 the central projection /— Q and by A0 the restriction of A to 
P0. Next we shall show that p(A0, AD = 0 . If x^H0 = P0H, then x = (I-Q)x 
a n d p ( A 0 , A * ) x = Qp(A0,A*0)x = Qp(A0, A*)(I-Q)x = Q(i-Q)p(A0, A*)x = 0 . 
Furthermore, since Q is a central projection in R(A), Ji is generated as before, 
with A replaced by AQ. If we denote by AQ the .operator A\QH, then HQH0 = Ji 
is generated by words in AQ and Aq acting on p(AQ, Aq). 

The algebra R(A)Q = {T\QH: R{A)} is equal to R(AQ) and Z(A)Q = Z(AQ) 
[6]. By our remarks above, the identity operator on QH is the central support of 
the set of operators consisting of p(AQ, Aq) multiplied by words in AQ and Aq. 
Each of these operators is compact and thus /Q is the central support of ^ r <_A q ) . 
By Proposition 1, the lattice of projections in Z(R(Aq)) is a complemented atomic 
lattice. By Zorn's lemma we may choose a maximal family {£•,}"=! ( « S ° ° ) of mu-
tually orthogonal minimal projections in Z(Aq). This family is countable since 
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QH = Jl is separable and 2 Pi=IQ since the family is maximal. Because Z(AQ) = 
/ = i 

.'= Z(A)q there are projections {Q,}"=ICZ(A) such that Qi\Qff = Pi- If we define 
Pi = QiQ, then Pi\QN=Pi and is a family of mutually orthogonal minimal 

n 
projections in Z(A) with the property that 

i= 1 
Since Pl is minimal projection in Z(A), it follows that Ap is primary. Since 

p(Ap ,A* )=p(A, A*)\PiH, it is clear that p(Ap , Ap) is compact; however, we 
must show that p(AP/, Ap ) ^ 0. If we assume that p(APj, APj) = 0 for some . / 5 1 , 
then w(Ap , A* )p(Ap,, A*)= 0, for any word w(Ap., A*)= f[Ak>A*m<. We would j j j J J J i = 1 " 
then have that {0} = w(APj, A*)p(APj, A*p)PjH = Pj(w{A, A*)p(A, A*)H; thus it 
would follow that PjQ = 0. Therefore PjLQ, which is a contradiction, since Ps is 
non-zero and Pj S Q. 

R e m a r k 1. The argument given in the paragraph above is valid if P j is any 
projection in R(A)'. That is, if TV is a reducing space of A on which p(A\N, /4*|yV)=:0, 
then NcP0 H. 

R e m a r k 2. The central support P of an operator T £ M is also the central 
support of T* and P also majorizes the projection on the smallest reducing space 
of T which contains TH. Thus we see that Q, as defined in the proof of Theorem 1, 
is the central support of p{A, A*). 

For each / S 1 , we have that 0 ¿¿piAj, A f ) and thus the dimension o f p ( A n Af)Hi 

(7/; = P ; / / ) is S i . Therefore, if p(A, A*) is itself of finite rank, then the decomposi-
tion given in Theorem 1 is finite. 

C o r o l l a r y 1. Let A be an operator and p(z, z) anonmmutative polynomial for 
which p (A, A*) has finite rank. Then the decomposition in Theorem 1 is finite, that is, 
the index n in Theorem 1 is finite. 

P r o o f . The decomposition of A given by Theorem 1 has the property that 
dim (p{A, A*)H) = A*)H) and for / s 0 dim (p(A„ A*)H) ^ 0 . 

In some cases we may wish to consider more than one non-commutative poly-
nomial of z and z. We can then extend the above idea so as to include this situa-
tion. For simplicity we shall only consider the case of two non-commutative poly-
nomials. 

P r o p o s i t i o n 2. Let A be an operator and p(z,z) and q(z, z) be commutative 
polynomials. Then there exists unique central projections, P, ( / = 1 , 2 , 3, 4) in R(A) 
such that A = AlQA2@A3QA4, where A1 = A\P^ H satisfies p and q, A2 satisfies 
p and has no reducing subspace on which it satisfies q, A 3 satisfies q and has no 
reducing subspace on which it satisfies p, and A4 has no reducing space on which it 
satisfies either p or q. 



N o n self-adjoint operators 243 

P r o o f . Let Ql be the central support of p(A, A*) and Q2 the central support 
of q(A,A*). Let Qv-Q2 = P4', then by Remark 1 A4 = A\P4H has no reducing 
space on which A4 satisfies either p or q. Let Q3 be the central support of the set 
{ / > ( / M * ) , ? 0 M * ) } , t h a t i s g 3 = QZ + QI-QIQI-VPI =I-Q3,P2 = Q3-QI, 
and P3. = Q3 — Q2, then {P^, P2,P3, P4i satisfy the conclusion of the proposi-
tion. 

R e m a r k . As a special case of Proposition 2 we may consider only one poly-
nomial p{z,z). In this case we decompose A into A0@A1 where p(A0, A*o)—0. 
By the remark following the proof of Theorem 1, we note that Hlt the space on 
which Ax is defined, is generated by {w(A, A*)p(A, A*)H: w(A, A*) is any word 
in A and A*}. This result is known in some special cases. Livsic and BRODSKII [3] 
call an operator simple if it has no reducing space on which it is selfadjoint. In 
this case H^ is generated by {A"(A-A*)H\ « = 0, 1, 2, ...} and A\Ht is called the 
simple part of A. HALMOS [9] calls an operator abnormal if it has no reducing space 
on which it is normal. Finally B. S Z . - N A G Y and C . FOIA§ use the terminology com-
pletely non-unitary for contractions with no reducing spaces on which they are 
unitary. This latter notation seems the most descriptive of the situation. 

If we combine Theorem 1 and Proposition 2 we obtain the form that the structure 
theorem takes in many of its applications. 

T h e o r e m . 2 . Let A be an operator andp{z,z) and q(z, z) be two non-commuta-
tive polynomials such that p(A, A*) is compact. Then there exists unique centra! pro-
jections {P;}"= 1 (/2 = °=) in R{A) so that 

A = A1®A2@A3® 2®a>, 
¡S 4 

where A ^ A ^ ^ , p(A1} A*)=q(A1, A*)=0, p(A2,A2)= 0, A2 has no reducing 
space on which q(A2, A f ) = 0, q(A3, A3) = 0, and A3 has no reducing subspaces on 
which p(A3, Aj)=0, A. (/ = 4) are primary operators with p(An A f ) compact, and 
each Ai (i&4) has no reducing subspace on which q(An A*) = 0 or p(An A*) = 0. 

P r o o f . From Proposition 2 we obtain the projections Pl} P2, and P3. Apply-
ing Theorem 1 to the operator Ap and the algebra R(APJ we complete the de-
composition of A. 

We now turn to the structure of primary operators A for which p(A, A*) is 
compact and non-zero. Here the algebraic character of the operator plays the impor-
tant role. This fact was first noticed by SUZUKI for primary operators with compact 
imaginary parts. The following proposition is essentially a restatement of Proposi-
tion 2 in [14]. Let A be a primary operator a n d p ( z , z) a non-commutative polynomial 
for which p(A, A*) is compact and non-zero. The projections on proper subspaces 
of Re (p(A, /1*)) and Im (p(A, A*)) corresponding to non-zero proper values have 
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finite rank and belong to R(A). Since at least one such projection exists and is non-
zero, we have that R{A) contains finite dimensional projections and hence R(A) 
contains minimal projections. Therefore the von Neumann algebra R(A) is a factor 
of type / and the dimension n of a minimal projection in R(A) is uniquely determined. 
The number n is a unitary invariant for A and is called the multiplicity of A. 

P r o p o s i t i o n 3. Let A be a primary operator and p(z, z) a non-commutative 
polynomial for which p(A, A*) is compact and non-zero, if n is the multiplicity of A, 
then R(A)' (the commutant of R(A)) is of type I„. 

The proof is similar to the proof of Proposition 2 in [14]. 
The type of algebra generated by an operator has been studied by many authors. 

As a corollary to Proposition 3, we have the following result. 

P r o p o s i t i o n 4. If A is an operator and p(z, z) is a non-commutative polynomial 
for which p(A, A*) is compact, then R{A) is a type I algebra if and only if A0 (given 
by Theorem 1) generates an algebra of type I. 

Now for special cases we can determine certain operators that generate type / 
algebras. 

C o r o l l a r y 2. Let A be an operator for which p(A, A*) is compact. Then A. 
generates a type I von Neumann algebra if 

i) p(z,z) = z—z, ii) p(z,z) = zz — zz, or iii) p(z,z) = 1 — zz. 

P r o o f . This result is known for case i) (SUZUKI [14]) and case ii) (BEHNCKE [1]). 
Case iii) follows since an isometry generates a type I von Neumann algebra. 

R e m a r k . C A R L PEARCY gives examples of partial isometric operators which 
do not generate type I von Neumann algebras [10]. Hence for p(z,z) = z—zzz 
and an operator A such that p(A, A*) is compact, the algebra R(A) need not be 
type I. 

Now we complete the algebraic structure of operators A for which p(A, A*) 
is compact and non-zero. We shall show that when the operator A is also primary, 
then it is just the direct sum of n copies of an irreducible operator V with the proper-
ties that p(V, V*) is compact and non-zero. The following theorem is similar to Theo-
rem 3 in [14] where the case p(z,z) = z — z was considered. 

T h e o r e m 3. Let A be a primary operator andp(z, z) a non-commutative poly-
nomial such that p(A, A*) is compact and non-zero. If m is the multiplicity of A, then 
A is unitarily equivalent to an operator V®Im, where V is an irreducible operator 
with p(V, V*) compact and non-zero and Im is the identity operator on an m-dimensional 
Hilbert space. 
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P r o o f . A von Neumann algebra of type Iam is spatially isomorphic to (K)<g> 
® {A/,,,}, where ££{K) is the algebra of all bounded operators on an a-dimensional 
Hilbert space K and ?Jm are the scalar multiples of the identity operator /„, on an 
»¡-dimensional Hilbert space [6]. Thus A is unitarily equivalent to an operator of 
the form V®Im£JZ'(K)®{XIm}. One can then show that V must be irreducible. 

If p(z, z) is a non-commutative polynomial, we say that the operator A has 
p-rank r if rank p(A, A*) is r. Using strictly algebraic ideas we obtain the following 
two corollaries of Theorem 3. 

C o r o l l a r y 3. If A is a primary operator with p-rank r and multiplicity m 
then A is unitarily equivalent to V®Im and the p-rank of V is n where r = n-m. 

C o r o l l a r y . 4. Let A be a primary operator with p-rank r. If the multiplicity 
of A is 1 and r is a prime number, then A is either irreducible or else A is unitarily 
equivalent to V®Ir, in which case the p-rank of V is 1. 

We wish to illustrate this theory with examples using the specific non-commuta-
tive polynomials mentioned at the beginning of this section. Operators A with 
A—A* compact have been extensively studied by various authors; see [3] and [14]. 
In this case A is uniquely decomposed by central projections in R(A) as 

A = (n S »), 
i = i 

where A0 is a self adjoint operator and each At ( / = 1 ) is a primary operator with 
Im Aj compact. By theorem 3 each Al — Ff(g>/„ , Vi is irreducible with Im 
compact and non-zero, and These results are due to N . S U Z U K I [14] . 

Following Suzuki's original work, H . BEHNCKE [1] used the theory of ^ - a l -
gebras to prove the analogous theorem when p(z) = zz — zz. If A* A—A A*-is compact 
then A is uniquely decomposed by central projections in R(A) as 

n 
A0® 2®Ai (n oo), 

/=1 

where A0 is normal, each At is primary with A^Af — A^* compact and each Ai = 
— where V-t is irreducible VfVi — Vyf is compact and non-zero, and 

/7; < OO. 

Using the polynomial p(z, z) = zzz — zz2 and q(z, z) = zz — zz and Theorem 2y 

we can obtain the decomposition given by H . BEHNCKE in [2] whenever p(A, A*) 
is compact. 

For contraction operators A with p(A,A*) = I —A*A compact the algebraic 
decomposition has been given by the author [8]. If we consider the polynomials 
p(z,z) = 1—zz and q(z,z) = 1 — zz and an operator ,4 for which p(A, A*) is 
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compact, then Theorems 2 and 3 give the following unique central decomposition. 

n 
A = A0®Al@A2® Z®Ai 

/ = 3 

where A0 is unitary, Ax is a forward unilateral shift, A2 is a backward unilateral 
shift and each Ax ( / S 3 ) is a primary operator. Furthermore, for / S 3 , Ai = K,.<8)/„., 
where is irreducible, I—V*Vi is compact and non-zero, /7;<<*>, and Vt is comple-
tely non-isometric. 

2. Applications 

In this section we give an application of Theorem 1 based on the theory of 
spectral operators [7]. The results of this section give striking examples of how 
the algebraic decomposition of an operator can be used to determine its exact 
structure. 

J. S C H W A R T Z [12] and N. S U Z U K I [15] have determined a structure theorem for 
the spectral operator A whenever A —A* is compact. We will give the analogous 
result whenever: i) A*A—AA*, ii) I — A*A, or iii) AA*A — A*A2 is compact. This 
will correspond to three specific uses of Theorem 1. 

In what follows we shall use several results concerning the Calkin algebra 
associated with ££{H). The algebra is the compact operators in .£?(H)) 
is a B* algebra with involution * and it is called the Calkin algebra associated with 
H. If A denotes the image of A in then (A)* = A* and <r(A)cza(A). For 
details concerning this algebra we refer to [5]. 

The following lemma gives conditions on a spectral operator A which imply 
that the quasinilpotent part is compact or equivalently, that the operator A is a 
scalar type operator in &'(H)/Cg. 

L e m m a 1. Let A be a spectral operator with the canonical decomposition 
A = S + N, where S is a scalar type operator and N is a quasinilpotent operator. 
Then N is compact if any of the following operators i) A* A—A A*, ii) A*— A, iii) 
I —A*A, or iv) AA*A—A*A2 is compact. 

P r o o f . Since A = S + N, we have A = S + $ as the canonical decomposi-
tion of A in £'(H)/<£. In cases i) and ii) we clearly have that A is normal. Since the 
decomposition into scalar and quasinilpotent parts is unique, we may conclude 
that N=0 and therefore N is compact. Part i) was proven by S C H W A R T Z in [12]. 

In the case iii), A is an isometry. It can be shown directly that isometric spectral 
operators are normal. 

In case iv) we are considering an operator A=B such that BB*B — B*B2 = 0. 
A . B R O W N [4] has completely characterized these operators; he shows that B —• VD, 
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where V is an isometry, D s O and VD—DV. Again one can directly show that a 
spectral operator B satisfying iv) is normal. However in case iii) and iv) the operatcr 
A is also subnormal. 

J. STAMPFLI has shown [ 1 3 ] that in a separable Hilbert space every subnormal 
spectral operator is normal. His proof is independent of separability and hence 
can be used here. Hence in either iii) or iv) we may conclude that 7V = 0 and there-
fore N is compact. 

Now we present the main theorem of this section. 

T h e o r e m 4. Let A be a spectral operator on a Hilbert space H. Whenever at 
least one of the operators i) A* A —AA*, ii) A*—A;iii) I — A*A, or iv) AA*A — A*A2 

is compact, then A decomposes into the algebraic direct sum 

A = A0+ jt + ttJi + Nd (« S on H = H0+ ¿'+ //,•; 
¡= i /=1 

where {//,},=0 are invariant subspaces for A, A0=A\H0 is scalar, I. is the identity 
operator on / / , , /, + /V;) = A \ Hi, ^¡£a(A), Nt is a compact quasinilpotent operator 
and HJVjU —0 if n = co. Furthermore in the cases ii) and iii) we also have, that respec-
tively, A0 is similar to a self-adjoint operator with Im Af -»-0 if n = and A 0 is similar 

n 
to a unitary operator with /.¡j —-1 if n = °°. Finally, the non-scalar summand 2 + Hi 

1 = 1 
is separable. 

P r o o f . Let A be a spectral operator with canonical decomposition A = S-hN 
where N is compact. Let R be the invertible operator for which RSR'1 is normal 
and let B = RAR-\ T = RSR-\ and L = RNR~l. Now L is also compact and 
T is normal, so that B = f and B*B — BB* is compact. 

Using the polynomial p{z,z) = zz — zz. in Theorem 1, the operator B de-
composes as 

B = 2*o© 2®Bi (« 3= «,), with H = H0© 2®Hh 
i = i i = i 

where B0 = B\H0 is normal and Bi = B\Ht is a primary operator (z 'Sl) . 
Each Bi ( r ' S l ) is also a spectral operator and has the canonical decomposi-

tion Bi — Ti + Li. Since T, L£R{B)' and the decomposition of B was by central 
projections in R(B), the operator Tt is T\Ht and L, is L\Ht. Each Ti is normal and 
belongs to the center of the algebra R{B^. Since Bt is a primary operator, we may 
conclude that T^XJi for some scalar )H (/,• is the identity operator on //,). Because 
{Xi} = o{T?)C2(j{T) = a(B) = o(A), we note that A;£<r(A). Therefore B is decomposed 

M 
as B = BQ@ 2®(hh+Ld furthermore, since L is compact, ||L,|| 

¡=1 
if rt = oo. . . 
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If A satisfies any of the conditions i)—iv), we have by Lemma 1 that N is compact. 
Therefore, A has the decomposition given above. Now we shall discuss the special 
cases ii) and iii). In either case O{B)—O(A)^>O(B0) and A(A) = A(B)Z>A(B0). In 
case ii), A (A) is real and hence B0 is a normal operator with A(B0) real, that is, 
B0 is self adjoint and Im (B0) is compact. By reordering, in the above decomposition, 
and redenoting B0 as the selfadjoint part of B0, we obtain in case ii): 

B = B0® 2®(KH + LD (« S 
1 = 1 

where B0 is selfadjoint, Tm A,—0 and ||Z.;||—0 if N = °°. In case a particular 
arises from the previous B0 we simply define LT = 0. Now if we premultiply by R 

and postmultiply by R-1 we obtain the desired result 

A = A0+ ¿ + + ( « ; = - ) on H = H0+Z + Hh 
;= i i = i 

where A0 . is a scalar operator with real spectrum, Im 1, - 0 and ||7V,|| —0 if /7 = ^ . 
In case iii) we may proceed as in case ii). Since spectral isometries are unitary, 

it follows that A is unitary; thus CR(A)CI {z: \z\= I.} and A(B)a {z: \z\ = 1}. Thus 
B0 is a normal operator with A(B0) on the boundary of the unit disk. Hence B0 = 
= U@ where U is a unitary operator, {A,} = (t(B0)\{Z: |z| = 1}, and is 
the identity operator on the eigenspace corresponding to A;. We may redenote B0 

as the unitary part of B0 and obtain the decomposition: 

B = B0® ¿ © ( A ^ + 4-) 
1 = 1 

where B0 is unitary and ||L;|| —0 if = The set {2,} does not have limit points 
in the set {z: \z\< 1}, since da(A)cz(r(A) U (isolated eigenvalues of A of finite multi-
plicity} [II]; therefore, we conclude that —1 if « = 

By premultiplying by R and postmultiplying by i ? - 1 we finally obtain that: 

A =A0+ 2 + ( V i + N,) (/7 ^ - ) on H = H0 + 2 + Q-ih + 
i= 1 1 = 1 

where A0 is a scalar type operator with a{A0) lying on the circumference of the 
unit circle, — 1 and H./VJ —0 if n = <*>. 

R e m a r k . The use here of Theorem 1 is similar to that made by N . SUZUKI 

in the case ii) [15]. However, the use of the spectral properties of an operator A 
and A are details that differ from the proof of ii) in [15]. This Theorem for case 
ii) was originally given by J. SCHWARTZ using completely different methods. 
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R e m a r k . By the argument given in the first part of the proof, we see that 
the decomposition in the theorem holds for any spectral operator with compact 
quasinilpotent part. 
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